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Abstract The author proves the WP convergence of the symmetric
minimizers ue = (ue1, Uea, Ue3) of a p-energy functional as e — 0, and the
zeros of u2; + u2, are located roughly. In addition, the estimates of the
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C1@ estimate, the author obtains the C'1'® convergence of some symmet-
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1 Introduction

Denote B = {x € R%*;22+23 < 1}. Forb > 0, let E(b) = {x € Rs;x%—i—x%—i—i—g =
1} be a surface of an ellipsoid. Assume g(z) = (e'¥,0) where z = (cos @, sin 0)
on 0B, d € N. We concern with the minimizer of the energy functional

1 1
E.(u,B) = E/B |VulPda + @/Bugdx (p>2)
in the function class
W = {u(z) = (sin f(r)e'?,beos f(r)) € WHP(B, E(b)); ulos = g},

which is named the symmetric minimizer of E.(u, B).

When p = 2, the functional E.(u, B) was introduced in the study of some
simplified model of high-energy physics, which controls the statics of planar
ferromagnets and antiferromagnets (see [5][8]). The asymptotic behavior of
minimizers of E.(u, B) has been considered in [3]. In particular, they discussed
the asymptotic behavior of the symmetric minimizer with E(1)-value of E.(u, B)
in §5. When the term Z—E is replaced by %, the functional is the Ginzburg-
Landau functional, which was well studied in [1], [4] and [7]. The works in [1]
and [3] enunciated that the study of minimizers of the functional E.(u, B) is
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connected tightly with the study of harmonic map with E(1)-value. Due to
this we may also research the asymptotic behavior of minimizers of F.(u, B) by
referring to the p-harmonic map with ellipsoid value (which was discussed in
2)).

In this paper, we always assume p > 2. As in [1] and [3], we are interested
in the behavior of minimizers of E.(u,B) as ¢ — 0. We will prove the Wllo’f
convergence of the symmetric minimizers. In addition, some estimates of the
convergent rate of the symmetric minimizer will be presented and we will discuss
the location of the points where u3 = b

In polar coordinates, for u(z) = (sin f(r)e’, beos f(r)), we have

|Vul? = (1 + (b* — 1) sin® f) f2 + d*r~ 2 sin? f,

1
/ |Vul|Pdr = 27r/ r((1+ (b* — 1) sin? f) f2 + d>r~2 sin? £)P/2dr.
B 0

If we denote

V= {feWLr,1];r/7f,,r07P)/Psin f € LP(0,1), f(r) > 0, f(1) = g},
then V = {f(r);u(x) = (sin f(r)e’® bcos f(r)) € W}. Tt is not difficult to see
V C {f € C[0,1]; f(0) = 0}. Substituting u(x) = (sin f(r)e'¥ beos f(r)) € W
into E.(u, B) we obtain

Es(uv B) = 27TE€(f, (Ov 1))7

where
E.(f,(0,1)) = /1[1(f2(1+(b2—1)sin2 f)+d*r2sin? f)P/2+ib2 cos? flrdr
€ bl 9 o p r 2€p .

This shows that u = (sin f(r)e'® bcos f(r)) € W is the minimizer of E.(u, B)
if and only if f(r) € V is the minimizer of E.(f,(0,1)). Applying the direct
method in the calculus of variations we can see that the functional E.(u, B)
achieves its minimum on W by a function u.(x) = (sin f-(r)e'¥, bcos f.(r)),
hence f.(r) is the minimizer of E.(f,(0,1)) in V. Observing the expression of
the functional E.(f,(0,1)), we may assume that, without loss of generality, the
function f satisfies 0 < f < 3.

We will prove the following

Theorem 1.1 Let u. be a symmetric minimizer of E.(u, B) on W. Then for
any small positive constant v < b, there exists a constant h = h(vy) which is
independent of € € (0,1) such that Z. = {x € B;|ucs| > v} C B(0, he).
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This theorem shows that all the points where u2; = b? are contained in
B(0, he). Hence as € — 0, these points converge to 0.

Theorem 1.2 Let u.(z) = (sin f.(r)e’® bcos f.(r)) be a symmetric minimizer
of Ec(u,B) on W. Then

lin(l)usz(eide,()), in WYP(K, R®) (1.1)
E—

for any compact subset K C B\ {0}.

Theorem 1.3 (convergent rate) Let u.(x) = (sin f-(r)e’® bcos f.(r)) be a
symmetric minimizer of Ec(u,B) on W. Then for any n € (0,1) and K =
B\ B(0,n), there exist C,co > 0 such that as € € (0,¢q),

1
1
/ r[(f2)" + 5 cos® fldr < Ce”. (1.2)
n
sup |uzs(z)| < Ce™ . (1.3)
zeK

(1.2) gives the estimate of the convergent rate of f. to 7/2 in W1P(n,1]
sense, and that of convergence of |u.3(x)| to 0 in C'(K) sense is showed by (1.3).

However, there may be several symmetric minimizers of the functional in
W. We will prove that one of the symmetric minimizer @, can be obtained as
the limit of a subsequence u* of the symmetric minimizer u7 of the regularized
functionals

1 1
El(u,B) = —/ (|Vul? + 7)P2de + — [ widx, (7€ (0,1))
pJB 2P Jp
on W as 17, — 0. In fact, there exist a subsequence ul* of ul and %, € W such
that
lim u™ =a., in W'P(B,E(b)). (1.4)

T —0
Here 4. is a symmetric minimizer of E.(u, B) in W. The symmetric minimizer
Ue is called the regularized minimizer. Recall that the paper [3] studied the
asymptotic behavior of minimizers u. € H, (B, E(1)) of the energy functional
E.(u,B) as ¢ — 0. It turns out that

loc

lim ve = (us,0), in CLY(B\ A) (1.5)
E—
for some a € (0,1), where u, is a harmonic map, A is the set of singularities of

uy. Theorem 1.2 has shown the Wllo’f(E\ {0}) convergence (weaker than (1.5))
of the symmetric minimizer. We will prove that the convergence of (1.5) is still
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true for the regularized minimizer. The result holds only for the regularized
minimizer, since the Euler-Lagrange equation for the symmetric minimizer u.
is degenerate. To derive the C1'® convergence of the regularized minimizer .,
we try to set up the uniform estimate of u] by researching the classical Euler-
Lagrange equation which u7 satisfies. By this and applying (1.4), one can see the
C1@ convergence of .. So, the following theorem holds only for the regularized
minimizer.

Theorem 1.4 Let . be a regularized minimizer of E.(u,B). Then for any
compact subset K C B\ {0}, we have

lim @, = (€'¥,0), in CVY(K,E(b)), ac(0,1/2).

e—0

At the same time, the estimates of the convergent rate of the regularized
minimizer, which is better than (1.3), will be presented as following

Theorem 1.5 Let u.(x) be the reqularized minimizer of E.(u, B). Then for any
compact subset K of (0,1] there exist positive constants eg and C' (independent
of €), such that as ¢ € (0,¢e9),

sup |fies| < CeP, (1.6)
K

where A = % Furthermore, if K is any compact subset of (0,1), then (1.6) holds
with A = 1.

The proof of Theorem 1.1 will be given in §2. In §3, we will set up the
uniform estimate of E (u., K') which implies the conclusion of Theorem 1.2. By
virtue of the uniform estimate we can also derive the proof of Theorem 1.3 in
84. For the regularized minimizer, we will give the proofs of Theorems 1.4 and
1.5 in §5 and §6, respectively.

2  Proof of Theorem 1.1
Proposition 2.1 Let f. be a minimizer of E-(f,(0,1)). Then
E.(f,(0,1)) < Ce*>7?

with a constant C independent of € € (0,1).
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Proof. Denote
I(e,R) = Min{ [} [L(f2(1+ (b* = 1)sin® f) + & sin® f)*

+525b% cos? flrdr; f € VR},

where Vi = {f(r) € WLP(0,R]; f(R) = T,sin f(r)rv %, f'(r)r7 € L?(0, R)}.
Then

I(6,1) = Be(fe, 1) = 3 Jo r((f)}0+ 07~ D)sin f)

+d?r=2(sin f.)%)P/2dr + fo rb? cos? f.dr

= L[ ps((f)2(1 + (82 — 1)sin® f) + d2s~2sin® f.)P/2ds 21)
+3s fo‘fl £2sb? cos? fods = 2 PI(1,e71).

Let f1 be the minimizer for 7(1,1) and define

™
fo=f1, as 0<s<1; f2:§, as 1<s<e L

We have
I(1,e7h)
< LJE S+ (02— 1) sin ) + a5~ sin fo]P/2ds

—|—% fOE ' sb? cos? fads
[ stPards + 1 L3 s((FD2(1+ (07 — 1) sin? f) + d®s~2 sin? f1)P/2ds
+ % fo sb? cos? fids

dP _ dr
- p(p—2) (1 —eb 2> + 1(17 1) S p(p—2) + I(la 1) =C.

Substituting into (2.1) follows the conclusion of Proposition 2.1.
By the embedding theorem we derive, from |u.| = max{1, b} and proposition

2.1, the following

Proposition 2.2 Let u. be a symmetric minimizer of E.(u, B). Then there
exists a constant C independent of € € (0,1) such that

e (@) — ue(zo)| < Ce@ PPy — ao|'=2/P VY, zy € B.
As a corollary of Proposition 2.1 we have
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Proposition 2.3 Let u. be a symmetric minimizer of E.(u, B). Then

1

- uydr < C
€ JB

with some constant C > 0 independent of € € (0,1).

Proposition 2.4 Let u. be a symmetric minimizer of Ec(u, B). Then for any
v € (0,70) with v0 < b sufficiently small, there exist positive constants A\, u
independent of € € (0,1) such that if

1
- uZydr < p (2.2)
9 BN B2le

where B2 is some disc of radius 2le with [ > X\, then

lues ()] <7, Yz € BN B, (2.3)

Proof. First we observe that there exists a constant 3 > 0 such that for any

r € Band 0 < p < 1, mes(B N B(z,p)) > Bp?. To prove the proposition,

2 2
we choose A\ = (%)ﬁ, po= %(%)P_fzvﬂp_fz where C' is the constant in

Proposition 2.2.
Suppose that there is a point xop € B N B' such that (2.3) is not true, i.e.

|ues(zo)| > 7. (2.4)
Then applying Proposition 2.2 we have
[ue(x) — ue(zo)| < CePPP|g — go|'=2/P < CeR=P)/P(\e)1—2/P
=CN72P =1 V€ Bz, Ae)

which implies |uzg(2) — ues(wo)| < 2. Noticing (2.4), we obtain |ucz(z)|* >
[Jues(zo)| — 3]* > 7742, Va € B(xg, \e). Hence

2 2
/ uZydr > lmes(B N B(xzg, \e)) > ﬁl(AE)Q = ue?. (2.5)
B(zo,\e)NB 4 4

Since zg € B'* N B, and (B(xo, A\e) N B) C (B%¢ N B), (2.5) implies

2 2
/ uZadr > pe®,
B2lenB

which contradicts (2.2) and thus the proposition is proved.
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To find the points where u2; = b? based on Proposition 2.4, we may take
(2.2) as the ruler to distinguish the discs of radius Ae which contain these points.
Let u. be a symmetric minimizer of F.(u, B). Given v € (0,1). Let A, u be
constants in Proposition 2.4 corresponding to . If
% uZzdx < p,
€% JB(z¢,22e)NB

then B(z*, Ae) is called y— good disc, or simply good disc. Otherwise B(x*, Ae)
is called y— bad disc or simply bad disc.
Now suppose that {B(z§, Ae),i € I'} is a family of discs satisfying

(i) : a5 € B,i €I, (i1) : B C Ujer B(a, Ae);
(#17) : B(x§, Ae/4) N B(x5,\e/4) = 0,1 # j. (2.6)
Denote J. = {i € I; B(x5,e) is a bad disc}. Then, one has

Proposition 2.5 There exists a positive integer N (independent of €) such that
the number of bad discs Card J. < N.

Proof. Since (2.6) implies that every point in B can be covered by finite,
say m (independent of ¢) discs, from Proposition 2.3 and the definition of bad
discs,we have

pe*CardJ. < Die. fB(zg,zAs)mB uZydx

2 2 2
< meiEJEB(I;QAE)mB uZzdr <m [ uZsde < mCe

and hence Card J, < mTC < N.
Applying TheoremIV.1 in [1], we may modify the family of bad discs such
that the new one, denoted by {B(z$, he);i € J}, satisfies

Uies. B(x5,Me) C UjesB(z5,he), A< h; Card J < Card J.,

|25 — 25| > 8he,i,j € J,i # j.

The last condition implies that every two discs in the new family are not inter-
sected. From Proposition 2.4 it is deduced that all the points where |ucs| = b
are contained in these finite, disintersected bad discs.
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Proof of Theorem 1.1. Suppose there exists a point zg € Z. such that
20€B(0, he). Then all points on the circle Sy = {x € B; |z| = |xo|} satisfy

uZs(w) = b? cos” fo(|z]) = b* cos® fe(|wol) = us(wo) > 7*.

By virtue of Proposition 2.4 we can see that all points on Sy are contained in
bad discs. However, since || > he, Sy can not be covered by a single bad disc.
As a result, Sy has to be covered by at least two bad disintersected discs. This
is impossible.

3 Proof of Theorem 1.2

Let u-(x) = (sin f-(r)e’® bcos f.(r)) be a symmetric minimizer of E.(u, B),
namely f. be a minimizer of E.(f,(0,1)) in V. From Proposition 2.1, we have

E.(fe,(0,1)) < Ce*7P (3.1)

for some constant C' independent of & € (0,1). In this section we further prove
that for any n € (0, 1), there exists a constant C(7n) such that

E.(fe;m) == E-(f-,(n,1)) < C(n) (3.2)

for e € (0,e0) with small eg > 0. Based on the estimate (3.2) and Theorem 1.1,
we may obtain the Wllo’f convergence for minimizers.
To establish (3.2) we first prove

Proposition 3.1 Given n € (0,1). There exist constants n; € [(jj\;i)ln’ J\ﬁ—il],
(N = [p]) and Cj}, such that
Ec(feymy) < Cje 7P (3.3)

for j=2,...,N, where ¢ € (0,e9).

Proof. For j = 2, the inequality (3.3) is just the one in Proposition 2.1.
Suppose that (3.3) holds for all j < n. Then we have, in particular

Ee(fe;nn) < Cre™ P, (3.4)

If n = N then we are done. Suppose n < N. We want to prove (3.3) for
j=n-+1.
Obviously (3.4) implies
(ntl)n
L o b2 cos? fordr < Cne™ P

4eP | nn_
N+1
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from which we see by integral mean value theorem that there exists 1,41 €

[, U] such that

1 _
[5_Pb2 co8® felrmpn s < Cre™ P (3.5)

Consider the functional

1 ! 1 !
E(p,ny1) = = / (P% + 1)p/2dr + —p/ b2 cos? pdr.

Nn+1 € MNn+1

It is easy to prove that the minimizer p; of E(p,n,+1) in W}E’p((nn_ﬂ, 1), RT)
exists and satisfies

—eP(P=D/2p ), =sin2p, in (Npy1,1) (3.6)
T
p|r:nn+1 = faa p|r:1 = fa(l) = 5 (37)

where v = p? + 1. It follows from the maximum principle that p; < 7/2 and

sin® p(r) = sin? P(Mn+1) = sin? felnir) =1 = cos® fe(uy1) > 1 =77 (3.8)

the last inequality of which is implied by Theorem 1.1. Noting min{1,5?} <
1+ (b® —1)sin® f < max{1,b?}, applying (3.4) we sce easily that

E(p1;77n+1) < E(f5§ 77n+1) < C(b)Ea(fa;nn-i-l) < Cpe™? (39)

for € € (0,e0) with €9 > 0 sufficiently small.
Now, choosing a smooth function {(r) such that ( =1 on (0,7),¢ = 0 near
r = 1, multiplying (3.6) by Cp-(p = p1) and integrating over (1,41, 1) we obtain

1 1
1
U(p_Q)/2P72~|r:nn+1 +/ ’U(p_Q)/Qpr(CTpT + Cprr)dr = E_p/ sin 2pCpydr.
Mn+1

Nn+1

(3.10)
Using (3.9) we have
1 _
| fﬂn+1 ,U(p 2)/2p’”(<7"p7“ + gp”)dﬂ
1 _ 1 1
< Mn41 v 2)/2|€T|p72"dr + %' f77n+1 (UP/QOTdT - f"]n+1 UP/QCTdH (3 11)

1 1
p/2 1yp/2 < p/2
<C [, vPRdr+ P ey 5 [, 0P Rdr

n—p 4 1,p/2
S C’”/E + pU / |"':"7n+1
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and using (3.5)(3.9) we have

1 : 1 1
% [ Cprsin2pdr| = & fnn+1 ¢-b? cos? pdr — fnn+1 (Cb? cos? p),dr|

Mn41

< Eipr cos? plr=y, ., + E% fnln+1 cos? pdr < C,e™P.
(3.12)
Combining (3.10) with (3.11)(3.12) yields

. _ 1
’U(p 2)/2p$|7‘:77n+1 S Cngn ! + 5’Up/2|7':77n+1'

Hence
0P 2 |my, = 0TI (p2 1)

T=Nnt1
< Cre™ P+ %’Up/2|7’:77n+1 + U(p_Q)/2|T:77n+1
< Cre™ P 4 (% + 5)7’p/2|r:nn+1 +C(0)
from which it follows by choosing § > 0 small enough that
0P/2| oy < Cre P, (3.13)

Noting (3.8), we can see sinp > 0. Multiply both sides of (3.6) by cotp =

€52 and integrate. Then
sin p

1 1
1
—ePp(P=2)/2) cot p|717n+1 = 5”/ v(p_Q)/pr ——dr + 2/ cos? pdr.
Nn+1 sin p MNn+1

Noting cot p(1) = 0 (which is implied by (3.7)) and ﬁ > 1, we have

1
BE(p15n41) = 3 o/ 2dr + & Sy, c08% pdr
<clf,

Nn+1

Nn+1

w2224y 4+ L [ cos? pdr] < Co®=D/2p, cot p|

T=MNn+1"

From this, using(3.13)(3.5) and noticing that n < p, we obtain
E(p131mn41) < Co®=2/2p, cot p|

T=MNn+1

€

< CuP D2 cotpl,_y,,, < (Cre™ )P D/p(Cas )1/ (3.14)
< Cpyqenti=pt(n/2=n/p) < ¢ entl=p,

Define w, = f., for r € (0,9n41); we = p1, for r € [Nny1,1]. Since f. is a
minimizer of E.(f), we have FE.(f.) < E.(w.), namely,

E-(fe;Mnt1)

1 1 2 2 ) 9 _9 .. 2 9 1 1
<3 Ly (P2 (02 = 1) sin® p) 4 dPr 2 sin® p)rdr + 5 |,

cos? prdr
P JNn41 Mn+1

= p Jnnia

<G s P2+ DPPAr 55 [ o8 pdr + C = CE(p1iat) + C.
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Thus, using (3.14) yields
Ea(fe;nn-l-l) < Cn+15n7p+1
for € € (0,ep). This is just (3.3) for j =n + 1.

Proposition 3.2 Given n € (0,1). There exist constants ny+1 € [Nifi,n] and

Cn41 such that

L[t
E(fesnne1) < Cngre™ P 4 —/ —dr (3.15)
p TN +1

where N = [p].

Proof. Similar to the derivation of (3.5) we may obtain from Proposition 3.1

for j = N that there exists ny11 € [N_ATT’ (]X[Tl)"], such that

1
= c0s? folrmnny, < One¥ 7P, (3.16)

Also similarly, consider the functional

1 [t 1 [t
E(p,nn+1) = —/ (p? + 1)P2dr + —/ cos? pdr
NN +1

TN +1 ep
whose minimizer ps in W;E’p ((nn+1,1), RT) exists and satisfies
—P(PH2p,), =sin2p, in (gn1,1)

™
p|7‘:77N+1 = fe, plr=1= fe(1) = 2

where v = p2 + 1. From (3.4) for n = N it follows immediately that
E(painn+1) < E(feinn1) < OnEe(feinng1) < OnEe(feinn) < Cne™ P
Similar to the proof of (3.13) and (3.14), we get, from Proposition 3.1 and (3.16),
Up/2|r:7m+1 <COneNTP, and E(py;nni1) < Cnpre¥N TP (3.17)
Now we define

we = fe, forr e (0,nn11);  we = p2, forr € [Nny1,1]
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and then we have E.(f.) < E.(w.). Notice that

an+1 (p7(1 4 (b* — 1) sin p) + d?r=2sin’ p)p/QTdT

_rt 2,.-2 i 2 \p/2
77N+1(d r~2sin® p)P/“rdr
=2 [ R+ (02— 1)sin® p) + P2 sin? p)s

NIN+1

+(d?r2sin? p)(1 — 5)|®=2/2)dsprdr

<Cf

7]N+1

(p7 + d?r=?sin® p) P~ 2)/2p2rdrf s(P=2)/24g
+ Cf +1(cl2r—2 sin? p)(p_Q)/QpErdrf (1 — s)P=2/2s
<Oy, ARAr+ [ o2dr) <C [ (0} + 1) dr.
Hence

1 o . 1
E.(fe;nny1) < %f (d?r—2sin? p)P/Qrdr + 25% anH(cos p2)%dr

MN+1

JrCf??N+1 ) )p/er< 2 IN41 (d2T?2)p/2dT+CE(PQ;77N+1>-
Using (3.17) we have
1
(f8777N+1 < _/ p/QdT+CN+1EN p+1
P Jny

This is my conclusion.

Proof of Theorem 1.2. Without loss of generality, we may assume K = B\
B(0,1nn+1). From Proposition 3.2, We have E.(us, K) = 2nE.(fe,nn+1) < C
where C' is independent of €, namely

/ Vu|Pdz < C, (3.18)
K

/ lues|?de < CeP. (3.19)
K

(3.18) and |u.| < max{1,b} imply the existence of a subsequence u., of u. and
a function u, € WHP(K, R?), such that

lim e, = u., weakly in W'P(K, R?)

ex—0
: : « 3 2
lim wue, =u., in C*K,R%),a€ (0,1—-). (3.20)
Ek—>0 p
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(3.19) and (3.20) imply u. = (e*?,0). Noticing that any subsequence of u. has
a convergence subsequence and the limit is always (¢, 0), we can assert

lin%)us = ('9,0), weakly in WYP(K,R®). (3.21)
E—

From this and the weakly lower semicontinuity of | x |Vul?, using Proposition
3.2, we have

fK Ve |Pdr < lim_ fK |Vue|Pdz < lim,, o fK |Vuc|Pdx

< Climg_geN+t1- p+27rf

d? 72)p/2rdr
IN+1

and hence
lim |Vu8|pdac = / |Veld? |Pdx
K

e—0

since .
/ |Veidl|Pdy = 27T/ (d>r=2)P/2rdr.
K MN+1

Combining this with (3.21)(3.20) complete the proof.

4 Proof of Theorem 1.3
Firstly, it follows from Jensen’s inequality that
Ec(fsm) =L [P+ (b2 = 1)sin® £)P/?rdr

" sin® fordr.

f b? cos? f.rdr +5 1

26P

Combining this with (3.15) yields

77”‘

%fnl(fé)p(l + (0% — 1) sin® f)P/2rdr + 555 f b2 cos? fordr
<1 [P —sin? fo)rdr + CelPHLp,
Noticing that 1 —sin? f. < C(1 —sin® f.) = C'cos? f. and (3.19), we obtain
S (fyprdr + & [ 0% cos? fordr
= Cfnl L cos? fordr + CelPH1=P < OeP 4 CelPlH1=p < Celrl+i-p, )

Using (4.1) and the integral mean value theorem we can see that there exists
m € [n,n(1 +1/2)] C [R/2, R] such that

1
[5_1’ c0s? fo]pmy, < ChelPl=PFL, (4.2)
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Consider the functional
1

e 1
B(oom) = 3 [ (ot 41072+ o [ cos?
DS 2eP [,
It is easy to prove that the minimizer ps of E(p,n1) in Wfls’p((m, 1), R") exists.
By the same way to proof of (3.14), using (3.2) and (4.2) we have
[p]+217p+%

—2
E(p3,m) < v"T pa, cot paly—y, < Ccot pz(m) < Ce

Hence, similar to the derivation of (3.15), we obtain

plopti,p 1 (1 dP
Es(fs;n1>§06[]2+1+5+_/ dr
n

p Sy P71

Thus (4.1) may be rewritten as

1 1
1 [plt1- [p]+1—
/ (fo)rdr + b2 cos? fordr < Ce 2 8 4 Ol < Coe 7 TE,

m € m

Let 7, = R(1 — 55 ) where R < 1. Proceeding in the way above (whose idea

_ k_ _ k+1_
is improving the exponent of € from [p]';i py 2 2k1)p to [p];,;}rlp e 2k+11)p

step by step), we can get that for any m € N,

1 1
1 [pl+1-p , (27 —1)
/ (fD)Prdr + > b2 cos? fordr < Ce Eom Tt L OeP.
€
m N

Letting m — oo, we derive (1.2).
From (1.2) we can see that

/ uZydr < Ce?. (4.3)
K
On the other hand, for any xy € K, we have

[uez () — uez(wo)| < Ce@PV/Plz — a0|=2/P, Va € B(xo, ae),
by applying Proposition 2.2, where o = (%)% Thus
_ 1
lues(z)| > |ues(zo)| — Cal=2/v > §|U53(1'O>|-

Substituting this into (4.3) we obtain
Ce?P 2/ u?yda 2/ uZyde > E|u53(x0)|2(o¢5)2,
K B(zg,ac) 4

which implies |ues(zo)| < Ce'r Noting z( is an arbitrary point in K, we have

sup |ues(x)] < Ce#.
reK

Thus (1.3) is derived and the proof of Theorem is complete.
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5 Proof of Theorem 1.4

By the method in the calculus of variations we can see the following

Proposition 5.1 The minimizer f- € V of the functional E.(f,(0,1)) satisfies
the following equality
b2 2

/1 v(p_Q)/g[f O + —_1f2(sin2f)q’>+ d—(sian)qb]rdr 1 /1(sin2f)qbrdr
o o 2 T 272 2P J,

for any function ¢ € C§°[0,1], where v = f2(1 + (b2 — 1)sin?f) + ‘#Lff.
0 T T

Assume ul = (e sin f7,cos f7) is the minimizer of the regularized func-
tional E7 (u, B). It is easy to prove that the minimizer f7 is a classical solution
of the equation

2 . .
_rae-22p) L TO D Joenszpe o p g g-2)2802f _ Tsin2f
rr > - o 2 ’1)

where A = v 4+ 7. By the same argument of Theorem 1.1 and Proposition 3.2,
we can also see that for any compact subset K € (0,1], there exist constants
n € (0,1/2) and C > 0 which are independent of € and 7, such that

ngfg(r)gg, re kK, (5.2)
EI(fI,K) <C, (5.3)
where
EI(f,K) :/ [l(ff(1+(b2—l)sz‘an)erQr’QsinQ f+T)P/2+21—pb2 cos? f]rdr.
K P €

Proposition 5.2 Denote fT = f. Then for any closed subset K C (0,1), there
exists C' > 0 which is independent of e, 7 such that

| fllcroer <C, Va<1/2.

Proof. Without loss of the generality, we assume d = 1. Take R > 0 suffi-
ciently small such that K CC (2R,1 —2R). Let ¢ € C§°([0,1],[0,1]) be a func-
tion satisfying ¢ =0 on [0, RJU[1—R,1], { =1on [2R,1—2R] and || < C(R)
on (0,1). Differentiating (5.1), multiplying with f.(? and integrating, we have

— [y (AC=D2f (fr¢P)dr — [ (r P AP=22 5, (f,¢%)dr

F 02 4+ (0 = 1) f2)APD2sin 2], (f,¢3)dr = & [ (cos 2f) f2¢C%dr.
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Integrating by parts and noting cos2f = 2cos? f — 1, we obtain
Sy (AC=D/2 ), (£,¢2),dr
= [ AP=D2(£.02), (525 + 5L f2) sin2f — r L f]dr
+ 2 [H0 cos ) f2C%dr — & [} £2¢2dr.

Denote I = f;_R@(A(p_Q)/foT + (p — 2)AP=D/2f2 £2 ydr. Then for any § €
(0, 1), there holds

1-R 1-R

AP22dr 4 E% / (b? cos® f) f2¢C2dr (5.4)

I§51+C(6)/ i

R
by using Young inequality. Noticing that (5.2) implies sin f > 0 asr € [R,1—R],
from (5.1) we can see that

2 (cos f)? =4r~!cot fl=(AP=272f — p=1AP=2)/2f,
+AP=2/2( L 02D 2y g o f].

Substituting it into the last term of the right hand side of (5.4) and applying
Young inequality again we obtain that for any ¢ € (0,1),

9 1-R

R
(cos? f) f2¢%dr < 01 + C(5) / AP gy,

ep R

Combining this with (5.4) and choosing ¢ sufficiently small, we have

1-R 1-R

I< c/ AP2C2qr 4 C/ AWP+2/202q,. (5.5)
R R

To estimate the second term of the right hand side of (5.5), we take ¢ =

¢?/4|f,.|P+2)/4 in the interpolation inequality (Ch IT, Theorem 2.1 in [6])

- 2
lolle < Cligell 7 NlolAT, a1+ . 2). (5.6)

We derive by applying Young inequality that for any § € (0, 1),

SR 12 < O[3 ¢/ £, 0+ adr)
.(féfR Cz/qfl |<r||fr|(p+2)/q + CQ/q|fT|(p+2)/q71|frr|dr)q,1
(5.7)

< C(fy T 2| f, |0 agp) ([ 177 ¢2la=1)¢, || £ 0+ g

p+2

FOI+C(8) [ M AT ~E a2 gryat,
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Noting ¢ € (1 + %, 2), we may using Holder inequality to the right hand side of
(5.7). Thus, by virtue of (5.3),

1-R
/ o P2C2dr < 61 + C().
R

Substituting this into (5.5) and choosing ¢ sufficiently small, we obtain

1-R
/ AP=2/2 2 (2dr < C,
R
which, together with (5.3), implies that ||Ap/4(||H1(R71_R) < C. Noticing ( =1
on K, we have ||AP/4|| g1y < C. Using embedding theorem we can see that
for any o < 1/2, there holds ||AP/4||ca(x) < C. From this it is not difficult to
prove our proposition.

Applying the idea above, we also have the estimate near the boundary point
r=1.

Proposition 5.3 Denote fI = f(r). Then for any closed subset K C (0,1],
there exists C' > 0 which is independent of €, such that

| fllcroery <C, Va<1/2.

Proof. Without loss of the generality, we assume d = 1. Let g(r) = f(r+1)—1.

Define
giry=g(r), as —-1<r<0;
glr)=—g(-r) as 0<r<3.
If still denote f(r) = g(r—1)+1on (0, 2), then f(r) solves (5.1) on (0, 2). Take
R < 1 sufficiently small, and set ( € C*°[0,1], (=1lasr >1—-R, (=0 as
r < 2R. Differentiating (5.1), multiplying with f,.¢?> and integrating over [R, 1],
we have

— Jp(APD2f) (fr¢P)dr = [p(r L AP=DI2 1) (£,62)dr
+ [allh + 5L A2 sin 2 ], (f,¢)dr = & [L(8? cos2f) f2¢7dr
Integrating by parts yields
Ja(AP=DP2 ) (£,¢2)pdr
< | JRlAP=D2((h + EFL2)sin2f — v 1 £, (£ dr|

+2 [h(b%cos® f) f2C2dr + |1(1) — I(R)),
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where I(r) = —[(AP=2/2f), + LAw=2/2f L AP=2/25in2f]f.¢%. The
second term of the right hand side of the inequality above can be handled
similar to the proof of Proposition 5.2. Computing the first term of the right
hand side yields

| [RAP=272((Ghy 4 E2L 2y sin2f — 11 £, (f,¢2)dr|
<8 [y AP=D/2F2 2qr 4 C(5) [ APy

with any § € (0,1) by using Young inequality. In view of (5.1), we have I(r) =
75 (sin2f) f-¢2. Hence, I(1) = I(R) = 0 since sin2f(1) = 0 and ((R) = 0.
Hence, we may also obtain the result as (5.5)

1 1

/ AP=D/2p2 24y < © / (AP/2 + AWED/22) .,

R R

Now, if we take ¢ = ¢2/9|f,|(P*2)/9  then the interpolation inequality (5.6) is
invalid since ¢ # 0 near r = 1. Thus, we apply a new interpolation inequality
[6, (2.19) in Chapter 2]

_ 2
léllze < CUligellr + loll)' "Il g€ 1+ » 2).

Then it still follows the same result as (5.7). The rest of the proof is similar to
the proof of Proposition 5.2.

Proof of Theorem 1.4. For every compact subset K C B\ {0}, applying
Propositions 5.2 and 5.3 yields that for « € (0,1/2] one has

uZllcrexy < C = C(K), (5.8)

where the constant does not depend on ¢, 7.

Applying (5.8) and the embedding theorem we know that for any e and
B1 < a, there exist w* € C*#1 (K, E(b)) and a subsequence of 7 of 7 such that
as k — oo,

Tk

ul* —w’, in CYPU(K,E(D)). (5.9)

Combining this with (1.4) we know that w} = ..

Applying (5.8) and the embedding theorem again we can see that for any
B2 < a, there exist w* € C1%2(K, E(b)) and a subsequence of 75, which can be
denoted by 7, such that as m — oo,

ulm —w*, in CHP (K, E(b)). (5.10)
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Noticing (1.2), we know that w* = (¢%,0). Denote v = min(31, 52). Then as
m — 00, we have

lte,, = (€, 0)lcra(x,mwy) < e, — uln lorox, By

Em

, (5.11)
+ulm — (€, 0)]| o1k, @)y < o(1)

Em

by applying (5.9) and (5.10).
Noting the limit (e, 0) is unique, we can see that the convergence (5.11)
holds not only for some subsequence but for all @.. Theorem is proved.

6 Proof of Theorem 1.5

Without loss of the generality, we assume d = 1. Denote f = fI. Set ¢ = Ci—if
Multiplying (5.1) by sin f we obtain

—(rAP=D/2(sin f) f,), +rcos fAPTD/2(A — 1) = r(sin f)2e). (6.1)
Substituting v, = %ﬁfﬂ into (6.1) we have
eP(rAP=2/2y )+ rcos fAPTD/Z(A — 1) = r(sin f)%.

Suppose t(r) achieves its maximum at the point rg in K, where K is an arbitrary
open interval in any compact subset of (0,1). Then ¢, (rg) = 0, ¥r(r9) < 0.
And (sin f)2 > C; > 0 with the constant C; independent of ¢ and 7 which is
implied by (5.2). Thus, it is deduced that, from Proposition 5.2,

Y0) < 0(r) < G AT (A - 7)),y S C,
1

which implies supy |cos f| < CeP with the constant C' > 0 independent of &
and 7, where K is any compact subset of (0, 1). Letting 7 — 0 and using (5.9)
we may see the conclusion

sup | cos fo| < CeP.
K

To derive estimate near the boundary r = 1, we use the idea of Pohozaev’s
equality. Choose R € (0,). Set ((r) € C*°[0,1], ( =0asr € [0,2R], { =1
as r € [1 — R,1]. Then ¢, < C(R). Multiplying (5.1) with f,¢ and integrating
over [R,T] with T being an arbitrary constant in (1 — R, 1), we have

T _ T _ . r(b%—
— [T A2 Fcdr + [F AP-D2(sin2f) [k + LD g2 car

=5 fg rfr(sin2f)Cdr.
(6.2)

EJQTDE, 2003 No. 22, p. 19



Integrating the right hand side of (6.2) by parts yields

s fRTfT sin2f)¢dr = — 55 fR cos? f).Cdr

(6.3)
T
= —ﬁr(cos )2?lr=r + ﬁ [ (cos® f)(r¢),dr.
Similarly, the first term of the left hand side of (6.2) may be written as
— [p (rAPTD2 1), fiCdr = —r AP/ f2) g
(6.4)

[ rAPRR L f Cdr 4 [ P AP 20 dr = B3
Combining I with the second term of the left hand side of (6.2) we have
I+ [ Ar=2)/2802L f (g
= [p AL (f, fror + (ks + Y5 f2) frsin2f)Gdr
— %fg rAP=2/2¢(A 7). dr + %fg P2 A=2)/2¢ sin? fdr
= Lr AP _p — }Df; AP/ (rQ)pdr + 4 fg r=2AP=2)/2¢sin? fdr.
Substituting this and (6.3),(6.4) into (6.2) yields
527 7(C08 [)?|r=r + S AP/, — T+f rA@=2/2 f2¢, dr
+1 fR AWP=2)/2p=2(gin f)2(dr
= 25P fR cos f)2(r¢),dr + %f; API2(rC)pdr +rAP=2/2 2|

Applying Proposition 5.3 and (5.3) we obtain —T cos? f(T) < O, with C >0
independent of € and 7. Letting 7 — 0 and using (5.9) we derive

1
5ep °O8 2f(T)<C.

By virtue of the arbitrary of the point T, it is not difficult to get our Theorem.

Acknowledgements. The research was supported by NSF (19271086) and
Tianyuan Fund of Mathematics (A0324628)(China).

References

[1] F.Bethuel, H.Brezis, F.Helein: Ginzburg-Landau Vortices, Birkhauser.
1994.

EJQTDE, 2003 No. 22, p. 20



2]

3]

[4]

[5]

(6]

(7]

A .Fardoun: On equivariant p-harmaps, Ann. IHP. Analyse nonLineaire,15
(1998),25-72.

F.Hang, F.Lin: Static theory for planar ferromagnets and antiferromagnets,
Acta. Math. Sinica, English Series, 17, (2001), 541-580.

R.M.Herve, M.Herve: Etude qualitative des solutions reelles d’une equation
differentielle liee a l’equation de Ginzburg-Landau, Ann. THP. Analyse
nonLineaire,11 (1994),427-440.

S.Komineas, N.Papanicolaou: Vortex dynamics in two-dimensional anti-
ferromagnets, Nonlinearity, 11, (1998), 265-290.

O.Ladyzhenskaya, N.Uraltseva: Linear and quasilinear elliptic equations,
Acad, Press, NewYork and London, 1968.

P.Mironescu: On the stability of radial solution of the Ginzburg-Landau
equation, J. Functional Analysis. ,130 (1995), 334-344.

N.Papanicolaou, P.N.Spathis: Semitopological solutions in planar ferro-
magnets, Nonlinearity, 12, (1999), 285-302.

EJQTDE, 2003 No. 22, p. 21



