
Electronic Journal of Qualitative Theory of Differential Equations
Proc. 7th Coll. QTDE, 2004, No. 8 1-7;
http://www.math.u-szeged.hu/ejqtde/

A Criterion for the Global Attractivity

of Scalar Population Models with Delay

Teresa Faria*†
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Abstract

We establish sufficient conditions for the global attractivity of the positive equilibrium

for some scalar delayed population models. As an illustration of the criterion established,

a model generalizing the well-known food-limited population model with delay is studied.
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1. Introduction

In the present work, we consider scalar functional differential equations (FDEs) in

the phase space C := C([−r, 0]; IR) of continuous functions from [−r, 0] to IR, r > 0,

equipped with the sup norm |ϕ|C = max−r≤θ≤0 |ϕ(θ)|. Let

Ṅ(t) = N(t)f(t, Nt), t ≥ 0, (1.1)

be a scalar FDE, where f : [0,∞) × C → IR is a continuous function, and, as usual,

Nt denotes the function in C defined by Nt(θ) = N(t + θ),−r ≤ θ ≤ 0. In population

dynamics, Eq. (1.1) is often taken as a model for the growth of a single population species,

where N(t) is the density of the population at time t, r represents the maturation period

of the species and f(t, Nt) is the growth function. For most models, it is natural to assume

that f(t, ·) is a decreasing function for each t ≥ 0, where the order in C is defined by
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ϕ ≤ ψ if and only if ϕ(θ) ≤ ψ(θ) for all θ ∈ [−r, 0]. Due to the biological interpretation of

the model, we are interested only in positive solutions of (1.1). Therefore, together with

(1.1), we consider admissible initial conditions N0 = ψ, with ψ ∈ C such that ψ(θ) ≥ 0

for θ ∈ [−r, 0) and ψ(0) > 0.

Many models of the form (1.1) can be written as

ẋ(t) = (1 + x(t))F (t, xt), t ≥ 0, (1.2)

where F : [0,∞) × C → IR is a continuous function. In fact, suppose that (1.1) has

a unique positive equilibrium N∗. From a biological point of view, it is of interest to

investigate the global attractivity of N∗. In order to study the stability of N∗, one can

translate the equilibrium to the origin, e.g. by the change of variables x(t) = N(t)
N∗

− 1,

which transforms (1.1) into (1.2), with F : I×C → IR defined by F (t, ϕ) = f(t, N∗(1+ϕ)).

(Here and in what follows, for a real constant c ∈ IR, we use c to denote also the constant

function ϕ(θ) = c,−r ≤ θ ≤ 0.) This justifies the study of the scalar FDE (1.2). Clearly,

admissible initial conditions for (1.2) read now as x0 = ϕ, where ϕ ∈ C−1 and C−1 =

{ϕ ∈ C : ϕ(θ) ≥ −1 for θ ∈ [−r, 0), ϕ(0) > −1}. Throughout this paper, even if it

is not mentioned, we only consider admissible solutions N(t) of (1.1) (or x(t) of (1.2)),

i.e., solutions with admissible initial conditions. An equilibrium N∗ of (1.1) is said to be

globally attractive or globally asymptotically stable if all admissible solutions of (1.1) tend

to N∗ as t → ∞. Analogously, we define the global attractivity of the zero solution of

(1.2).

The paper is organized as follows. In Section 2, we give sufficient conditions for

the global attractivity of the equilibrium zero of (1.2) following the work in [1]. In case

the growth function F (t, ·) is non-increasing, a useful corollary is presented. In Section

3, the results in Section 2 are applied to a delayed model that generalizes the so-called

“food-limited” population model with delay.

2. A criterion for global attractivity

Although we have in mind the study of population models (1.1), in this section we

consider the scalar FDE

ẋ(t) = (1 + x(t))F (t, xt), t ≥ 0, (2.1)

where F : [0,∞)× C → IR is continuous, and initial conditions

x0 = ϕ, with ϕ ∈ C−1. (2.2)

Uniqueness of solutions for the initial value problems (2.1)-(2.2) is assumed.

For F as in (2.1), we impose the following assumptions:
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(A1) if w : [−r,∞) → IR is continuous with limt→∞ w(t) = w∗ > −1, w∗ 6= 0, then
∫ ∞

0
F (s, ws) ds diverges.

(A2) there exists a piecewise continuous function b : [0,∞) → [0,∞) such that

−b(t)M(ϕ) ≤ F (t, ϕ) ≤ b(t)M(−ϕ), for t ≥ 0, ϕ ∈ C−1, (2.3)

where M(ϕ) is the Yorke functional (cf. [3] and [7]) defined by

M(ϕ) = max {0, sup
θ∈[−r,0]

ϕ(θ)};

(A3) for b as in (A2), there is T ≥ 0 such that
∫ t

t−r
b(s)ds ≤ 3

2 , for t ≥ T.

The following criterion for the global attractivity of the zero solution of (2.1) follows

from [1].

Theorem 2.1. Assume (A1), (A2) and (A3). Then all solutions of (2.1) with admissible

initial conditions are defined and bounded away from −1 on [0,∞), and satisfy x(t) → 0

as t→ ∞.

Proof. From (A2), we have F (t, ϕ) ≤ b(t) for t ≥ 0, ϕ ∈ C−1, thus F (t, ϕ) is bounded

from above on [0, α] × C−1, for each α > 0. From [1, Lemma 3.1], we deduce that all

solutions x(t) of (2.1) with admissible initial conditions are defined on [0,∞). Since (A2)

and (A3) hold, Theorem 3.3 and Lemma 3.5 in [1] imply that the solutions x(t) are

bounded and bounded away from −1 on [0,∞), and that x(t) → 0 as t → ∞ if x(t) is

oscillatory.

Now consider the case of a solution x(t) of (2.1) with admissible initial condition that

is eventually non-negative. If x(t) ≥ 0 for t ≥ t0−r, from (2.3) we have F (t, xt) ≤ 0, t ≥ t0.

Since 1 + x(t) > 0, t ≥ 0, from (2.1) we get ẋ(t) ≤ 0, t ≥ t0, i.e., x(t) is eventually non-

increasing. Define c = limt→∞ x(t) ≥ 0. If c > 0, from (A1) we obtain

1 + x(t) = (1 + x(t0))e

∫

∞

t0

F (s,xs) ds
→ 0 as t→ ∞,

a contradiction. Thus c = 0. If x(t) is eventually non-positive, the proof is analogous.

Remark 2.1. Hypothesis (A1) is imposed to force non-oscillatory solutions to zero,

as t goes to infinity, whereas (A2) and (A3) are used to deal with oscillatory solutions.

Instead of (A1), a hypothesis slightly stronger was assumed in [1]. We note that (A1)

was first introduced in [6], not in the setting of Eq. (2.1), but for the study of a general

scalar FDE ẋ(t) = F (t, xt).

We now analyse an FDE having the form (2.1), with F non-increasing on ϕ ∈ C−1,

and depending only on one discrete delay. To be more precise, let F have the form

F (t, ϕ) = b(t)g(t, ϕ(−r)) where g(t, ·) is non-increasing on x ∈ [−1,∞) for each t ≥ 0.
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Corollary 2.2. Consider

ẋ(t) = (1 + x(t))b(t)g(t, x(t− r)), t ≥ 0, (2.4)

where b : [0,∞) → [0,∞), g : [0,∞)× [−1,∞) → IR are continuous functions such that:

(i) for each c > −1, c 6= 0, the integral
∫ ∞

0
b(s)g(s, c) ds diverges;

(ii) g(t, ·) is non-increasing for x ≥ −1, for each t ≥ 0;

(iii)

|g(t, x)| ≤ |x|, x ≥ −1, t ≥ 0;

(iv) there is T ≥ 0 such that
∫ t

t−r
b(t)dt ≤ 3

2
, for t ≥ T.

Then all admissible solutions x(t) of (2.4) are defined on [0,∞), and satisfy x(t) → 0

as t→ ∞.

Proof. Define F (t, ϕ) = b(t)g(t, ϕ(−r)), so that (2.4) reads as (2.1). Since [−1,∞) 3

x 7→ g(t, x) is non-increasing for each t ≥ 0, condition (i) implies that (A1) holds; on the

other hand, (A2) follows easily from (iii).

As an immediate consequence of this corollary, consider the standard example of the

logistic equation with delay and a non-constant coefficient,

Ṅ(t) = b(t)N(t)
[

1 −
N(t− r)

K

]

, (2.5)

where r > 0 is the maturation period of the species, K > 0 is the carrying capacity of the

habitat and b(t) is the growth rate of the species. Translating the positive equilibrium

N∗ = K to the origin by the change x(t) = N(t)/K − 1, we get a generalization of the

so-called Wright equation (for which the growth rate b(t) is constant):

ẋ(t) = −b(t)(1 + x(t))x(t− r). (2.6)

Eq. (2.6) has the form (2.4) with g(x) = −x. Applying Corollary 2.2, we immediately

deduce the following criterion established in [5]: if

∫ t

t−r

b(s)ds ≤
3

2
and

∫ ∞

0

b(s)ds = ∞,

then the positive equilibrium N∗ = K is a global attractor of all positive solutions.

3. An example

Consider the scalar FDE with one discrete delay,

Ṅ(t) = r(t)N(t)
[ K − aN(t− τ)

K + λ(t)N(t− τ)

]α

, t ≥ 0, (3.1)
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where r, λ : [0,∞) → [0,∞) are continuous, a,K, τ > 0 and α ≥ 1 is the ratio of two

odd integers. For α = 1, Eq. (3.1) has been extensively studied (see [1], [2] and [3]

and references therein), since it has been proposed as an alternative model of the logistic

equation (2.5) for a food limited single population model. Note that for λ(t) ≡ 0 and

α = 1, (3.1) reduces to the form (2.5). For α ≥ 1 a ratio of two odd integers, see [4].

Clearly N∗ = K/a is the unique positive equilibrium of (3.1).

Theorem 3.1. Assume
∫ ∞

0

r(s)

(1 + λ(s))α
ds = ∞. (3.2)

Assume also that one of the following conditions hold:

(i) λ(t) ≥ a for all t ≥ 0 and

∫ t

t−τ

r(s) ds ≤ 3/2 for large t; (3.3)

(ii) 0 < λ(t) ≤ a for all t ≥ 0, and

aα

∫ t

t−τ

r(s)

λ(s)α
ds ≤ 3/2 for large t; (3.4)

(iii)

α

∫ t

t−τ

r(s) ds ≤ 3/2 for large t. (3.5)

Then N∗ = K/a is globally attractive (in the set of all positive solutions of (3.1)).

Proof. Clearly, in (3.1) we obtain a = 1 by replacing K and λ(t) by K0 = K/a and

λ0(t) = λ(t)/a, respectively. On the other hand, considering separately the cases a ≥ 1

and 0 < a < 1, one can see that (3.2) holds if and only if

∫ ∞

0

r(s)

(1 + a−1λ(s))α
ds = ∞.

Hence only the case a = 1 is considered.

Let a = 1. Through the change of variables x(t) = N(t)
K − 1, (3.1) becomes

ẋ(t) = −r(t)(1 + x(t))
[ x(t− τ)

1 + λ(t)(1 + x(t− τ))

]α

, t ≥ 0. (3.6)

Case 1. Assume (i). Eq. (3.6) has the form (2.4) for b(t) = r(t) and

g(t, x) = −
( x

1 + λ(t)(1 + x)

)α

, t ≥ 0, x ≥ −1.
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For each t ≥ 0, note that [−1,∞) 3 x 7→ g(t, x) is decreasing, and

|g(t, x)| ≤ |x|α ≤ |x|, if − 1 ≤ x ≤ 1.

Since λ(t) ≥ 1 on [0,∞), for all t ≥ 0 we have

|g(t, x)| ≤ 1 ≤ |x|, if x ≥ 1.

Thus conditions (ii) and (iii) of Corollary 2.2 are fulfilled. On the other hand, if (3.2)

holds, a comparison criterion shows that

∫ ∞

0

r(s)g(s, c)ds = −cα
∫ ∞

0

r(s)

[1 + λ(s)(1 + c)]α
ds

diverges for each c > −1. Invoking Corollary 2.2, we conclude that in this case the

equilibrium N∗ = K is globally attractive.

Case 2. Assume (ii). We write (3.6) in the form (2.4),

ẋ(t) = (1 + x(t))b(t)g(t, x(t− r)), t ≥ 0,

with the functions b(t) and g(t, x) defined now by

b(t) =
r(t)

λ(t)α
, g(t, x) = −

( λ(t)x

1 + λ(t)(1 + x)

)α

, t ≥ 0, x ≥ −1.

Clearly, [−1,∞) 3 x 7→ g(t, x) is decreasing for each t ≥ 0. Since 0 < λ(t) ≤ 1 for t ≥ 0,

we obtain

|g(t, x)| ≤ λ(t)α|x|α ≤ |x|, if − 1 ≤ x ≤ 1,

|g(t, x)| ≤ 1 ≤ |x|, if x ≥ 1.

Thus conditions (ii) and (iii) of Corollary 2.2 are satisfied. Assumptions (3.2) and (3.4)

imply that conditions (i) and (iv) of the same corollary hold, hence the conclusion follows.

Case 3. Assume (3.5). In this case we effect the change of variables

x(t) =
(N(t)

K

)α

− 1,

so that (3.1) is transformed into

ẋ(t) = αr(t)(1 + x(t))
[ 1 − (1 + x(t− τ))1/α

1 + λ(t)(1 + x(t− τ))1/α

]α

, t ≥ 0, (3.7)
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which has the form (2.4) for b(t) = αr(t) and g(t, x) =
(

g0(t, x)
)α

, where

g0(t, x) =
1 − (1 + x)1/α

1 + λ(t)(1 + x)1/α
, t ≥ 0, x ≥ −1.

The function x 7→ g0(t, x) is decreasing on [−1,∞), for each t ≥ 0. Now, we want to

prove that |g(t, x)| ≤ |x| for t ≥ 0, x ≥ −1, which is equivalent to show that

|g0(t, x)| ≤ |x|1/α, t ≥ 0, x ≥ −1. (3.8)

Since α ≥ 1, we have |g0(t, x)| ≤ |1 − (1 + x)1/α| ≤ |x|1/α for t ≥ 0, x ≥ −1, thus (3.8)

follows. Hence, conditions (ii) and (iii) of Corollary 2.2 are fulfilled. Clearly, (3.2) and

(3.5) imply conditions (i) and (iv) in Corollary 2.2. The proof is complete.

Remark 3.1. The specific model (3.1) with K = a = 1 was studied by Liu [4]. For

both situations, λ(t) ≥ 1 for t ≥ 0, and 0 < λ(t) ≤ 1 for t ≥ 0, the author proved the

global attractivity of the positive equilibrium N∗ under (3.2) and weaker assumptions

than (3.3), and (3.4), respectively. However, case (iii) in Theorem 3.1 was not addressed

in [4]. On the other hand, a significant advantage of the criterion established in Corollary

2.2 is that it applies to many models, avoiding the study of each specific model by itself.
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