Electronic Journal of Qualitative Theory of Differential Equations
2012, No. 81, 1-15; http://www.math.u-szeged.hu/ejqtde/

Global Attractivity of Solutions for Nonlinear

Fractional Order Riemann-Liouville
Volterra-Stieltjes Partial Integral Equations

Said Abbas®, Mouffak Benchohra’' and Juan J. Nieto®?

@ Laboratoire de Mathématiques, Université de Saida,
B.P. 138, 20000, Saida, Algérie
e-mail: abbasmsaid@yahoo.fr

b Laboratoire de Mathématiques, Université de Sidi Bel-Abbes,
B.P. 89, 22000, Sidi Bel-Abbes, Algérie
e-mail: benchohra@univ-sba.dz

¢ Departamento de Anélisis Matematico, Facultad de Matematicas
Universidad de Santiago de Compostela, Santiago de Compostela, Spain

4 Department of Mathematics, Faculty of Science, King Abdulaziz University,
P.O. Box 80203, Jeddah 21589, Saudi Arabia
e-mail: juanjose.nieto.roig@usc.es

Abstract
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1 Introduction

Integral equations are one of the most useful mathematical tools in both pure and
applied analysis. This is particularly true of problems in mechanical vibrations and
the related fields of engineering and mathematical physics. We can find numerous
applications of differential and integral equations of fractional order in viscoelasticity,
electrochemistry, control, porous media, electromagnetism, etc., [10, 16, 25]. There
has been a significant development in ordinary and partial fractional differential and
integral equations in recent years; see the monographs of Abbas et al. [5], Kilbas et al.
[19], Miller and Ross [20], Podlubny [22], Samko et al. [24], and the papers of Abbas
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et al. [1,2, 3,4, 6, 7], Ahmad et al. [8, 9], Bana$ and Zajac [12], Chen et al. [13],
Darwish et al. [15], Diethelm and Ford [17] and the references therein.

In [1], Abbas et al. used the techniques of some fixed point theorems, for the study
of the existence and the stability of solutions for some classes of nonlinear quadratic
integral equations of fractional order.

Motivated by that paper, this work deals with the existence and the attractivity
of solutions to the following nonlinear fractional order Riemann-Liouville Volterra-
Stieltjes quadratic partial integral equations of the form,

u<t7 ZL’) = f<t7 T, u<t7 x)v u<a<t)7 SL’)) + m foﬁ(t) f0x<ﬁ<t) - S>r171<x - y)mil

xh(t,z,s,y,u(s, y), u(v(s), y))dydsg(t, s); (t,x) € J =Ry x[0,b],
1)
where b > 0, 1,75 € (0,00), R, =[0,00), a, B, v: Ry =R, f: IXRXxR =R, g:
Ry xRy =R, h:J' xR xR — R are given continuous functions, lim; .., a(t) = oo,
J ={(t,x,s,y) € J*:s<t, y<x}and I'(-) is the (Euler’s) Gamma function defined
by

[ = / te tdt; € > 0.
0
We use the Schauder fixed point theorem for the existence of solutions of the equa-

tion (1), and we prove that all solutions are uniformly globally attractive. Finally, we
present an example illustrating the applicability of the imposed conditions.

2 Preliminaries

In this section, we introduce notations, definitions, and preliminary facts which are
used throughout this paper. By L([0,p] x [0, q]), for p,q > 0, we denote the space of
Lebesgue-integrable functions u : [0, p] x [0, g] — R with the norm

P q
||U||1=/ / lu(t, z)|dxdt.
o Jo

By BC := BC(J) we denote the Banach space of all bounded and continuous functions
from J into R equipped with the standard norm

lullpe = sup |u(t, ).
(t,x)ed

For up € BC and n € (0,00), we denote by B(ug, ), the closed ball in BC' centered at
up with radius 7.

EJQTDE, 2012 No. 81, p. 2



Definition 2.1 [26] Let r = (r1,72) € (0,00) x (0,00), 6 = (0,0) and u € L*([0,p] x
[0,q]). The left-sided mixed Riemann-Liouville integral of order r of u is defined by

(Tu)(t,2) = m /0 /0 (= ) — s)o (s, £)dsdr

In particular,

(Igu)(t,x) =u(t,x), (Igu)(t,z) = /0 /Ogﬁu(T, s)dsdr;

for almost all (¢,x) € [0,p] x [0, ¢], where o = (1, 1).
For instance, [ju exists for all ry,ry € (0,00), when u € L*([0, p] x [0, ¢]). Note also
that when u € C([0,p] x [0, ¢]), then (Iju) € C([0,p] x [0, g]), moreover

(Lyu)(t,0) = (Iyu)(0,2) = 0; t € [0,p], z € [0,q].
Example 2.2 Let \,w € (—1,00) and r = (r1,7r2) € (0,00) x (0,00), then

L(1+ M1+ w)
T+ A+rm) 14+ w+rs)

Ijtha® = M@t - for almost all (t,x) € [0, p] x [0, q].

If u is a real function defined on the interval [a,b], then the symbol \/° u denotes
the variation of u on [a,b]. We say that u is of bounded variation on the interval
[a, 0] whenever \/*u is finite. If w : [a,b] X [¢,0] — R, then the symbol Vi, w(t,s)
indicates the variation of the function ¢ — w(t, s) on the interval [p, q] C [a, b], where s
is arbitrarily fixed in [¢, d]. In the same way we define \/gzpw(t, s). For the properties
of functions of bounded variation we refer to [21].

If uw and ¢ are two real functions defined on the interval [a,b], then under some
conditions (see [21]) we can define the Stieltjes integral (in the Riemann-Stieltjes sense)

/ (b))

of the function u with respect to ¢. In this case we say that u is Stieltjes integrable on
[a, b] with respect to . Several conditions are known guaranteeing Stieltjes integrability
[21]. One of the most frequently used requires that u is continuous and ¢ is of bounded
variation on [a, b].

In what follows we use the following properties of the Stieltjes integral ([23], section
8.13).

If u is Stieltjes integrable on the interval [a, b] with respect to a function ¢ of bounded

variation, then t
/ bu(t)dso(t)] </ u(t)d (\/ go) |
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If u and v are Stieltjes integrable functions on the interval [a,b] with respect to a
nondecreasing function ¢ such that u(t) < v(t) for t € [a,b], then

/ " u(t)do(t) < / " ot)de).

In the sequel we also consider Stieltjes integrals of the form

b
/ w(t)dyg(t, s),

and Riemann-Liouville Stieltjes integrals of fractional order of the form

1 ! r—1
w7 [ 0=l

where g : Ry x Ry — R, r € (0,00) and the symbol dy indicates the integration with
respect to s.

Let 0 £ Q C BC, and let G : Q — Q, and consider the solutions of equation
(Gu)(t, ) = u(t, z). (2)

Inspired by the definition of the attractivity of solutions of integral equations (for in-
stance [11]), we introduce the following concept of attractivity of solutions for equation

(2).

Definition 2.3 Solutions of equation (2) are locally attractive if there exists a ball
B(ug,n) in the space BC' such that, for arbitrary solutions v = v(t,z) and w = w(t, )
of equations (2) belonging to B(ug,n) N Y, we have that, for each x € [0,],

tlim (v(t,x) —w(t,z)) = 0. (3)
When the limit (3) is uniform with respect to B(ug,n) N2, solutions of equation (2) are
said to be uniformly locally attractive (or equivalently that solutions of (2) are locally
asymptotically stable).

Definition 2.4 [11] The solution v = v(t,z) of equation (2) is said to be globally
attractive if (3) hold for each solution w = w(t,x) of (2). If condition (3) is satisfied
uniformly with respect to the set Q, solutions of equation (2) are said to be globally
asymptotically stable (or uniformly globally attractive).

Definition 2.5 [13] The zero solution u(t,x) of equation (2) is globally attractive if
every solution of (2) tends to zero as t — oc.
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Lemma 2.6 [1/] Let D C BC. Then D is relatively compact in BC' if the following
conditions hold:

(a) D is uniformly bounded in BC.

(b) The functions belonging to D are almost equicontinuous on Ry x [0, b],

i.e., equicontinuous on every compact subset of Ry x [0, b].

(¢) The functions from D are equiconvergent, that is, given € > 0, = € [0,b] there
corresponds T'(e,x) > 0 such that |u(t,z) — lim;_,o u(t, z)| < € for any t > T(e, x) and
u€D.

3 Main Results

In this section, we are concerned with the existence and the uniform global attractivity
of solutions for the equation (1). Let us start by defining what we mean by a solution
of the equation (1).

Definition 3.1 By a solution of equation (1) we mean a function uw € BC such that
u satisfies equation (1) on J.

The following hypotheses will be used in the sequel.
(Hy) There exist positive constants M and L such that

M|U1 — ’U1| + L|U2 — Vo
1+ af(t) ’

‘f(taxvuth?) - f(taxvvh,l]?)‘ S

for (t,x) € J and uy, us, vy, v9 € R.
(Hs) The function ¢t — f(t,x,0,0) is bounded on J with

= sup f(t,2,0,0) and lim |f(t,2,0,0)| =0, = € [0,b].
(t,x)ER4 x[0,0] t—o00

(H3) For all t1,t; € Ry such that ¢; < ¢ the function s — g(ta,s) — g(t1,s) is
nondecreasing on R, .

(H4) The function s — ¢(0, s) is nondecreasing on R

(Hs) The functions s — g¢(t,s) and t — g(t,s) are continuous on R, for each fixed
t € R, or s € Ry, respectively.

(Hg) There exist continuous functions py, ps : J* — R, such that

p1<t7 z,s, y)‘u‘ +p2<t7 z,s, y)|’U‘ .
L+ ful + [v] ’

|h(t, @, s, y,u,0) <
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for (t,z,s,y) € J', u,v € R. Moreover, assume that

lim (B(t) — s) 'pi(t, 2, 8,y)dg(t,s) = 0; i =1,2.

t—o0 0

Remark 3.2 Set

B(t) B
p,; = sup / / r1 1(1, . y)rQ*lpZ(tVra S, y)dyds (\/ g(t, k)) ;
7“2

(tmyes T(r1)T(ra) e
fori=1,2. From hypothesis (Hg), we infer that p} is finite, for i =1,2.
Theorem 3.3 Assume that hypotheses (Hy) — (Hg) hold. If
M + L+ pi+p5 <1, (4)

then the equation (1) has at least one solution in the space BC. Moreover, solutions of
equation (1) are uniformly globally attractive.

Proof: Let us define the operator N such that, for any u € BC,

(Nu)(t,z) = f(t,x,u(t,x),u(a(t),x))+ rl)F(m fo fo Y1 e — y)re Tt

xh(t,x,s,y,u(s,z),u(y(s), x))dydsg(t,s); (t,z) € J.

()
From the assumptions of this theorem, we infer that N(u) is continuous on J.
Now we prove that N(u) € BC for any u € BC. For arbitrarily fixed (¢, x) € J, we
have

(Nu)(t, )| = )f(txu(t:c u(a(t), z))

A 1 1
r1 2 \T2—
7“ 1 7“2 / / (x y)

x h(t 7,5y, uls,y),u(y(s), y)dydag (. )|
’fta:u(ta:) u(a(t), z)) — f(txoo)+f(t:c00))

(t)
7"1 1 _ ro—1
+ )F 7’1 TQ / / (x y)

< bt 3.5, uls,y), u(y(s),y))dydeg t, )|

L
< 1+ <t>|u(t,:c)| + ?()

A@) 1 1
r1 2 \T2—
7“1 7“2 / / (x y)
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T+ JuCs )]+ [u(r(5).9)
< | £(t2.0,0)] + Mult, )| + Llu(a(®), )

B(t) =z
Sy, B e

k=0

X pi(t @, s, y)|u(s, y)| + pa(t @, s, y)|u(v(s), y)‘dyds (\s/ q(t, k))

< [+ (M + L+ pj +ps)lullse
Thus
[IN(u)|| < f*+ (M + L+ py + p3)|lul s (6)

Hence N(u) € BC. From (4) and (6), we infer that N transforms the ball B, := B(0,n)
into itself, where

We shall show that N : B, — B, satisfies the assumptions of Schauder’s fixed point
theorem [18]. The proof will be given in several steps and cases.

Step 1: N is continuous.
Let {up }nen be a sequence such that u,, — w in B,. Then, for each (t,z) € J, we have

|[(Nun)(t, ) = (Nu)(t, z)]

< [f(t 2, un(t, ), un(a ( ),w)) [tz ult,z),ul(a(t), z))]
e Jo s (B(8) = ) (@ — )
x |h(t,z,s y7un(s Y), un( (s),y)) — h(t,z,s y, ( yy),u(v(s), v))|dydsg(t, s)
< (M + L)Hun u”BC + F(7"1)111(712) f()ﬁ (t) fo 7"1 1(x —_ y)m—l
X |h(t, 2, 8,9, un(s,y), un(7(8), )
—h(t,z,s,y,u(s,y), w(v(s),y)|dyds (\y— 9(t, k).

(7)

Case 1. If (¢t,x) € [0,a] x [0,b]; a > 0, then, since u,, — u as n — oo and g, h are
continuous, (7) gives

|N(u,) — N(u)|lpc — 0 asn — oo.
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Case 2. If (¢t,z) € (a,00) x[0,b]; a > 0, then from (Hj3) and (7), for each (¢,x) € J,

we get
[(Nun)(t, ) = (Nu)(t, 2)]
< (M + L)||uy —ul| + F(rl)lr o fo fo:v(ﬁ(t) —s)"1 7z — gyt
x (Pt 5,9) (un(s, )| + fuls, )
+ pa(t, 2,8, y) (Junly(s), )] + |u(7(8)7$)\)>dyds (Vizo 9t K))
< (M o+ Dlun —ull + it Jo Sy (B0 = o) =)t
X (pl (tv z,s, y) + p2<t7 z,s, y))dyds (VZ:O g<t7 k))
From (Hg) and since u,, — u as n — oo and t — oo, then (8) gives

|N(u,) — N(u)||lpc — 0 asn — oo.

Step 2: N(B,) is uniformly bounded.
This is clear since N(B,) C B, and B, is bounded.

Step 3: N(B,) is equicontinuous on every compact subset [0,a]x[0,b] of J, a > 0.
Let (t1,21), (t2,z2) € [0,a] % [0,0], t1 < to, 1 < x5 and let u € B,.. Also without loss
of generality, suppose that 3(t1) < ((t2). Thus we have

|(Nu)(ta, w2) — (Nu)(t1, 21)|
< | f(ta, 72, (’52756’2) ( (t2) 2)) — flt2, 2o, u(ty, 21), u(a(ty), z1))|
+|f(t275€27 u(ty, 1), 1), 21)) — [t 2, ulty, 21), u(a(t), ©1))|

/m/ Blta) — s)Hag —y)* !

[h(tmz,s Y, u cu(y(8),y)) — bty z1, 8,9, u(s, y), u(v(s), y))ldydsg(t, S))

B(t2)
)/ 2/ t2 7»1 1( _y)T‘g—l
’I"l ’I"Q

Xh tlvxlvsyv ( (7() ))dydsg<t S)
/ ' / Blta) — )z —y)m-lh(tl,xl,s,y,u(s,y>,u<v<s>,y>>dydsg<t,s)\

/ (t1) / t2 r1 1( _y)rzfl
7“1 7“2

Xh tlaxlas Yy, u ( 7( ) ))dydsg(t 5)

/ ’ / Blt) ) (w — 9 b, 21, 5,1, (s, ), (), 9)dydg ()
< Mlu(a(ts), x2) — u(a(ty), z1)| + Llu(te, x2) — u(ty, z1)]
+[f(t2, w2, u(ty, v1), u(a(ty), 1)) — f(ts, 21, u(ty, v1), u(a(ty), 1))

7“2
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Alea) 1 1
t 7“1 _ r2—
7” 1 7”2 / / 2 y)
?/

u(y(s),y)) — h(ty, z1, 5,9, u(s,y), u(y( 8),y))‘dyds <\/ g(t, k))

k=0
B(t2) 1 .
Ty Jy )
7"1 7"2

X ‘h(tlv T1,5,Y, U(S, y)> u(7(5)7 y)) )dyds ( g(t’ k))
o

‘h(tQ To, S, Y, u(s,

k=
B(t1)

7”1 7”2

X ’h@b T1,8,Y, u<57 y>7 u(7(8>7 y)) ’dyds (\/ g<t7 k))

k=0
< Mlu(af(tsy), xe) — u(a(t ), x1)| + Llu(ta, x2) — u(ty, )|
Jr|f(752 T, u(ty, x1), ula(t), x1)) — [tz ults, 21), w(a(t), ©1))|

Alea) 1 1
r1 o ro—
7”1 7”2 / / ﬁ y)

X ‘h(tQ, T2, 8,4, u(s, y), u(y(s), y)) — h(ts, 21, 5,9, uls, y), u(y(s), y))‘dyds <\/ g(t, k))

k=0
B(t2) 1 )
Ty Jy )

7”1 7”2

X (pl(tl,xl, $,y) + pa(ty, x1, s,y))dyds (\S/ g(t, k )
>) K

k=0
B(t1)

L(r)C(r2) Jo

)
) @ — ) = (B(t) — ) (@ —y)
)

dyd, (\/ g(t, )

(p1<t1 x1,8,Y) + pa(ts, 1,8,y
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k=0

X (p1<t1,371, Say) +p2<t1,$1, Say)>dyds (\/ g(t7 k)) :

From continuity of «, 3, f, g, h,p1,p2,u and as t; — ty and 7 — x5, the right-hand
side of the above inequality tends to zero.

Step 4: N(B,) is equiconvergent.
Let (t,z) € J and u € B, then we have

|(Nu)(tx|<’ftxu(tx) u(a(t), @) = f(t,2,0,0) + f(t,2,0,0)

t),x
+’F (r1)L(rq) / / " l(x—y)”’l

x h(t,z,s,y,u(s,y), u(y(s),y))dydsg(t, s)

M L
Ta(t)M(t’x” + mm(a(t),xﬂ

1 ﬁ(t) * ri—1 o ro—1

X (pi(t, @, s,y) + p2(t, @, 5, y))ds <\/ g(t, k‘))

k=0

<|f(t,z,0,0)] +

<\f(t:c00)|+M

AQ) 1 1
r1 2 \T2—
7“1 7“2 / / (:p y)

X (pi(t,z,s,y) + pa(t, x, s,y))ds (\/ g(t, k;)) :

k=0

Then, since «(t) — oo as t — 0o, we deduce that, for each x € [0, b], we get
|(Nu)(t,z)| — 0, as t — 4o0.

Hence,
[(Nu)(t,z) = (Nu)(+00,z)| = 0, as t — +oo.

As a consequence of Steps 1 to 4 together with the Lemma 2.6, we can conclude that
N : B, — B, is continuous and compact. From an application of Schauder’s theorem
[18], we deduce that N has a fixed point u which is a solution of the equation (1).

Step 5: The uniform global attractivity of solutions.
Now we investigate the stability of solutions of equation (1). Let us assume that u and
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v are two solutions of the equation (1) with the conditions of this theorem. Then, for
each (¢,x) € J, we have

[u(t,z) —v(t, )| = [(Nu)(t,z) — (Nv)(t, 7)|
< Jf(tzu(t, o), u(alt), x) — ft 2,0t 2),v(at), )]

ek [ [ (B(0) — o) - gy

X[h(t, x, s, y,u(s, y), u(v(s),y)) — h(t, x, s,y,0(s,y),0(v(s), y))|dydsg(t, s)
< Mlu(t,z) — v(t,z)|| + Llu(a(t), z) — v(a(t), z)]|

e 0O JTB) — s @ — )

x[h(t, 2, 8,y,u(s,y), u(v(s),y)) — h(t, 2, s,y,0(s,9),v(v(s,y)))|dyds (V1 —o 9(t, k))
< |IU( (t),z) —v(a(t), )|

y), u(y

Mlu(t, z) —v(t, z)|| + L

+ r1)1F(7"2 J fO (ﬁ r1 l(x - y)mil
(pl(t . y) + pa(t,x, y))dyds (Vo 9(t, k).

By using (4), (9) and the fact that «(t) — oo as t — oo, we deduce that

1
hm lu(t, z) —v(t, z)| < tli,r?o (1 =M — L) (r )T (ra)

< [ [

k=0

= 0.

Hence,
lim |u(t,z) —v(t,x)| = 0.

t—o00

Consequently, all solutions of equation (1) are uniformly globally attractive.

As a consequence of Theorem 3.3, we prove the following result.

Theorem 3.4 Assume that hypotheses (Hy) — (Hg) and the inequality (4) hold. If

7‘1 l(x _ y)TQ 1
f(t,z,0,0) T(ra) h(t,z,s,y,0;0)dydsg(t,s) =0; (10)
2

for (t,z) € J, then the zero solution of equation (1) is globally attractive.

Proof. From the equation (10), it is clear that v(¢,z) = 0 is a solution of our equation
(1). Let us assume that u is any solution of the equation (1). Then, for each (¢,z) € J,
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we have
lu(t, )| = |u(t,z) — v(t, z)| = [(Nu)(t,z) — (Nv)(t, z)|
< |f(tzult, 2), u(a(t), ) — f(¢,2,0,0)]
_'_F(rl Xy ﬁ(t f;(ﬁt . 7"1 1( _y)rg—l

)
X|h(t, 2,5, ,u(5, ), u( s) y)) = hlt,z,5,y,0,0)|dyd.g(t, 5)
< Mu(t o))l + Lllu(a(t), 2)]
_'_ r1)F(7"2 fO J fO ﬁ<t)_ Tl 1< _y)m—l
x|ty @, 5,9, uls, y), u(v(s),9) = h(t, ¢, 5,,0,0)|dyd, (V3 (t, k)
< M||u<t 2)| +L||u<a<t>,x>||
ooy o S (B = sy — ) gt @5, y)dyds (Vi 9t R))

(11)

By using (4), (11) and the fact that «(t) — co as t — oo, we deduce that

o BB - e

A fult, )l < i e T D T ()
X pl(ta Z, Say)dyds <\/ g(ta k)) = 0.

Thus, lim;_ |u(t, z)| = 0. Hence, the zero solution of equation (1) is globally attrac-
tive.

4 An Example

As an application of our results we consider the following nonlinear fractional order
Riemann-Liouville Volterra-Stieltjes quadratic partial integral equation of the form

u(t,r) = fltwutx),ul@®), ) + o Jo - Jo (BE) = ) (@ — )

Xh(t,z,s,y,u(s,y), u(y(s),y))dydsg(t,s), (t,z) € J:= R, x [0,1], 12

T2 =3, alt) =6(1) =) =t t € Ry,

e uv|

where r; =

t,ZE,U,U — 9 tax EJ a’ndu,UER’
: ! 8(1+t)(1+ |ul + 2[v]) (t, )
g(t,s) = s, (t,s) €R2,
h(t,z,s,y,u,v) = cxs (14 |ul)sin v/sins

(L+y+2)(1+ [ul +[v])’
if (t,x,s,y)eJ, s#0, yel0,1] and u,v € R,
h(t,z,0,y,u,v) =0; if (t,x) € J, y €10,1] and u,v € R,
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and J ={(t,x,s,y) € J*: s <tand z < y}.

. T
~ser(D)

First, we can see that lir% a(t) = 0. Next, the function f is a continuous, and

|f(t,x,u1,u2) - f(taxvvlvaH < ] (|u1 - 1)1| +2|u2 _'U2|); (t,l‘) €J, u,v €R.

(1+1)

Then, the assumption (Hy) is satisfied with M = ¢, L = %, and (H) is satisfied with
f* = 0. Also, we can easily see that the function g satisfies the hypotheses (H3) — (Hs).
The function h satisfies the assumption (Hg). Indeed, h is continuous and

|h(taxa37yauav)| S pl(taxa 57?/)|U| +p2(tax7 5>?/)|U|§ (t>$a37fy) € ‘],7 u,v € R)

and for ¢ =1, 2,
-3
cxrs™ siny/tsin s ,
pilt,z,8,y) = e (t,x,s,y)€J, yel0,1], s#0,

Then, for : = 1,2, we have

t S
< / (t— s)_Tgcxs_TS| sin v/t sin s|d, <\/ g(t, k:))
0

k=0

t
/ (t =) 'pilt,z,5,9)dsg(t, s)
0

t
< cx\sinﬂ|/(t—s)fsfds
0
_ cal?(3) sin\/f‘
VA BV
cxl?(1)
< —0ast— oo,
Vit
and
1 t x 1 1 s
pi = sup 7/ / (t—s)" " (x =) pilt,x,s,y)dyds |\ g(t, k)
(t,x)eJF(Tl)F(T2) o Jo k\:/o
cxl'(3) |sin v/t
< sup
(t,x)ed ﬁ \/Z
B '(3) 1
N T 8e

Finally, we can see that

2+ 3e

M+ L+p;+ps<
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Hence the condition (4) is satisfied. Consequently, by Theorem 3.3, the equation (12)
has a solution defined on R x [0, 1] and solutions of this equation are uniformly globally
attractive.
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