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Abstract

This paper presents some existence and uniqueness results for a boundary
value problem of fractional differential equations of order α ∈ (1, 2] with four-
point nonlocal fractional integral boundary conditions. Our results are based
on some standard tools of fixed point theory and nonlinear alternative of Leray-
Schauder type. Some illustrative examples are also discussed.
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1 Introduction

In recent years, a variety of problems involving differential equations of fractional order
have been investigated by several researchers with the sphere of study ranging from the
theoretical aspects of existence and uniqueness of solutions to the analytic and numer-
ical methods for finding solutions. Fractional differential equations appear naturally in
a number of fields such as physics, chemistry, biology, economics, control theory, signal
and image processing, biophysics, blood flow phenomena, aerodynamics, fitting of ex-
perimental data, etc. It is also found that the differential equations of arbitrary order
provide an excellent instrument for the description of memory and hereditary proper-
ties of various materials and processes. With these features, the fractional order models
become more realistic and practical than the classical integer-order models. For details
and examples, see ([1]-[5]). The recent development of the subject can be found in a
series of papers ([8]-[21]). Recently, Ahmad and Nieto [22] studied a problem involv-
ing Riemann-Liouville fractional integro-differential equations with fractional nonlocal
integral boundary conditions.

1Corresponding author.
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In this paper, motivated by [22], we discuss the existence of solutions for a four-point
nonlocal boundary value problem for Caputo type fractional differential equations of
order α ∈ (1, 2] with fractional integral boundary conditions given by



























cDαx(t) = f(t, x(t)), 1 < α ≤ 2, t ∈ [0, 1],

x(0) = aIα−1x(η) = a

∫ η

0

(η − s)α−2

Γ(α− 1)
x(s)ds,

x(1) = bIα−1x(σ) = b

∫ σ

0

(σ − s)α−2

Γ(α− 1)
x(s)ds, 0 < η < σ < 1,

(1)

where a and b are arbitrary real constants, cDα denotes the Caputo fractional derivative
of order α and f : [0, 1] × R → R is a given continuous function.

2 Preliminaries

Let us recall some basic definitions on fractional calculus ([1]-[3]).

Definition 2.1 The Riemann-Liouville fractional integral of order q for a continuous
function g : [0,∞) → R, is defined as

Iqg(t) =
1

Γ(q)

∫ t

0

g(s)

(t− s)1−q
ds, q > 0,

provided the integral exists.

Definition 2.2 For an at least n−times continuously differentiable function g : [0,∞) →
R, the Caputo derivative of fractional order q is defined as

cDqg(t) =
1

Γ(n− q)

∫ t

0

(t− s)n−q−1g(n)(s)ds, n− 1 < q < n, n = [q] + 1,

where [q] denotes the integer part of the real number q.

Lemma 2.1 For any y ∈ C[0, 1], the unique solution of the linear fractional boundary
value problem



























cDαx(t) = y(t), 1 < α ≤ 2, t ∈ [0, 1],

x(0) = aIα−1x(η) = a

∫ η

0

(η − s)α−2

Γ(α− 1)
x(s)ds,

x(1) = bIα−1x(σ) = b

∫ σ

0

(σ − s)α−2

Γ(α− 1)
x(s)ds, 0 < η < σ < 1,

(2)

is

x(t) = Iαy(t) + (∆1 − ∆4t)I
2α−1y(η) + (∆2 + ∆3t)[bI

2α−1y(σ) − Iαy(1)], (3)
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where

∆1 =
a

∆

(

1 −
bσα

Γ(α + 1)

)

, ∆2 =
aηα

∆Γ(α + 1)
,

∆3 =
1

∆

(

1 −
aηα−1

Γ(α)

)

, ∆4 =
a

∆

(

1 −
bσα−1

Γ(α)

)

,

∆ =
(

1 −
bσα

Γ(α+ 1)

)(

1 −
aηα−1

Γ(α)

)

+
aηα

Γ(α+ 1)

(

1 −
bσα−1

Γ(α)

)

.

(4)

Proof. For some constants c0, c1 ∈ R and 1 < α ≤ 2, the general solution of the
equation cDαx(t) = y(t) can be written as

x(t) = Iαy(t) + c0 + c1t, (5)

Using the boundary conditions for the problem (2) in (5), we find that

c0 =
1

∆

{

a
(

1 −
bσα

Γ(α + 1)

)

I2α−1y(η) +
aηα

Γ(α + 1)

(

bI2α−1y(σ) − Iαy(1)
)}

,

c1 =
1

∆

{(

1 −
aηα−1

Γ(α)

)(

bI2α−1y(σ) − Iαy(1)
)

− a
(

1 −
bσα−1

Γ(α)

)

I2α−1y(η)
}

.

Substituting the values of c0 and c1 in (5), we get (3). This completes the proof. �

3 Existence results

Let C = C([0, 1],R) denote the Banach space of all continuous functions from [0, 1] → R

endowed with the norm defined by ‖x‖ = sup{|x(t)|, t ∈ [0, 1]}.
To define a fixed point problem equivalent to (1), we make use of Lemma 2.1 to

define an operator T : C → C as

(T x)(t) =

∫ t

0

(t− s)α−1

Γ(α)
f(s, x(s))ds+ (∆1 − ∆4t)

∫ η

0

(η − s)2α−2

Γ(2α− 1)
f(s, x(s))ds

+(∆2 + ∆3t)
(

b

∫ σ

0

(σ − s)2α−2

Γ(2α− 1)
f(s, x(s))ds−

∫ 1

0

(1 − s)α−1

Γ(α)
f(s, x(s))ds

)

,

(6)
where ∆1,∆2,∆3 and ∆4 are given by (4).

Observe that the problem (1) has solutions if and only if the operator T has fixed
points.

For the forthcoming analysis, we set

κ =
1

Γ(α + 1)
+

(|∆1| + |∆4|)η
2α−1

Γ(2α)
+ (|∆2| + |∆3|)

( σ2α−1

Γ(2α)
+

1

Γ(α + 1)

)

. (7)
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Theorem 3.1 Assume that f : [0, 1] × R → R is a continuous function satisfying the
assumption

(H1) |f(t, x) − f(t, y)| ≤ L|x− y|, ∀t ∈ [0, 1] , x, y ∈ R, L > 0.

Then the problem (1) has a unique solution if L < 1/κ, where κ is given by (7).

Proof. Let us set supt∈[0,1] |f(t, 0)| = M and define Br = {x ∈ C : |x| ≤ r}, where

r ≥Mκ/(1 − Lκ).

As a first step, we show that T Br ⊂ Br. For x ∈ Br, we have

‖T x‖ ≤ sup
t∈[0,1]

{

∫ t

0

(t− s)α−1

Γ(α)
(|f(s, x(s)) − f(s, 0)| + |f(s, 0)|)ds

+ |∆1 − ∆4t|

∫ η

0

(η − s)2α−2

Γ(2α− 1)
(|f(s, x(s)) − f(s, 0)| + |f(s, 0)|)ds

+ |∆2 + ∆3t|(b

∫ σ

0

(σ − s)2α−2

Γ(2α− 1)
)(|f(s, x(s)) − f(s, 0)| + |f(s, 0)|)ds

}

≤ (Lr +M)
{ 1

Γ(α + 1)
+

(|∆1| + |∆4|)η
2α−1

Γ(2α)
+ (|∆2| + |∆3|)

×
( σ2α−1

Γ(2α)
+

1

Γ(α + 1)

)}

= (Lr +M)κ ≤ r,

where we have used (7). Thus, T Br ⊂ Br. Now for x, y ∈ C, we obtain

‖T x− T y‖ ≤ sup
t∈[0,1]

{

∫ t

0

(t− s)α−1

Γ(α)
|f(s, x(s)) − f(s, y(s))|ds

+ |∆1 − ∆4t|

∫ η

0

(η − s)2α−2

Γ(2α− 1)
|f(s, x(s)) − f(s, y(s))|ds

+ |∆2 + ∆3t|(b

∫ σ

0

(σ − s)2α−2

Γ(2α− 1)
)|f(s, x(s)) − f(s, y(s))|ds

}

≤ L
{ 1

Γ(α + 1)
+

(|∆1| + |∆4|)η
2α−1

Γ(2α)
+ (|∆2| + |∆3|)

×
(σ2α−1

Γ(2α)
+

1

Γ(α + 1)

)}

‖x− y‖

= Lκ‖x− y‖.

Since L < 1/κ, therefore, the operator T is a contraction. Hence, by Banach’s con-
traction principle, the problem (1) has a unique solution. This completes the proof. �

Our next existence result is based on Krasnoselskii’s fixed point theorem [23].
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Theorem 3.2 Let N be a closed convex and nonempty subset of a Banach space M.
Let A,B be the operators such that (i) Ax + By ∈ N whenever x, y ∈ N ; (ii) A is
compact and continuous; (iii) B is a contraction mapping. Then there exists z ∈ N
such that z = Az +Bz.

Theorem 3.3 Let f : [0, 1] × R → R be a continuous function satisfying the assump-
tions (H1) and

(H2) |f(t, x)| ≤ µ(t) , ∀(t, x) ∈ [0, 1] × R where µ ∈ C([0, 1],R+).

If

L
{(|∆1| + |∆4|)η

2α−1

Γ(2α)
+ (|∆2| + |∆3|)

(σ2α−1

Γ(2α)
+

1

Γ(α + 1)

)}

< 1, (8)

then the problem (1) has at least one solution on [0, 1].

Proof. In view of (H2), we define supt∈[0,1] |µ(t)| = ‖µ‖, and consider the set
Br̄ = {x ∈ C : ‖x‖ ≤ r̄}, where r̄ ≥ ‖µ‖κ, where κ is given by (7). Introduce the
operators Φ and Ψ on Br̄ as

(Φx)(t) =

∫ t

0

(t− s)α−1

Γ(α)
f(s, x(s))ds,

(Ψx)(t) = (∆1 − ∆4t)

∫ η

0

(η − s)2α−2

Γ(2α− 1)
f(s, x(s))ds

+ (∆2 + ∆3t)
(

b

∫ σ

0

(σ − s)2α−2

Γ(2α− 1)
f(s, x(s))ds−

∫ 1

0

(1 − s)α−1

Γ(α)
f(s, x(s))ds

)

.

For x, y ∈ Br̄, we find that

||Φx+ Ψy‖ ≤ ‖µ‖κ ≤ r̄.

Thus, Φx+ Ψy ∈ Br̄.
Notice that Ψ is a contraction mapping by the condition (8). Continuity of f implies
that the operator Φ is continuous. Also, Φ is uniformly bounded on Br̄ as

‖Φx‖ ≤
‖µ‖

Γ(α + 1)
.

Now,we prove the compactness of the operator Φ. By the condition (H1), let

sup
(t,x)∈[0,1]×Br̄

‖f(t, x)‖ = f1.

Then, for 0 < t1 < t2 < 1, we get

|(Φx)(t2) − (Φy)(t1)| ≤
f1

Γ(α)

(
∣

∣

∣

∫ t2

t1

(t2 − s)α−1ds
∣

∣

∣
+

∣

∣

∣

∫ t1

0

[(t1 − s)α−1 − (t2 − s)α−1]ds
∣

∣

∣

)

,
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which is independent of x and tends to zero as t2 → t1. So Φ is relatively compact on
Br̄. Hence, By the Arzela Ascoli theorem, Φ is compact on Br̄. Thus all the assump-
tions of Theorem 3.2 are satisfied. Therefore, the problem (1) has at least one solution
on [0, 1]. This completes the proof. �

To prove the next existence result for the problem (1), we recall the following fixed
point theorem [23].

Theorem 3.4 Let X be a Banach space. Assume that T : X → X is a completely
continuous operator and the set V = {u ∈ X | u = µTu, 0 < µ < 1} is bounded. Then
T has a fixed point in X.

Theorem 3.5 Assume that there exists a positive constant L1 such that |f(t, x)| ≤ L1

for t ∈ [0, 1], x ∈ R. Then the problem (1) has at least one solution.

Proof. As a first step, we show that the operator T is completely continuous.
Observe that continuity of T follows from the continuity of f . Let Ω ⊂ C be a bounded
set. Then ∀x ∈ Ω, we get

‖(T x)‖ ≤ L1 sup
t∈[0,1]

{

∫ t

0

(t− s)α−1

Γ(α)
ds+ (|∆1| + |∆4|)|

∫ η

0

(η − s)2α−2

Γ(2α− 1)
ds

+ (|∆2| + |∆3|)
(

b

∫ σ

0

(σ − s)2α−2

Γ(2α− 1)
ds+

∫ 1

0

(1 − s)α−1

Γ(α)

)}

≤ L1

{ 1

Γ(α + 1)
+

(|∆1| + |∆4|)η
2α−1

Γ(2α)
+ (|∆2| + |∆3|)

(σ2α−1

Γ(2α)
+

1

Γ(α+ 1)

)}

≤ κL1 = L2,

where we have used (7). Furthermore,

‖(T x)′‖ ≤ sup
t∈[0,1]

{

∫ t

0

(t− s)α−2

Γ(α− 1)
|f(s, x(s))|ds+ |∆4|

∫ η

0

(η − s)2α−2

Γ(2α− 1)
|f(s, x(s))|ds

+ |∆3|
(

b

∫ σ

0

(σ − s)2α−2

Γ(2α− 1)
|f(s, x(s))|ds+

∫ 1

0

(1 − s)2α−2

Γ(2α− 1)
|f(s, x(s))|ds

)}

≤ L1{
1

Γ(α− 1)
+

1

Γ(2α)
(|∆4|η

2α−1 + b|∆3|σ
2α−1 + |∆3)|} = L3.

Hence for t1, t2 ∈ [0, 1], we have

|(T x)(t1) − (T x)(t2)| ≤

∫ t2

t1

|(T x)′(s)|ds ≤ L3(t2 − t1).
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Thus, the operator T is equicontinuous. Hence, by Arzela-Ascoli theorem, T : C → C
is completely continuous.

Next, we consider the set V = {x ∈ C : x = µT x, 0 < µ < 1}. In order to show
that V is bounded, let x ∈ V, t ∈ [0, 1]. Then

(T x)(t) =

∫ t

0

(t− s)α−1

Γ(α)
f(s, x(s))ds+ (∆1 − ∆4t)

∫ η

0

(η − s)2α−2

Γ(2α− 1)
f(s, x(s))ds

+ (∆2 + ∆3t)(b

∫ σ

0

(σ − s)2α−2

Γ(2α− 1)
f(s, x(s))ds−

∫ 1

0

(1 − s)α−1

Γ(α)
f(s, x(s))ds)

As before, it can be shown that

‖x‖ = sup
t∈[0,1]

|µ(T x)(t)| ≤ L1κ = M1.

This implies that the set V is bounded. Hence, by Theorem 3.4, it follows that the
problem (1) has at least one solution on [0, 1]. �

Our final result is based on Leray-Schauder Nonlinear Alternative [24].

Lemma 3.1 (Nonlinear alternative for single valued maps) Let E be a Banach space,
M a closed, convex subset of E, U is an open subset of C and 0 ∈ U. Suppose that
F : U → C is continuous, compact (that is, F (U) is a relatively compact subset of C)
map. Then either (i) F has a fixed point in U , or (ii) there is a u ∈ ∂U, and λ ∈ (0, 1)
with u = λF (U).

Theorem 3.6 Suppose that f : [0, 1] × R → R is a continuous function and the
following conditions hold:

(H3) there exist a function p ∈ C([0, 1],R+), and a nondecreasing function ψ : R
+ →

R
+ such that |f(t, x)| ≤ p(t)ψ(‖x‖) , ∀(t, x) ∈ [0, 1] × R;

(H4) there exists a constant M > 0 such that

M

ψ(M)‖p‖
{

1
Γ(α+1)

+ (|∆1|+|∆4|)η2α−1

Γ(2α)
+ (|∆2| + |∆3|)

(

σ2α−1

Γ(2α)
+ 1

Γ(α+1)

)} > 1.

Then the problem (1) has at least one solution on [0, 1].

Proof. Consider the operator T : C → C defined by (6). The proof consists of several
steps. As a first step, it will be shown that T maps bounded sets into bounded sets in
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C. For a positive number δ, let Bδ = {x ∈ C : ‖x‖ ≤ δ} be bounded set in C, then for
x ∈ Bδ, we have

‖T x‖ ≤ sup
t∈[0,1]

{

∫ t

0

(t− s)α−1

Γ(α)
p(s)ψ(‖x‖)ds

+ (|∆1| + |∆4|)|

∫ η

0

(η − s)2α−2

Γ(2α− 1)
p(s)ψ(‖x‖)ds

+ (|∆2| + |∆3|)
(

b

∫ σ

0

(σ − s)2α−2

Γ(2α− 1)
ds+

∫ 1

0

(1 − s)α−1

Γ(α)
p(s)ψ(‖x‖)ds

)}

≤ ψ(δ)‖p‖
{ 1

Γ(α + 1)
+

(|∆1| + |∆4|)η
2α−1

Γ(2α)

+ (|∆2| + |∆3|)
(σ2α−1

Γ(2α)
+

1

Γ(α + 1)

)}

.

Next, we show that T maps bounded sets into equicontinuous sets of C. Let t1, t2 ∈
[0, 1] with t1 < t2 and x ∈ Bδ, where Bδ is a bounded set of C. Then we obtain

|(T x)(t2) − (T x)(t1)|

≤
∣

∣

∣

∫ t2

0

(t2 − s)α−1

Γ(α)
p(s)ψ(r)ds−

∫ t1

0

(t1 − s)α−1

Γ(α)
p(s)ψ(r)ds

−∆4(t2 − t1)

∫ η

0

(η − s)2α−2

Γ(2α− 1)
p(s)ψ(r)ds

+∆3(t2 − t1)
{

b

∫ σ

0

(σ − s)2α−2

Γ(2α− 1)
p(s)ψ(r)ds−

∫ 1

0

(1 − s)α−1

Γ(α)
p(s)ψ(r)ds

}
∣

∣

∣

≤ ψ(r)‖p‖
(
∣

∣

∣

∫ t2

t1

(t2 − s)α−1

Γ(α)
ds

∣

∣

∣
+

∣

∣

∣

∫ t1

0

(t1 − s)α−1 − (t2 − s)α−1

Γ(α)
ds

∣

∣

∣

)

+
∣

∣

∣
∆4(t2 − t1)

∫ η

0

|η − s)2α−2

Γ(2α− 1)
ds

∣

∣

∣

+|∆3(t2 − t1)|
(
∣

∣

∣
b

∫ σ

0

(σ − s)2α−2

Γ(2α− 1)
ds

∣

∣

∣
+

∣

∣

∣

∫ 1

0

(1 − s)α−1

Γ(α)
ds

∣

∣

∣

)

.

Clearly, the right hand side of the above inequality tends to zero independently of
x ∈ Bδ as t2 → t1. Thus, it follows by the Arzela-Ascoli theorem that T : C → C is
completely continuous.

Let x be a solution of problem (1). Then, for t ∈ [0, 1], for λ ∈ (0, 1), as before we
have

‖x‖ = sup
t∈[0,1]

‖λ(T x)(t)‖
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≤ ψ(‖x‖)‖p‖
{ 1

Γ(α + 1)
+

(|∆1| + |∆4|)η
2α−1

Γ(2α)
+ (|∆2| + |∆3|)

( σ2α−1

Γ(2α)
+

1

Γ(α + 1)

)}

.

Consequently, we have

‖x‖

ψ(‖x‖)‖p‖
{

1
Γ(α+1)

+ (|∆1|+|∆4|)η2α−1

Γ(2α)
+ (|∆2| + |∆3|)

(

σ2α−1

Γ(2α)
+ 1

Γ(α+1)

)} ≤ 1.

In view of (H4) ,there exists M such that ‖x‖ 6= M . Let us set

U = {x ∈ C([0, 1],R) : ‖x‖ < M + 1}.

Note that the operator T : U → C([0, 1],R) is continuous and completely continuous.
From the choice of U , there is no x ∈ ∂U such that x = λT (x) for some λ ∈ (0, 1).
In consequence, by the nonlinear alternative of Leray-Schauder type (Lemma 3.1), we
deduce that T has a fixed point x ∈ U which is a solution of the problem (1). This
completes the proof. �

Example 3.1 Consider the problem










cD
3

2x(t) =
1

(t2 + 2)

|x|

1 + |x|
+ sin2t, t ∈ [0, 1],

x(0) = I1/2x(1/4), x(1) = I1/2x(2/3),

(9)

where α = 3/2, a = b = 1, η = 1/4 , σ = 2/3. Clearly L = 1/2 as

|f(t, x) − f(t, y)| ≤
1

t2 + 2
|x− y| ≤

1

2
|x− y|,

and

κ =
1

Γ(α + 1)
+

(|∆1| + |∆4|)η
2α−1

Γ(2α)
+(|∆2|+ |∆3|)

( σ2α−1

Γ(2α)
+

1

Γ(α+ 1)

)

= 1.4835. (10)

As κ < 1/L, therefore, the conclusion of Theorem 3.1 applies to the problem (9).

Example 3.2 Consider the fractional boundary value problem










cD
3

2x(t) =
3e−cos2xcos2t

3 + sinx
, t ∈ [0, 2],

x(0) = I1/2x(1/4), x(1) = I1/2x(2/3).

(11)

Obviously

|f(t, x)| =
∣

∣

∣

3e− cos2 x cos 2t

3 + sin x

∣

∣

∣
≤ 3/2 = L1. (12)

Therefore, by the conclusion of Theorem 3.5, there exists at least one solution for
problem (11).
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