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Abstract. Some oscillation criteria are established for the second order nonlinear
neutral differential equations of the form

((x(t) + ax(t − τ1) − bx(t + τ2))
α)

′′

= q(t)xβ(t − σ1) + p(t)xβ(t + σ2),

and

(x(t) − ax(t − τ1) + bx(t + τ2)
α)′′ = q(t)xβ(t − σ1) + p(t)xβ(t + σ2)

where α and β are the ratios of odd positive integers with β ≥ 1. Examples are
provided to illustrate the main results.

1. Introduction

In this paper we study the oscillatory behavior of all solutions of neutral differen-

tial equations of the form

((x(t) + ax(t − τ1) − bx(t + τ2))
α)

′′

= q(t)xβ(t − σ1) + p(t)xβ(t + σ2), (1.1)

and

((x(t) − ax(t − τ1) + bx(t + τ2))
α)

′′

= q(t)xβ(t − σ1) + p(t)xβ(t + σ2) (1.2)

where t ≥ t0 ≥ 0, a and b are nonnegative constants, τ1, τ2, σ1 and σ2 are positive

constants, q(t), p(t) ∈ C ([t0,∞), [t0,∞)) , α, and β are the ratios of odd positive

integers with β ≥ 1.
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Let θ = max{τ1, σ1}. By a solution of equation (1.1) or (1.2), we mean a real

valued function x(t) defined for all t ≥ t0 − θ, and satisfying the equation (1.1) or

(1.2) for all t ≥ t0. A nontrivial solution of equation (1.1) or (1.2) is said to be

oscillatory, if it has arbitrarily large zeros; otherwise it is called nonoscillatory.

The problem of determining oscillation and nonoscillation of second order delay

and neutral type differential equations has received great attention in recent years,

see for example [1–21], and the references cited therein.If a = 0 or b = 0 and either

q(t) ≡ 0 or p(t) ≡ 0, then the oscillatory behavior of solutions of equations (1.1) and

(1.2) are studied in [1, 4, 6, 8–10, 14–18, 20]. In particular if α = β = 1 and α = β,

then the oscillatory behavior of solutions of equations (1.1) and (1.2) are discussed in

[2, 3, 5, 7, 11–13, 19, 21]. Motivated by this observation, in this paper we establish

some new sufficient conditions for the oscillation of all solutions of equations (1.1)

and (1.2) when β ≥ 1.

In Section 2, we present some sufficient conditions for the oscillation of all solutions

of equations (1.1) and (1.2). Examples are provided in Section 3 to illustrate the

main results.

2. Oscillation Results

In this section we shall obtain some sufficient conditions for the oscillation of all

solutions of the equations (1.1) and (1.2). Before proving the main results we state

the following lemma which will be useful in proving the main results.

Lemma 2.1. Let A ≥ 0, B ≥ 0, and γ ≥ 1. Then

Aγ + Bγ ≥
1

2γ−1
(A + B)γ. (2.1)
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If A ≥ B, then

Aγ − Bγ ≥ (A − B)γ. (2.2)

Proof. The proof may be found in [19]. �

First we study the oscillation of all solutions of equation (1.1).

Theorem 2.2. Let σi > τi for i = 1, 2,(1 + aβ −
bβ

2β−1
) > 0, and q(t) and p(t) be

positive and nonincreasing for all t ≥ t0. Assume that the differential inequalities

y′′(t) −
p(t)

2β−1(1 + aβ −
bβ

2β−1
)β/α

yβ/α(t + σ2 − τ2) ≥ 0, (2.3)

y′′(t) −
q(t)

2β−1(1 + aβ)β/α
yβ/α(t − σ1 + τ1) ≥ 0, (2.4)

and

y′′(t) + c1q(t)y
β/α(t − σ1 − τ2) + c1p(t)yβ/α(t + σ2 − τ2) ≤ 0 (2.5)

where c1 = min

{

1

bβ
,

1

2β−1

(

2β−1

bβ

)β/α
}

,have no eventually positive increasing solu-

tion, no eventually positive decreasing solution,and no eventually positive solution,

respectively. Then every solution of equation (1.1) is oscillatory.

Proof. Assume that x(t) is a nonoscillatory solution of equation (1.1). Without loss

of generality we may assume that there exists t1 ≥ t0 such that x(t − θ) > 0 for all

t ≥ t1. Set

z(t) = (x(t) + ax(t − τ1) − bx(t + τ2))
α, t ≥ t1.

Then z′′(t) = q(t)xβ(t − σ1) + p(t)xβ(t + σ2) > 0 for all t ≥ t1. Therefore, both

z(t) and z′(t) are of one sign for all t ≥ t1. We shall prove that z(t) > 0 eventually.

Indeed, if z(t) < 0, then

0 < u(t) = −z(t) = (bx(t + τ2) − ax(t − τ1) − x(t))α ≤ bαxα(t + τ2).
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That is

xβ(t) ≥
1

bβ
uβ/α(t − τ2) ≥ c1u

β/α(t − τ2), t ≥ t1.

Using the above inequality in equation (1.1), we have

0 = u′′(t) + q(t)xβ(t − σ1) + p(t)xβ(t + σ2)

≥ u′′(t) +
q(t)

bβ
uβ/α(t − σ1 − τ2) +

p(t)

bβ
uβ/α(t + σ2 − τ2),

or

u′′(t) + c1q(t)u
β/α(t − σ1 − τ2) + c1p(t)uβ/α(t + σ2 − τ2) ≤ 0.

Hence u(t) is a positive solution of the inequality (2.5), a contradiction. Therefore

z(t) > 0 eventually. Now we define a function y(t) as

y(t) = z(t) + aβz(t − τ1) −
bβ

2β−1
z(t + τ2), t ≥ t1. (2.6)

Then

y′′(t) = z′′(t) + aβz′′(t − τ1) −
bβ

2β−1
z′′(t + τ2)

= q(t)xβ(t − σ1) + p(t)xβ(t + σ2) + aβ
(

q(t − τ1)x
β(t − σ1 − τ1)

+p(t − τ1)x
β(t + σ2 − τ1)

)

−
bβ

2β−1

(

q(t + τ2)x
β(t − σ1 + τ2)

+p(t + τ2)x
β(t + σ2 + τ2)

)

, t ≥ t1. (2.7)

Using the monotonicity of q(t) and p(t) and the inequality (2.1) in (2.7), we get

y′′(t) ≥
q(t)

2β−1

(

[x(t − σ1) + ax(t − σ1 − τ1)]
β − bβxβ(t − σ1 + τ2)

)

+
p(t)

2β−1

(

[x(t + σ2) + ax(t + σ2 − τ1)]
β − bβx(t + σ2 + τ2)

)

, t ≥ t1.

Now using z(t) > 0 for t ≥ t1, and the inequality (2.2) in the above inequality, we

obtain

y′′(t) ≥
q(t)

2β−1
zβ/α(t − σ1) +

p(t)

2β−1
zβ/α(t + σ2) > 0, t ≥ t1 (2.8)
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which implies that both y(t) and y′(t) are of one sign, eventually. We shall prove

that y(t) > 0 eventually. If not, then

0 < v(t) = −y(t) = −z(t) − aβz(t − τ1) +
bβ

2β−1
z(t + τ2) ≤

bβ

2β−1
z(t + τ2).

Hence z(t) ≥
2β−1

bβ
v(t − τ2). Using the last inequality in (2.8), we obtain

0 ≥ v′′(t) +
q(t)

2β−1

(

2β−1

bβ

)β/α

vβ/α(t − σ1 − τ2) +
p(t)

2β−1

(

2β−1

bβ

)β/α

vβ/α(t + σ2 − τ2),

or

v′′(t) + c1q(t)v
β/α(t − σ1 − τ2) + c1p(t)vβ/α(t + σ2 − τ2) ≤ 0, t ≥ t1.

Therefore v(t) is a positive solution of (2.5), contradiction. Thus y(t) > 0, eventu-

ally. Next we consider the following two cases:

Case:1. Let z′(t) < 0 for all t ≥ t2 ≥ t1. We claim that y′(t) < 0 for all t ≥ t2. If

not, then y(t) > 0, y′(t) > 0 and y′′(t) > 0 imply that lim
t→∞

y(t) = ∞. On the other

hand, z(t) > 0 and z′(t) < 0 imply that lim
t→∞

z(t) = c < ∞. Applying limit on both

the sides of equation (2.6) we obtain a contradiction. Thus y′(t) < 0 for all t ≥ t2.

Using the monotonicity of z(t), we obtain

y(t) = z(t) + aβz(t − τ1) −
bβ

2β−1
z(t + τ2)

≤ (1 + aβ)z(t − τ1), t ≥ t2.

The above inequality together with (2.8) implies that

y′′(t) ≥
q(t)

2β−1

yβ/α(t − σ1 + τ1)

(1 + aβ)β/α
, t ≥ t2.

Thus y(t) is a positive decreasing solution of the inequality (2.4), which is a contra-

diction.

Case:2. Let z′(t) > 0 for all t ≥ t2. Now we consider the following two subcases:
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Subcase (i): Assume that y′(t) < 0 for all t ≥ t2. Proceeding as in Case 1, and

using the monotonicity of z(t), we obtain

y(t− σ1) ≤ (1 + aβ)z(t − σ1).

Using the last inequality in (2.8) and the monotonicity of y(t), we obtain

y′′(t) ≥
q(t)

2β−1
zβ/α(t − σ1)

≥
q(t)

2β−1(1 + aβ)β/α
yβ/α(t − σ1)

≥
q(t)

2β−1(1 + aβ)β/α
yβ/α(t − σ1 + τ1),

and once again y(t) is a positive decreasing solution of the inequality (2.4), which is

a contradiction.

Subcase (ii): Assume that y′(t) > 0 for all t ≥ t2. Then we have y(t+) ≤ (1+aβ −

bβ

2β−1
)z(t + τ2), and this with (2.8) implies

y′′(t) ≥
p(t)

2β−1
zβ/α(t + σ2) ≥

p(t)

2β−1(1 + aβ −
bβ

2β−1
)β/α

yβ/α(t + σ2 − τ2).

That is, y(t) is a positive increasing solution of the inequality (2.3), which is a

contradiction. The proof is now complete. �

Remark 2.1. Theorem 2.2 permits us to get various oscillation criteria for equation

(1.1). Also we are able to study the asymptotic properties of solutions of equation

(1.1) even if some of the assumptions of Theorem 2.2 are not satisfied. If the differ-

ential inequality (2.3) has eventually positive increasing solution then the conclusion

of Theorem 2.2 will be replaced by “every solution x(t) of equation (1.1) is either

oscillatory or x(t) tends to ∞ as t → ∞.”
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Next we present a ready to verify conditions for the oscillation of all solutions of

equation (1.1).

Corollary 2.3. Let σi > τi for i = 1, 2,(1 + aα −
bα

2α−1
) > 0, and β = α. If

lim sup
t→∞

t+σ2−τ2
∫

t

(s − t)p(s)ds > (1 + aα −
bα

2α−1
)2α−1, (2.9)

lim sup
t→∞

t
∫

t−σ1+τ1

(t − s)q(s)ds > (1 + aα)2α−1, (2.10)

and

lim inf
t→∞

t
∫

t−σ1−τ1

(s − σ1 − τ2)(p(s) + q(s))ds >
2bα

e
(2.11)

then every solution of equation (1.1) is oscillatory.

Proof. Let y(t) be a positive solution of (2.5), for t ≥ t1 ≥ t0. Then we have y′′(t) ≤ 0

for all t ≥ t1. Further y′(t) > 0 for all t ≥ t1, otherwise y(t) → −∞ as t → −∞.

Hence we have y(t) > 0, y′(t) > 0 and y′′(t) ≤ 0, for t ≥ t1. Then we obtain

y(t) ≥
t

2
y′(t) for t ≥ t2 ≥ 2t1.

From (2.5) and the monotonicity of y(t),we have

y′′(t) +
1

bα
(p(t) + q(t))y(t− σ1 − τ2) ≤ 0, t ≥ t2.

Combining the last two inequalities,we obtain

y′′(t) +
1

2bα
(p(t) + q(t))(t − σ1 − τ2)y

′(t − σ1 − τ2) ≤ 0, t ≥ t2.

Let w(t) = y′(t). Then we see that w(t) is a positive solution of

w′(t) +
1

2bα
(p(t) + q(t))(t − σ1 − τ2)w(t − σ1 − τ2) ≤ 0, t ≥ t2.
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which is a contradiction by condition(2.11) and Theorem 2.1.1 in [15].Hence (2.5)

has no eventually positive solution. More over condition (2.9) is sufficient for the

inequality (2.3) to have no positive increasing solution and condition (2.10) is suffi-

cient for the inequality (2.4) to have no positive decreasing solution,see [1, Lemma

2.2.12]. Then the proof follows from Theorem 2.2. �

Next we consider the equation (1.2), and present sufficient conditions for the

oscillation of all solutions.

Theorem 2.4. Assume that σi > τi for i = 1, 2, q(t) and p(t) are positive and

nondecreasing functions for t ≥ t0. If the differential inequality

y′′(t) −
p(t)

2β−1

yβ/α(t + σ2 − τ2)

(1 + bβ)β/α
≥ 0 (2.12)

has no positive increasing solution, the differential inequality

y′′(t) −
q(t)

2β−1

yβ/α(t − σ1 + τ1)

(1 + bβ)β/α
≥ 0 (2.13)

has no positive decreasing solution, and the differential inequality

y′′(t) + c2q(t)y
β/α(t + τ1 − σ1) + c2p(t)yβ/α(t + τ1 + σ2) ≤ 0 (2.14)

where c2 = min

{

1

aβ
,

1

2β−1

(

2β−1

aβ

)β/α
}

, has no positive solution, then every solu-

tion of equation (1.2) is oscillatory.

Proof. Let x(t) be a nonoscillatory solution of equation (1.2). Without loss of gen-

erality, we may assume that there exists a t1 ≥ t0 such that x(t − θ) > 0 for all

t ≥ t1. By setting

z(t) = (x(t) − ax(t − τ1) + bx(t + τ2))
α, t ≥ t1
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we have z′′(t) = q(t)xβ(t − σ1) + p(t)xβ(t + σ2) > 0 for all t ≥ t1. Therefore, both

z(t) and z′(t) are of one sign for all t ≥ t1. We shall prove that z(t) > 0 for all

t ≥ t1. If not, then z(t) < 0 and

0 < u(t) = −z(t) = (ax(t − τ1) − bx(t + τ2) − x(t))α

≤ aαxα(t − τ1)

which implies that

xβ(t) ≥
uβ/α(t + τ1)

aβ
≥ c2u

β

α (t + τ1) for all t ≥ t1.

From equation (1.2), we obtain

0 = u′′(t) + q(t)xβ(t − σ1) + p(t)xβ(t + σ2)

≥ u′′(t) + c2q(t)u
β/α(t − σ1 + τ1) + c2p(t)uβ/α(t + τ1 + σ2).

Thus u(t) is a positive solution of the inequality (2.14), which is a contradiction.

Hence z(t) > 0 for all t ≥ t1. Now define a function y(t) by

y(t) = z(t) −
aβ

2β−1
z(t − τ1) + bβz(t + τ2), for all t ≥ t1. (2.15)

Differentiating (2.15) twice, and using the equation (1.2), we obtain

y′′(t) = z′′(t) −
aβ

2β−1
z′′(t − τ1) + bβz′′(t + τ2)

= q(t)xβ(t − σ1) + p(t)xβ(t + σ2) −
aβ

2β−1
q(t − τ1)x

β(t − τ1 − σ1)

−
aβ

2β−1
p(t − τ1)x

β(t − τ1 + σ2) + bβq(t + τ2)x
β(t + τ2 − σ1)

+bβp(t + τ2)x
β(t + τ2 + σ2).
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Using the monotonicity of q(t) and p(t) in the above inequality, we obtain

y′′(t) ≥ q(t)

[

xβ(t − σ1) −
aβ

2β−1
xβ(t − τ1 − σ1) + bβxβ(t + τ2 − σ1)

]

+p(t)

[

xβ(t + σ2) −
aβ

2β−1
xβ(t − τ1 + σ2) + bβxβ(t + τ2 + σ2)

]

.(2.16)

Now using the inequalities (2.1), (2.2) and z(t) > 0 for all t ≥ t1, we obtain

y′′(t) ≥
q(t)

2β−1
zβ/α(t − σ1) +

p(t)

2β−1
zβ/α(t + σ2) > 0, t ≥ t1. (2.17)

Therefore, both y(t) and y′(t) are of one sign eventually. We prove that y(t) > 0,

eventually. If not, then y(t) < 0 and

0 < v(t) = −y(t) =
aβ

2β−1
z(t − τ1) − bbz(t + τ2) − z(t) ≤

aβ

2β−1
z(t − τ1).

Hence z(t) ≥
2β−1

aβ
v(t + τ1). Using the last inequality in (2.17), we obtain

0 ≥ v′′(t) +
q(t)

2β−1

(

2β−1

aβ

)β/α

vβ/α(t + τ1 − σ1) +
p(t)

2β−1

(

2β−1

aβ

)β/α

vβ/α(t + τ1 + σ2).

or

v′′(t) + c2q(t)v
β/α(t + τ1 − σ1) + c2p(t)vβ/α(t + τ1 + σ2) ≤ 0, t ≥ t1.

Thus v(t) is a positive solution of the inequality (2.14),a contradiction. Hence y(t) >

0, eventually. Now we consider the following two cases.

Case:1 Assume that there exists a t2 such that z′(t) < 0 for all t ≥ t2 ≥ t1. Then

we prove that y′(t) < 0. Suppose y′(t) > 0. Then y(t) > 0, y′(t) > 0 and y′′(t) > 0

imply that lim
t→∞

y(t) = ∞. On the other hand, z(t) > 0 and z′(t) < 0 imply that

lim
t→∞

z(t) = c < ∞. Letting t → ∞ on both sides of (2.15), we obtain a contradiction.

Hence y′(t) < 0 for all t ≥ t2. Now using the monotonicity of z(t), we get

y(t) = z(t) −
aβ

2β−1
z(t − τ1) + bβz(t + τ2)

≤ z(t) + bβz(t + τ2) ≤ (1 + bβ)z(t).

EJQTDE, 2012 No. 75, p. 10



Using the last inequality in (2.17) and the monotonicity of y(t), we have

y′′(t) ≥
q(t)

2β−1(1 + bβ)β/α
yβ/α(t − σ1) ≥

q(t)

2β−1(1 + bβ)β/α
yβ/α(t − σ1 + τ1).

Thus y(t) is a positive decreasing solution of the inequality (2.13), a contradiction.

Case:2 Let z′(t) > 0 for all t ≥ t2 ≥ t1. Now we consider the following two

subcases.

Subcases (i): Assume that y′(t) < 0 for all t ≥ t2. Then proceeding as in Case

1 and using the monotonicity of z(t), we obtain

y(t) = z(t) −
aβ

2β−1
z(t − τ1) + bβz(t + τ2) ≤ (1 + bβ)z(t + τ2).

Using last inequality in (2.17) and the monotonicity of y(t), we get

y′′(t) ≥
q(t)

2β−1(1 + bβ)β/α
yβ/α(t − σ1 − τ2) ≥

q(t)

2β−1(1 + bβ)β/α
yβ/α(t − σ1 + τ1).

Thus y(t) is a positive decreasing solution of the inequality (2.13), a contradiction.

Subcases (ii): Assume that y′(t) > 0 for all t ≥ t2. Then using the monotonicity

of z(t), we have

y(t) = z(t) −
aβ

2β−1
z(t − τ1) + bβz(t + τ2)

≤ z(t) + bβz(t + τ2) ≤ (1 + bβ)z(t + τ2).

Using the last inequality in (2.17), we obtain

y′′(t) ≥
p(t)

2β−1

yβ/α(t + σ2 − τ2)

(1 + bβ)β/α
.

Therefore y(t) is a positive increasing solution of the inequality (2.12), a contradic-

tion. This completes the proof. �
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Remark 2.2. Theorem 2.4 permits us to get various oscillation criteria for equation

(1.2). Also we are able to study the asymptotic behavior of solutions of (1.2) if some

of the assumptions of Theorem 2.4 are not satisfied.

Corollary 2.5. Let σi > τi, for i = 1, 2, and β = α. Assume

lim sup
t→∞

t+σ2−τ2
∫

t

(s − t)p(s)ds > (1 + bα)2α−1, (2.18)

lim sup
t→∞

t
∫

t−σ1+τ1

(t − s)q(s)ds > (1 + bα)2α−1, (2.19)

and

lim inf
t→∞

t
∫

t+τ1−σ1

(s + τ1 − σ1)(p(s) + q(s))ds >
2aα

e
. (2.20)

Then every solution of equation (1.2) is oscillatory.

Proof. The proof is similar to that of Corollary 2.3, and hence the details are omitted.

�

3. Examples

Now we present some examples to illustrate the main results.

Example 3.1. Consider the differential equation
(

(

x(t) +
1

2
x(t − 1) −

1

3
x(t + 1)

)3
)

′′

=
231

36(t − 3)2
x3(t−3)+

28

9(t + 4)2
x3(t+4), t ≥ 4.

(3.1)

Here a =
1

2
, b =

1

3
, α = β = 3, τ1 = τ2 = 1, σ1 = 3, σ2 = 4, q(t) =

231

36(t − 3)2
, and

p(t) =
28

9(t + 4)2
.Then it is easy to check that condition (2.9) of Corollary 2.3 is not

satisfied. Therefore equation (3.1) has a nonoscillatory solution. In fact x(t) = t is

one such nonoscillatory solution, since it satisfies the equation (3.1).
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Example 3.2. Consider the differential equation
(

x(t) +
3

2
x(t − π/2) −

1

2
x(t + π)

)

′′

=
3

2
x(t − 3π) +

3

2
x(t + 5π/2), t ≥ 7π. (3.2)

Here a =
3

2
, b =

1

2
, τ1 = π/2, τ2 = π, σ1 = 3π, σ2 = 5π/2, q(t) = p(t) =

3

2
and

α = β = 1. Then one can see that all the conditions of Corollary 2.3 are satisfied.

Hence all the solutions of equation (3.2) are oscillatory. In fact x(t) = sint is one

such solution of equation (3.2), since it satisfies the equation (3.2).

Example 3.3. Consider the differential equation

(

(

x(t) + eτ1x(t − τ1) − e−τ2x(t + τ2)
)3
)

′′

=
9e3σ1

2
x3(t−σ1)+

9e−3σ2

2
x3(t+σ2), t ≥ t0,

(3.3)

with σ1 > τ1 and σ2 > τ2.Here a = eτ1 , b = e−τ2 , α = β = 3, q(t) =
9e3σ1

2
, p(t) =

9e−3σ2

2
. Then one can see that all conditions of Corollary 2.3 are satisfied except

condition (2.9). Therefore all the solutions of equation (3.3) are not necessarily

oscillatory. In fact x(t) = et is one such nonoscillatory solution, since it satisfies

equation (3.3) .

Example 3.4. Consider the differential equation

(

(x(t) − ax(t − π) + bx(t + 2π))3
)′′

= qx3 (t − 3π/2) + px3 (t + 5π/2) , t ≥ 3π.

(3.4)

Here a =
1

2
eπ/3, b =

3

2
e−π/3, τ1 = π, τ2 = π, σ1 = 3π/2, σ2 = 3π/2, q =

(8e3π + 27e2π), p = (8 + 27e−π), and α = β = 3. Then one can easily verify that

all the conditions of Corollary 2.5 are satisfied. Hence all the solutions of equation

(3.4) are oscillatory. In fact x(t) = et/3sin1/3t is one such oscillatory solution of

equation (3.4).
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Example 3.5. Consider the differential equation

(

(

x(t) − e−τ1x(t − τ1) + eτ2x(t + τ2)
)5
)

′′

=
25

2
e−5σ1x5(t − σ1) +

25

2
e5σ2x5(t + σ2)

(3.5)

with σ1 > τ1 and σ2 > τ2. Here a = e−τ1 , b = eτ2 , q(t) =
25

2
e−5σ1 , p(t) =

25

2
e5σ2 , and α = β = 5. Condition (2.19) of Corollary 2.5 is not satisfied. Therefore

all the solutions of equation (3.4) are not necessarily oscillatory. In fact x(t) = e−t

is one such nonoscillatory solution, since it satisfies the equation (3.5).

We conclude this paper with the following remark.

Remark: It would be interesting to study the oscillatory behavior of all solutions

of equations (1.1) and (1.2) when β < 1.
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