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Abstract

In this paper the existence of a solution of a general nonlinear functional two

point boundary value problem is proved under mixed generalized Lipschitz and

Carathéodory conditions. An existence theorem for extremal solutions is also

proved under certain monotonicity and weaker continuity conditions. Examples

are provided to illustrate the theory developed in this paper.
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1 Statement of Problem

Let R
n denote n-dimensional Euclidean space with a norm | · | defined by

|x| = |x1| + · · ·+ |xn|

for x = (x1, . . . , xn) ∈ R
n. Let a, r ∈ R be such that a > 0, r > 0 and let I0 = [−r, 0]

and I = [0, a] be two closed and bounded intervals in R. Let C = C(I0,R
n) denote

a Banach space of all continuous R
n-valued functions on I0 with the usual supremum

norm ‖ · ‖C . For every continuous x : I → R, and every t ∈ I we define a continuous
function xt : I0 → R by xt(θ) = x(t + θ) for each θ ∈ I0. Let J = [−r, a] and let
BM(J,Rn) denote the space of bounded and measurable R

n-valued functions on J .
Define a maximum norm ‖ · ‖ in BM(J,Rn) by ‖x‖ = max

t∈J
|x(t)|. Given a bounded
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operator G : X ⊂ BM(J,Rn) → Y ⊂ BM(J,Rn), consider the perturbed functional
boundary value problem (in short FBVP)

−x′′(t) = f(t, x(t), Sx) a.e. t ∈ I

Gx(0) = x(0) = 0 = x(a)

x(t) = Gx(t), t ∈ I0















(1.1)

where f : I × R
n ×BM(J,Rn) → R

n and S : X ⊂ BM(J,Rn) → Y ⊂ BM(J,Rn).

By a solution of FBVP (1.1) we mean a function x ∈ AC1(J,Rn) that satisfies the
equations in (1.1), where AC1(J,Rn) is the space of all continuous R

n-valued functions
whose first derivative exist and is absolutely continuous on J with J = I0

⋃

I.

The FBVP (1.1) seems to be new, yet special cases of it have been discussed in the
literature at length. These special cases of FBVP (1.1) can be obtained by defining the
operators G and S appropriately. The operators B and S are called the functional
operators of the functional boundary value problem (1.1) on J . As far as the authors
are aware there is no previous work on the existence theory for the FBVP (1.1) in
the framework of Caratheódory as well as monotonicity conditions. Now take X =
{x ∈ BM(J,R) | x ∈ AC(I,R)}. Let G : X → BM(I0,R) and define the operator
S : X → X by Sx = x, t ∈ J . Then the FBVP (1.1) takes the form

−x′′(t) = f(t, x(t), x) a.e. t ∈ I

Gx(0) = x(0) = 0 = x(a)

x(t) = Gx(t), t ∈ I0















(1.2)

which is the functional differential equation discussed in Xu and Liz [15] for the ex-
istence of solutions in the framework of upper and lower solutions. Again the FBVP
(1.2) includes several important classes of functional differential equations as special
cases. See Henderson and Hudson [8], Henderson [7] and the references therein. Again
when S,G : X → C(I0,R) are two operators defined by Sx(t) = xt, t ∈ I and
Gx(t) = φ(t), t ∈ I0, the FBVP (1.1) reduces to the FBVP

−x′′(t) = f(t, x(t), xt) a.e. t ∈ I

φ(0) = x(0) = 0 = x(a)

x(t) = φ(t), t ∈ I0















(1.3)

where f : I × R
n × C(I0,R

n) → R
n and φ ∈ C(I0,R

n).

We note that the FBVP (1.3) again covers several important classes of functional
differential equations; see Henderson [7], Ntouyas [12] and the references therein.

We shall apply fixed point theorems for proving existence theorems for the FBVP
(1.1) under generalized Lipschitz and monotonicity conditions.
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2 Existence Theorem

An operator T : X → X is called compact if T (X) is a compact subset of X. Similarly
T : X → X is called totally bounded if T maps a bounded subset of X into the
relatively compact subset of X. Finally T : X → X is called completely continuous
operator if it is continuous and totally bounded operator on X. It is clear that every
compact operator is totally bounded, but the converse may not be true. However the
two notions are equivalent on bounded subsets of X.

In this paper we shall establish the existence of solutions for the FBVP (1.1) via
the following local version of the nonlinear alternative proved by Leray and Schauder
[3]. See also Dhage [1].

Theorem 2.1 Let B(0, r) and B[0, r] denote the open and closed balls in a Banach
space X and let T : B[0, r] → X be a completely continuous operator. Then either

(i) the equation λAx = x has a solution in B[0, r] for λ = 1, or

(ii) there exists an element u ∈ X with ‖u‖ = r satisfying λAu = u, for some
0 < λ < 1.

Let M(J,Rn) and B(J,Rn) respectively denote the spaces of measurable and bounded
real-valued functions on J. We shall seek a solution of FBVP (1.1) in the space
AC(J,Rn), of all bounded and measurable real-valued functions on J. Define a norm
‖ · ‖ in AC(J,Rn) by

‖x‖ = sup
t∈J

|x(t)|.

Clearly AC(J,Rn) becomes a Banach space with this norm. We need the following
definition in the sequel.

Definition 2.1 A mapping β : J × R
n × C → R

n is said to be L1-Carathéodory, if

(i) t→ β(t, x, y) is measurable for each x ∈ R
n and y ∈ BM(J,Rn),

(ii) (x, y) → β(t, x, y) is continuous almost everywhere for t ∈ J, and

(iii) for each real number r > 0, there exists a function hr ∈ L1(J,R) such that

|β(t, x, y)| ≤ hr(t), a.e. t ∈ J

for all x ∈ R
n and y ∈ BM(J,Rn) with |x| ≤ r, ‖y‖ ≤ r.
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We will need the following hypotheses:

(A1) The operator S : BM(J,Rn) → BM(J,Rn) is continuous.

(A2) The operator G : BM(J,Rn) → C(I0,R
n) is completely continuous.

(A3) The function f(t, x, y) is L1-Carathéodory.

(A4) There exists a nondecreasing function φ : [0,∞) → (0,∞) and a function γ ∈
L1(J,Rn) such that γ(t) > 0, a.e. t ∈ J and

|f(t, x, y)| ≤ γ(t)φ(|x|), a.e. t ∈ I,

for all x ∈ R
n and y ∈ BM(J,Rn).

Theorem 2.2 Assume that the hypotheses (A1)-(A4) hold. Suppose that there exists
a real number r > 0 such that

r > N +
(a

4

)

‖γ‖L1φ(r) (2.1)

where N = sup
‖x‖≤r

‖Gx‖. Then the FBVP (1.1) has a solution on J.

Proof. In the space AC(J,R), let B[0, r] be a closed ball centered at the origin of
radius r, where r satisfies the inequality (2.1). Now the FBVP (1.1) is equivalent to
the functional integral equation (in short FIE)

x(t) =







∫ a

0

k(t, s)f(s, x(s), Sx) ds, t ∈ I,

Gx(t), t ∈ I0,

(2.2)

where k(t, s) is the Green’s function associated with the homogeneous linear BVP

−x′′(t) = 0, a.e. t ∈ I,
x(0) = 0 = x(a).

}

(2.3)

It is known that the Green’s function k(t, s) is continuous and nonnegative on I × I
and satisfies the inequality

|k(t, s)| = k(t, s) ≤ a

4
for all t, s ∈ I.

Let X = AC(J,Rn). Define a mapping T on X by

Tx(t) =







∫ a

0

k(t, s)f(s, x(s), Sx) ds, t ∈ I,

Gx(t), t ∈ I0.

(2.4)

EJQTDE, 2004 No. 1, p. 4



Obviously T satisfies T : B[0, r] → X. We show that T is completely continuous
on B[0, r]. Using the dominated convergence theorem and standard arguments as in
Granas, et al. [4], it is shown that T is a continuous operator on X, with respect to the
norm ‖ · ‖. We shall show that T (B[0, r]) is a uniformly bounded and equi-continuous
set in X. First, for any x ∈ B[0, r], we have by (A1),

|Tx(t)| ≤ N +

∫ a

0

|k(t, s)||f(s, x(s), Sx)| ds

≤ N +

∫ a

0

(
a

4
)hr(s) ds

≤ N + ‖hr‖L1,

i.e. ‖Tx‖ ≤M for all x ∈ B[0, r], where M = N+( a
4
)‖hr‖L1 . This shows that T (B[0, r])

is a uniformly bounded set in X. Now we show that T (B[0, r]) is an equi-continuous
set. Let t, τ ∈ I. Then for any x ∈ B[0, r] we have by (2.4),

|Tx(t) − Tx(τ)| ≤
∣

∣

∣

∣

∫ a

0

k(t, s)f(s, x(s), Sx) ds−
∫ τ

0

k(τ, s)f(s, x(s), Sx) ds

∣

∣

∣

∣

≤
∫ a

0

|k(t, s) − k(τ, s)| |f(s, x(s), Sx)| ds

≤
∫ a

0

|k(t, s) − k(τ, s)| hr(s) ds

→ 0 as |t− τ | → 0.

Similarly if τ, t ∈ I0, then we obtain

|Tx(t) − Tx(τ)| = |Gx(t) −Gx(τ)|.

Since G is completely continuous on X, G(B[0, r]) is a totally bounded set in C(I0,R
n).

Consequently G(B[0, r]) is a equi-continuous set in C(I0,R
n).

Finally, if τ ∈ I0 and t ∈ I, then

|Tx(t) − Tx(τ)| ≤ |Gx(τ) −Gx(0)| +
∣

∣

∣

∣

∫ a

0

k(t, s)g(s, x(s), Sx) ds

∣

∣

∣

∣

≤ |Gx(τ) −Gx(0)| + |Tx(t) − Tx(0)|

≤ |Gx(τ) −Gx(0)| +
∫ a

0

|k(t, s) − k(0, s)|hr(s) ds.

Note that |t − τ | → 0 implies that t → 0 and τ → 0, and so independent of x in all
three cases,

|Tx(t) − Tx(τ)| → 0 as t→ τ.
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Hence T (B[0, r]) is an equi-continuous set and consequently T ([0, r]) is compact by
the Arzelá-Ascoli theorem. Consequently T is a completely continuous operator on
X. Thus all the conditions of Theorem 2.1 are satisfied and a direct application of it
yields that either conclusion (i) or conclusion (ii) holds. We show that the conclusion
(ii) is not possible. Let u ∈ X be any solution to FBVP (1.1). Then we have, for any
λ ∈ (0, 1),

u(t) = λTu(t)

= λ

∫ a

0

k(t, s) f(s, u(s), Sx) ds

for t ∈ I, and
u(t) = λTu(t) = λGu(t)

for all t ∈ I0. Then we have

|u(t)| ≤ N +

∣

∣

∣

∣

∫ a

0

k(t, s)f(s, u(s), Su) ds

∣

∣

∣

∣

≤ N +

∫ a

0

|k(t, s)| |f(s, u(s), Su)| ds

≤ N +

∫ a

0

k(t, s)γ(s)φ(|u(s)|) ds

≤ N +

∫ a

0

k(t, s)γ(s)φ(|u(s)|) ds

≤ N +

∫ a

0

(
a

4
)γ(s)φ(‖u(s)‖) ds

≤ N + (
a

4
)‖γ‖L1φ(‖u(s)‖).

Taking the supremum in the above inequality yields that

‖u‖ ≤ N + (
a

4
)‖γ‖L1φ(‖u‖).

Substituting ‖u‖ = r in the above inequality,

r ≤ N + (
a

4
)‖γ‖L1φ(r).

which is a contradiction to (2.1). Hence the conclusion (i) of Theorem 2.1 holds.
Therefore the operator equation Tx = x has a solution in B[0, r]. This further implies
that the FBVP (1.1) has a solution on J . This completes the proof. �

Example 2.1 Let I0 = [−π/2, 0] and I = [0, 1] be two closed and bounded intervals
in R. For a given function x ∈ AC(J,R), consider the FBVP

−x′′(t) = p(t)
|x(t)|

1 + ‖xt‖
a.e. t ∈ I

x(t) = sin t, t ∈ I0







(2.5)

EJQTDE, 2004 No. 1, p. 6



where p ∈ L1(I,R+) with ‖p‖L1 ≤ 1 and xt ∈ C(I0,R) with xt(θ) = x(t + θ), θ ∈ I0.

Define the functional operator S and the boundary operator G on BM(J,R) by
Sx(t) = xt ∈ C(I0,R) for t ∈ I and Gx(t) = sin t for all t ∈ I0. Obviously S is
continuous and G is bounded with N = max{‖Gx‖ : x ∈ BM(J,R)} = 1.

Define a function f : I × R ×BM(J,R) → R by

f(t, x, y) = p(t)
|x|

1 + ‖yt‖
.

It is very easy to prove that the function f(t, x, y) is L1-Carathéodory. Again we have

|f(t, x, y)| =
∣

∣

∣
p(t)

|x|
1 + ‖yt‖

∣

∣

∣

≤ p(t)(1 + |x(t)|)

and so the hypothesis (A4) is satisfied with φ(r) = 1+r. Now there exists a real number
r = 2 satisfying the condition (2.1). Hence we apply Theorem 2.1 to yield that the
FBVP (1.1) has a solution on J = I0

⋃

I.

3 Uniqueness Theorem

Let X be a Banach space with norm ‖ · ‖. A mapping T : X → X is called D-
Lipschitzian if there exists a continuous nondecreasing function ψ : R

+ → R
+ satis-

fying

‖Tx− Ty‖ ≤ ψ(‖x− y‖) (3.1)

for all x, y ∈ X with ψ(0) = 0. Sometimes we call the function ψ a D-function of T
on X. In the special case when ψ(r) = αr, α > 0, T is called Lipchitzician with a
Lipschitz constant α. In particular if α < 1, T is called a contraction with a contraction
constant α. Further if ψ(r) < r for r > 0 , then T is called a nonlinear contraction on
X. Finally if ψ(r) = r, then T is called a nonexpansive operator on X.

The following fixed point theorem for the nonlinear contraction is well-known and
useful for proving existence and uniqueness theorems for the nonlinear differential and
integral equations.

Theorem 3.1 (Browder [16]) Let X be a Banach space and let T : X → X be a
nonlinear contraction. Then T has a unique fixed point.
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We will need the following hypotheses:

(B1) The function f : I × R
n × BM(J,Rn) → R

n is continuous and satisfies

|f(t, x1, y1) − f(t, x2, y2)| ≤ max
{ |x1 − x2|
a2 + |x1 − x2|

,
‖y1 − y2‖

a2 + ‖y1 − y2‖
}

, a.e. t ∈ I

for all x1, x2 ∈ R
n and y1, y2 ∈ BM(J,Rn).

(B2) The operator S : BM(J,Rn) → BM(J,Rn) is nonexpansive.

(B3) The operator G : BM(J,Rn) → C(I0,R
n) satisfies

|Gx(t) −Gy(t)| ≤ |x(t) − y(t)|
a+ |x(t) − y(t)| , a.e. t ∈ I0

for all x, y ∈ BM(J,Rn).

Theorem 3.2 Assume that the hypotheses (B1) − (B3) hold. Then the FBVP (1.1)
has a unique solution on J .

Proof : Let X = AC(J,R) and define an operator T on X by (2.2). We show that
T is a nonlinear contraction on X. Let x, y ∈ X. By hypothesis (H1),

|Tx(t) − Ty(t)| ≤
∫ a

0

k(t, s)|f(s, x(s), Sx) − f(s, y(s), Sy)| ds

≤
∫ a

0

(

max

{ |x(s) − y(s)|
a2 + |x(s) − y(s)| ,

‖Sx− Sy‖
a2 + ‖Sx− Sy‖

}

)

ds

≤ a2‖x− y‖
a2 + ‖x− y‖ .

for all t ∈ I. Again

|Tx(t) − Ty(t)| ≤ |Gx(t) −Gy(t)|

≤ a|x(t) − y(t)|
a+ |x(t) − y(t)|

≤ a‖x− y‖
a+ ‖x− y‖

for all t ∈ J . Taking supremum over t we obtain

‖Tx− Ty‖ ≤ ψ(‖x− y‖),
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for all x, y ∈ X where ψ(r) = max

{

ar

a+ r
,
a2r

a2 + r

}

< r, which shows that T is a

nonlinear contraction on X. We now apply Theorem 3.1 to yield that the operator
T has a unique fixed point. This further implies that the FBVP (1.1) has a unique
solution on J . This completes the proof. �

Example 3.1 Let I0 = [−π/2, 0] and I = [0, 1] be two closed and bounded intervals
in R. For a given function x ∈ AC(J,R), consider the functional differential equation
(FBVP)

−x′′(t) =
1

2

[ |x(t)|
1 + |x(t)| +

‖xt‖
1 + ‖xt‖

]

a.e. t ∈ I

x(0) = 0 = x(a)

x(t) = sin t, t ∈ I0























(3.2)

where xt ∈ C(I0,R) with xt(θ) = x(t+ θ), θ ∈ I0.

Define the functional operator S and the boundary operator G on BM(J,R) by
Sx = xt ∈ C(I0,R) for t ∈ I and Gx(t) = sin t for all t ∈ I0. Obviously S is
continuous and G is bounded with C = max{‖Gx‖ : x ∈ BM(J,R)} = 1. Clearly S is
nonexpansive on BM(J,R).

Define a function f : I × R ×BM(J,R) → R by

f(t, x, y) =
1

2

[ |x|
1 + |x| +

‖yt‖
1 + ‖yt‖

]

.

It is very easy to prove that the function f is continuous on I×R×BM(J,R). Finally
we show that the function f satisfies the inequality given in (B1). Let x1, x2 ∈ R and
y1, y2 ∈ BM(J,R) be arbitrary. Then we have

|f(t, x1, y1) − f(t, x2, y2)|

≤ 1

2

(

∣

∣

∣

|x1|
1 + |x1|

− |x2|
1 + |x2|

∣

∣

∣

)

+
1

2

(

∣

∣

∣

‖y1‖
1 + ‖y1‖

− ‖y2‖
1 + ‖y2‖

∣

∣

∣

)

≤ 1

2

( | |x1| − |x2| |
(1 + |x1|)(1 + |x2|)

)

+
1

2

( |‖y1‖ − ‖y2‖|
(1 + ‖y1‖)(1 + ‖y2‖)

)

≤ 1

2

( |x1 − x2|
1 + |x1 − x2|

)

+
1

2

( ‖y1 − y2‖
1 + ‖y1 − y2‖

)

≤ max

{ |x1 − x2|
1 + |x1 − x2|

,
‖y1 − y2‖|

1 + ‖y1 − y2‖

}
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for all t ∈ J . Hence the hypothesis (B1) of Theorem 3.1 is satisfied. Therefore an appli-
cation of Theorem 3.1 yields that the FBVP (3.2) has a unique solution on [−π/2, 1].

4 Existence of Extremal Solutions

Let x, y ∈ R
n be such that x = (x1, . . . , xn) and y = (y1, . . . , yn). We define the

coordinate-wise order relation in R
n, that is, x ≤ y if and only if xi ≤ yi, for all

i = 1, . . . , n. We equip the Banach space AC(J,Rn) with the order relation “≤” by
ξ1 ≤ ξ2 if and only if ξ1(t) ≤ ξ2(t), for all t ∈ J . By the order interval [a, b] in AC(J,Rn)
we mean

[a, b] = {x ∈ AC(J,Rn) | a ≤ x ≤ b}.

We use the following fixed point theorem of Heikkila and Lakshmikantham [6] in
the sequel.

Theorem 4.1 Let [a, b] be an order interval in an order Banach space X and let
Q : [a, b] → [a, b] be a nondecreasing mapping. If each sequence {Qxn} ⊆ Q([a, b])
converges, whenever {xn} is a monotone sequence in [a, b], then the sequence of Q-
iteration of a converges to the least fixed point x∗ of Q and the sequence of Q-iteration
of b converges to the greatest fixed point x∗ of Q. Moreover

x∗ = min{y ∈ [a, b] | y ≥ Qy} and x∗ = max{y ∈ [a, b] | y ≤ Qy}.

We need the following definitions in the sequel.

Definition 4.1 A mapping β : J × R
n × C → R

n is said to satisfy Chandrabhan’s
conditions or simply is called L1-Chandrabhan if

(i) t→ β(t, x, y) is measurable for each x ∈ R
n and y ∈ BM(J,Rn),

(ii) The function β(t, x, y) is nondecreasing in x and y almost everywhere for t ∈ J,
and

(iii) for each real number r > 0, there exists a function hr ∈ L1(J,R) such that

|β(t, x, y)| ≤ hr(t), a.e. t ∈ J

for all x ∈ R
n and y ∈ BM(J,Rn) with |x| ≤ r, ‖y‖ ≤ r.
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Definition 4.2 A function u ∈ AC1(J,Rn) is called a lower solution of the FBVP
(1.1) on J if

−u′′(t) ≤ f(t, u(t), Su) a.e t ∈ I

Gu(0) = u(0) = 0 = u(a),

and
u(t) ≤ Gu(t) for all t ∈ I0.

Again a function v ∈ AC(J,Rn) is called an upper solution of the BVP (1.1) on J if

−v′′(t) ≥ f(t, v(t), Sv) a.e t ∈ I

Gv(0) = v(0) = 0 = v(a)

and

v(t) ≥ Gv(t) for all t ∈ I0.

Definition 4.3 A solution xM of the FBVP (1.1) is said to be maximal if for any
other solution x to FBVP(1.1) one has x(t) ≤ xM(t), for all t ∈ J. Again a solution
xm of the FBVP (1.1) is said to be minimal if xm(t) ≤ x(t), for all t ∈ J, where x is
any solution of the FBVP (1.1) on J.

We consider the following set of assumptions:

(C1) The operator S : BM(J,Rn) → BM(J,Rn) is nondecreasing.

(C2) The functions f(t, x, y) is Chandrabhan.

(C3) The operator G : BM(J,Rn) → C(I0,R
n) is nondecreasing.

(C4) The FBVP (1.1) has a lower solution u and an upper solution v on J with u ≤ v.

Remark 4.1 Assume that hypotheses (C1)− (C4) hold. Define a function h : J → R
+

by

h(t) = |f(t, u(t), Su)|+ |f(t, v(t), Sv)|, t ∈ I.

Then h is Lebesgue integrable and

|f(t, x(t), Sx)| ≤ h(t), a.e. t ∈ I, x(t) ∈ [u, v].

Theorem 4.2 Suppose that the assumptions (C1)-(C4) hold. Then FBVP (1.1) has a
minimal and a maximal solution on J.
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Proof. Now FBVP (1.1) is equivalent to FIE (2.2) on J. Let X = AC(J,Rn). Define
the operators T on [a, b] by (2.3). Then FIE (1.1) is transformed into an operator
equation Tx(t) = x(t) in a Banach space X. Now the hypothesis (B2) implies that T is
nondecreasing on [u, v]. To see this, let x, y ∈ [u, v] be such that x ≤ y. Then by (B2),

Tx(t) =

∫ a

0

k(t, s)f(s, x(s), Sx) ds

≤
∫ a

0

k(t, s)f(s, y(s), Sy) ds

= Ty(t), t ∈ I,

and
Tx(t) = Gx(t) ≤ Gy(t) = Ty(t) for all t ∈ I0.

So T is a nondecreasing operator on [u, v]. Finally we show that T defines a mapping
T : [u, v] → [u, v]. Let x ∈ [u, v] be an arbitrary element. Then for any t ∈ I, we have

u(t) ≤
∫ a

0

k(t, s)f(s, u(s), Su) ds

≤
∫ a

0

k(t, s)f(s, x(s), Sx) ds

≤
∫ a

0

k(t, s)f(s, v(s), Sv) ds

≤ v(t),

for all t ∈ I. Again from (B2) it follows that

u(t) ≤ Tu(t) = Gu(t) ≤ Gx(t) ≤ Tx(t) ≤ Gv(t) = Tv(t) ≤ v(t)

for all t ∈ I0. As a result u(t) ≤ Tx(t) ≤ v(t), for all t ∈ J . Hence Tx ∈ [u, v], for all
x ∈ [u, v].

Finally let {xn} be a monotone sequence in [u, v]. We shall show that the sequence
{Txn} converges in T ([u, v]). Obviously the sequence {Txn} is monotone in T ([u, v]).
Now it can be shown as in the proof of Theorem 2.2 that the sequence {Txn} is
uniformly bounded and equicontinuous in T ([u, v]) with the function h playing the
role of hr. Hence an application of the Arzela-Ascoli theorem yields that the sequence
{Txn} converges in T ([u, v]). Thus all the conditions of Theorem 4.1 are satisfied and
hence the operator T has a least and a greatest fixed point in [u, v]. This further implies
that the the FBVP (1.1) has maximal and minimal solutions on J . This completes the
proof. �

Example 4.1 Given two closed and bounded intervals I0 = [−r, 0] and I = [0, 1] in R
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for some 0 < r < 1, consider the functional differential equation

−x′′(t) =

tanh
([

max
s∈[−r,t]

x(s)
])

√
t

+ sgn(x(t)) a.e. t ∈ I

x(0) = 0 = x(a)

x0 = sin t for t ∈ I0.



























(4.1)

where tanh is the hyperbolic tangent, square bracket means the integer part and

sgn(x) =







x

|x| , if x 6= 0

0, if x = 0

Define the operators S,B : BM(J,R) → BM(J,R) by

Sx(t) =







[

max
s∈[−r,t]

x(s)
]

, if t ∈ I

0, otherwise.

and

Gx(t) =

{

sin t, if t ∈ I0
0, otherwise.

Consider the mapping f : I × R × BM(J,R) → R defined by

f(t, x, y) =
tanh y√

t
+ sgn(x)

for t 6= 0. Obviously the operators S and B are nondecreasing on BM(J,R). It is not
difficult to verify that the function f(t, x, y) is L1-Chandrabhan. Again note that

−1 − 1√
t
< f(t, x, y) < 1 +

1√
t

for all t ∈ J, x ∈ R and y ∈ BM(J,R). Therefore if we define the functions α and β by

−α′′(t) = −1 − 1√
t
, α(0) = 0 = α(a)

and

−β ′′(t) = 1 +
1√
t
, β(0) = 0 = β(a)

for all t ∈ I with
α(t) = sin t = β(t) t ∈ I0,

then α and β are respectively the lower and upper solutions of FBVP (4.1) on J with
α ≤ β. Thus all the conditions of Theorem 3.1 are satisfied and hence the FBVP (4.1)
has a maximal and minimal solution on J .
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