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1. Introduction and preliminaries

In the last decades, a considerable focus on Volterra integro-differential
equations and fractional calculus has been stimulated by the variety of their
applications in engineering, physics, chemistry and other sciences ([3], [11],
[17], [19]-[20], [23]). The class of q-exponentially equicontinuous (C0, 1)-
semigroups was introduced by V. A. Babalola in [2] (cf. also [4], [9]-[10] and
[24]), and the purpose of our study is to examine the possibility of extension of
the results obtained in this paper to abstract Volterra equations and abstract
time-fractional equations. In such a way, we continue our previous work
contained in [12]-[16].

The paper is organized as follows. In Theorem 2.1-Theorem 2.2, we
generalize the subordination principle for abstract time-fractional equations,
and the abstract Weierstrass formula (cf. [12, Theorem 3.9, Theorem 3.21]).

∗Partially supported by grant 144016, Ministry of Science and Technological Devel-
opment, Republic of Serbia
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In the third section of the paper, we analyze some generation results for q-
exponentially equicontinuous (a, k)-regularized C-resolvent families in com-
plete locally convex spaces (notice that the completeness of underlying locally
convex space E is not used in the second section as well as in the formulation
of Theorem 3.1(i)). Although the restriction C = I seems inevitable here, it
is not clear whether the condition k(0) = 0, used only in the proof of non-
degeneracy of the (a, k)-regularized resolvent family (Rp(t))t≥0 appearing in
the formulation of Theorem 3.1(i), is superfluous (for further information in
this direction, we refer the reader to [19, Proposition 2.5] and [12, Proposi-
tion 2.4(ii)]). Theorem 3.1 is the main result of the paper and has several
obvious consequences of which we will emphasize only the most significant
perturbation type theorems (cf. Theorem 3.2 and Example 3.1).

Throughout the paper, we assume that E is a Hausdorff sequentially
complete locally convex space, SCLCS for short, and that the abbreviation ⊛

stands for the fundamental system of seminorms which defines the topology
of E. By L(E) we denote the space which consists of all continuous linear
mappings from E into E. The domain and the resolvent set of a closed linear
operator A acting on E are denoted by D(A) and ρ(A), respectively. We use
the notation D∞(A) :=

⋂
n∈N

D(An). Suppose F is a linear subspace of E.
Then the part of A in F, denoted by A|F , is the linear operator defined by
D(A|F ) := {x ∈ D(A) ∩ F : Ax ∈ F} and A|F x := Ax, x ∈ D(A|F ). Let
C ∈ L(E) be injective. Then the C-resolvent set of A, denoted by ρC(A), is
defined by ρC(A) := {λ ∈ C : λ − A is injective and (λ − A)−1C ∈ L(E)}.

For every p ∈ ⊛, we define the factor space Ep ≡ E/p−1(0). The norm
of a class x + p−1(0) is defined by ||x + p−1(0)||Ep := p(x) (x ∈ E). Then the
canonical mapping Ψp : E → Ep is continuous; the completion of Ep under
the norm || · ||Ep is denoted by Ep. Since no confusion seems likely, we also

denote the norms on Ep and L(Ep) (Ep and L(Ep)) by || · ||; L⊛(E) denotes
the subspace of L(E) which consists of those bounded linear operators T on
E such that, for every p ∈ ⊛, there exists cp > 0 satisfying p(Tx) ≤ cpp(x),
x ∈ E. The infimum of such numbers cp, denoted by Pp(T ), satisfies Pp(T ) =
supx∈E,p(x)≤1 p(Tx) (p ∈ ⊛). It is clear that Pp(T1T2) ≤ Pp(T1)Pp(T2), p ∈ ⊛,
T1, T2 ∈ L⊛(E) and that Pp(·) is a seminorm on L⊛(E). If T ∈ L⊛(E) and
p ∈ ⊛, then the operator Tp : Ep → Ep, defined by Tp(Ψp(x)) := Ψp(Tx),
x ∈ E, belongs to L(Ep). Moreover, the operator Tp can be uniquely extended
to a bounded linear operator Tp on Ep and the following holds: ||Tp|| =
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||Tp|| = Pp(T ). Define Vp := {x ∈ E : p(x) ≤ 1} (p ∈ ⊛) and order ⊛ by:
p ≫ q iff Vp ⊆ Vq (p, q ∈ ⊛). The function πqp : Ep → Eq, defined by
πqp(Ψp(x)) := Ψq(x), x ∈ E, is a continuous homomorphism of Ep onto Eq,
and extends therefore, to a continuous linear homomorphism πqp of Ep onto
Eq. The reader may consult [2] for the basic facts about projective limits of
Banach spaces (closed linear operators acting on Banach spaces) and their
projective limits.

Given s ∈ R in advance, set ⌈s⌉ := inf{l ∈ Z : s ≤ l}. The Gamma
function is denoted by Γ(·) and the principal branch is always used to take
the powers. Set 0α := 0 and gα(t) := tα−1/Γ(α) (α > 0, t > 0). If δ ∈ (0, π],
then we define Σδ := {λ ∈ C : λ 6= 0, | arg λ| < δ}. We refer the reader
to [22, pp. 99–102] for the basic material concerning integration in SCLCSs,
and to [12] for the definition and elementary properties of analytic functions
with values in SCLCSs.

We need the following definition from [11]-[12].

Definition 1.1.

(i) Let 0 < τ ≤ ∞, k ∈ C([0, τ)), k 6= 0 and let a ∈ L1
loc([0, τ)), a 6= 0. A

strongly continuous operator family (R(t))t∈[0,τ) is called a (local, if τ <
∞) (a, k)-regularized C-resolvent family having A as a subgenerator iff
the following holds:

(i.1) R(t)A ⊆ AR(t), t ∈ [0, τ), R(0) = k(0)C and CA ⊆ AC,

(i.2) R(t)C = CR(t), t ∈ [0, τ) and

(i.3) R(t)x = k(t)Cx +
∫ t

0
a(t − s)AR(s)xds, t ∈ [0, τ), x ∈ D(A);

(R(t))t∈[0,τ) is said to be non-degenerate if the condition R(t)x = 0, t ∈
[0, τ) implies x = 0, and (R(t))t∈[0,τ) is said to be locally equicontinuous
if, for every t ∈ (0, τ), the family {R(s) : s ∈ [0, t]} is equicontinuous.
In the case τ = ∞, (R(t))t≥0 is said to be exponentially equicontinuous
(equicontinuous) if there exists ω ∈ R (ω = 0) such that the family
{e−ωtR(t) : t ≥ 0} is equicontinuous.

(ii) Let β ∈ (0, π] and let (R(t))t≥0 be an (a, k)-regularized C-resolvent
family. Then it is said that (R(t))t≥0 is an analytic (a, k)-regularized
C-resolvent family of angle β, if there exists a function R : Σβ → L(E)
satisfying that, for every x ∈ E, the mapping z 7→ R(z)x, z ∈ Σβ is
analytic as well as that:
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(ii.1) R(t) = R(t), t > 0 and

(ii.2) limz→0,z∈Σγ R(z)x = k(0)Cx for all γ ∈ (0, β) and x ∈ E.

It is said that (R(t))t≥0 is an exponentially equicontinuous, analytic
(a, k)-regularized C-resolvent family, resp. equicontinuous analytic
(a, k)-regularized C-resolvent family of angle β, if for every γ ∈ (0, β),
there exists ωγ ≥ 0, resp. ωγ = 0, such that the set {e−ωγ |z|R(z) :
z ∈ Σγ} is equicontinuous. Since there is no risk for confusion, we will
identify in the sequel R(·) and R(·).

In the case k(t) = gα+1(t), where α > 0, it is also said that (R(t))t∈[0,τ)

is an α-times integrated (a, C)-resolvent family; in such a way, we unify the
notions of (local) α-times integrated C-semigroups (a(t) ≡ 1) and cosine
functions (a(t) ≡ t) in locally convex spaces ([6], [18], [27]). Furthermore,
in the case k(t) =

∫ t

0
K(s)ds, t ∈ [0, τ), where K ∈ L1

loc([0, τ)) and K 6= 0,
we obtain the unification concept for (local) K-convoluted C-semigroups and
cosine functions ([13]). If C = I, then (R(t))t∈[0,τ) is also said to be an (a, k)-
regularized resolvent family with a subgenerator A ([8], [11]-[12], [19]). From
now on, we always assume that a 6= 0 in L1

loc([0, τ)) and that K, k, k1, k2, · · ·
are scalar-valued kernels; all considered (a, k)-regularized C-resolvent families
will be non-degenerate.

Let a(t) be a kernel. Then one can define the integral generator Â of
(R(t))t∈[0,τ) by setting

Â :=
{

(x, y) ∈ E × E : R(t)x − k(t)Cx =

∫ t

0

a(t − s)R(s)yds, t ∈ [0, τ)
}
.

(1)

The integral generator Â of (R(t))t∈[0,τ) is a linear operator in E which ex-

tends any subgenerator of (R(t))t∈[0,τ) and satisfies C−1ÂC = Â. The local

equicontinuity of (R(t))t∈[0,τ) guarantees that Â is a closed linear operator in
E; if, additionally,

A

t∫

0

a(t − s)R(s)xds = R(t)x − k(t)Cx, t ∈ [0, τ), x ∈ E,(2)
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then R(t)R(s) = R(s)R(t), t, s ∈ [0, τ) (cf. [15]) and Â is a subgenerator
of (R(t))t∈[0,τ). For more details on subgenerators of (a, k)-regularized C-
resolvent families, the reader may consult [12]-[13].

The following condition will be used frequently:

(P1): k(t) is Laplace transformable, i.e., it is locally integrable on [0,∞) and

there exists β ∈ R such that k̃(λ) := L(k)(λ) := lim
b→∞

∫ b

0
e−λtk(t)dt :=

∫ ∞

0
e−λtk(t)dt exists for all λ ∈ C with ℜλ > β.

Put abs(k) :=inf{ℜλ : k̃(λ) exists} and denote by L−1 the inverse
Laplace transform.

Let α > 0, let β ∈ R and let the Mittag-Leffler function Eα,β(z) be
defined by Eα,β(z) :=

∑∞
n=0 zn/Γ(αn + β), z ∈ C. In this place, we assume

that 1/Γ(αn + β) = 0 if αn + β ∈ −N0. Set, for short, Eα(z) := Eα,1(z),
z ∈ C. The Wright function Φγ(t) is defined by Φγ(t) := L−1(Eγ(−λ))(t),
t ≥ 0. As is well-known, for every α > 0, there exists cα > 0 such that:

Eα(t) ≤ cα exp
(
t1/α

)
, t ≥ 0.(3)

Henceforth Dα
t denotes the Caputo fractional derivative of order α ([3]).

The asymptotic expansion of the entire function Eα,β(z) is given in the
following lemma (cf. [26, Theorem 1.1]):

Lemma 1.1. Let 0 < σ < 1
2
π. Then, for every z ∈ C \ {0} and m ∈

N \ {1} :

Eα,β(z) =
1

α

∑

s

Z1−β
s eZs −

m−1∑

j=1

z−j

Γ(β − αj)
+ O(|z|−m), |z| → ∞,

where Zs is defined by Zs := z1/αe2πis/α and the first summation is taken over
all those integers s satisfying | arg z + 2πs| < α(π

2
+ σ).

For further information concerning Mittag-Leffler and Wright functions,
we refer the reader to [3, Section 1.3].

2. Q-exponentially equicontinuous (a, k)-regularized C-resolvent

families

We introduce (analytic) q-exponentially equicontinuous (a, k)-regularized
C-resolvent families as follows.

Definition 2.1.
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(i) Let k ∈ C([0,∞)) and let a ∈ L1
loc([0,∞)). Suppose that (R(t))t≥0 is a

global (a, k)-regularized C-resolvent family having A as a subgenerator.
Then it is said that (R(t))t≥0 is a quasi-exponentially equicontinuous (q-
exponentially equicontinuous, for short) (a, k)-regularized C-resolvent
family having A as a subgenerator iff, for every p ∈ ⊛, there exist
Mp ≥ 1, ωp ≥ 0 and qp ∈ ⊛ such that:

p(R(t)x) ≤ Mpe
ωptqp(x), t ≥ 0, x ∈ E.(4)

If, for every p ∈ ⊛, one can take ωp = 0, then (R(t))t≥0 is said to be an
equicontinuous (a, k)-regularized C-resolvent family.

(ii) Let β ∈ (0, π] and let A be a subgenerator of an analytic (a, k)-
regularized C-resolvent family (R(t))t≥0 of angle β. Then it is said that
(R(t))t≥0 is a q-exponentially equicontinuous, analytic (a, k)-regularized
C-resolvent family of angle β, if for every p ∈ ⊛ and ǫ ∈ (0, β), there
exist Mp,ǫ ≥ 1, ωp,ǫ ≥ 0 and qp,ǫ ∈ ⊛ such that:

p(R(z)x) ≤ Mp,ǫe
ωp,ǫ|z|qp,ǫ(x), z ∈ Σβ−ǫ, x ∈ E.

It is clear from Definition 2.1 that every q-exponentially equicontinuous
(a, k)-regularized C-resolvent family (R(t))t≥0 is locally equicontinuous. On
the other hand, the following example from [2] shows that (R(t))t≥0 need not
be exponentially equicontinuous, in general: Let a(t) = k(t) = 1, let C = I
and let the Schwartz space of rapidly decreasing functions S(R) be topol-
ogized by the following system of seminorms pm,n(f) := ||xmf (n)(x)||L2(R)

(m, n ∈ N0, f ∈ S(R)); notice that the usual topology on S(R), induced
by the seminorms qm,n(f) = ||xmf (n)(x)||L∞(R) (m, n ∈ N0, f ∈ S(R)),
is equivalent to the topology introduced above. Set (S(t)f)(x) := f(etx),
t ≥ 0, x ∈ R, f ∈ S(R). Then (S(t))t≥0 is a q-exponentially equicontinu-
ous (a, k)-regularized resolvent family (i.e., q-exponentially equicontinuous
(C0, 1)-semigroup) whose integral generator is the bounded linear operator
A ∈ L(S(R)) given by (Af)(x) := xf ′(x), x ∈ R, f ∈ S(R); (S(t))t≥0 is not
exponentially equicontinous, (S(t))t≥0 has no Laplace transform in S(R) and
pmn(S(t)f) = e(n−m−(1/2))tpmn(f) (t ≥ 0, m, n ∈ N0, f ∈ S(R)). It can be
easily proved that there does not exist an injective operator C ∈ L(S(R))
such that A is the integral generator of an exponentially equicontinuous C-
regularized semigroup in S(R).
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Let A be a subgenerator of an exponentially equicontinuous (a, k)-
regularized C-resolvent family (R(t))t≥0 satisfying the equality (2) for all
t ≥ 0 and x ∈ E. If a(t) and k(t) satisfy (P1), then one can define, with
the help of Laplace transform, the integral generator Â of (R(t))t≥0 by (1);

in case that a(t) is a kernel, then the definition of integral generator Â of
(R(t))t≥0 coincides with the corresponding one introduced in the first sec-
tion ([15]). Suppose now a(t) and k(t) satisfy (P1) as well as (R(t))t≥0 is a
q-exponentially equicontinuous (a, k)-regularized C-resolvent family with a
subgenerator A. We will prove that Â, defined by (1), is single-valued. To-
wards this end, assume that y ∈ E satisfies

∫ t

0
a(t − s)R(s)yds = 0, t ≥ 0.

Let p ∈ ⊛. Then, for any λ > max(abs(a), ωp),

∞∫

0

e−λtΨp

(∫ t

0

a(t − s)R(s)yds
)
dt =

∞∫

0

e−λt

∫ t

0

a(t − s)Ψp(R(s)y)dsdt = 0.

By the uniqueness theorem for the Laplace transform, one yields Ψp(R(t)y) =
0, t ≥ 0, which implies by the arbitrariness of p and the non-degeneracy of
(R(t))t≥0 that R(t)y = y = 0, t ≥ 0. Hence, Â is a linear operator in

E. It readily follows that Â is a closed linear operator in E which extends
any subgenerator of (R(t))t≥0 and satisfies C−1ÂC = Â. Let A and B be
subgenerators of (R(t))t≥0. Then Ax = Bx, x ∈ D(A) ∩ D(B), and A ⊆
B ⇔ D(A) ⊆ D(B). If (2) additionally holds, then R(t)R(s) = R(s)R(t),
t, s ≥ 0, Â itself is a subgenerator of (R(t))t≥0 and Â = C−1AC. Assuming
that (2) holds with A replaced by B therein, we have the following:

(i) C−1AC = C−1BC and C(D(A)) ⊆ D(B).

(ii) A and B have the same eigenvalues.

(iii) A ⊆ B ⇒ ρC(A) ⊆ ρC(B).

The proof of following proposition is standard and as such will not be
given.

Proposition 2.1.

(i) Let (R(t))t≥0 be a global exponentially equicontinuous (q-exponentially
equicontinuous) (a, k)-regularized C-resolvent family with a subgenera-
tor A and let b ∈ L1

loc([0, τ)) be a kernel. If the function t 7→
∫ t

0
|b(s)|ds,
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t ≥ 0 is exponentially bounded, then A is a subgenerator of a global ex-
ponentially equicontinuous (q-exponentially equicontinuous) (a, k ∗ b)-
regularized C-resolvent family ((b ∗ R)(t))t≥0.

(ii) Let (Ei)i∈I be a family of SCLCSs and let E :=
∏

i∈I Ei be its direct
product. Assume that, for every i ∈ I, (Si(t))t≥0 is a q-exponentially
equicontinuous (equicontinuous) (a, k)-regularized Ci-resolvent family
in Ei having Ai as a subgenerator. Set Ai :=

∏
i∈I Ai, C :=

∏
i∈I Ci

and S(t) :=
∏

i∈I Si(t), t ≥ 0. Then (S(t))t≥0 is a q-exponentially
equicontinuous (equicontinuous) (a, k)-regularized C-resolvent family in
E, having A as subgenerator.

(iii) Assume (R(t))t≥0 is a q-exponentially equicontinuous (equicontinuous)
(a, k)-regularized C-resolvent family with a subgenerator A. Set pn(x) :=∑n

i=0 p(Aix), x ∈ D∞(A), p ∈ ⊛, n ∈ N, R∞(t) := R(t)|D∞(A), t ≥ 0,
A∞ := A|D∞(A) and C∞ := C|D∞(A). Then the system (pn)p∈⊛,n∈N

induces a Hausdorff sequentially complete locally convex topology on
D∞(A), A∞ ∈ L(D∞(A)) and (R∞(t))t≥0 is a q-exponentially equicon-
tinuous (equicontinuous) (a, k)-regularized C∞-resolvent family with a
subgenerator A∞. Furthermore, the following holds: If (R(t))t≥0 is a
q-exponentially equicontinuous (equicontinuous), analytic
(a, k)-regularized C-resolvent family of angle β ∈ (0, π] and R(z)A ⊆
AR(z), z ∈ Σβ , then (R∞(t))t≥0 is likewise a q-exponentially equicon-
tinuous (equicontinuous), analytic (a, k)-regularized C-resolvent family
of angle β.

Notice that it is not clear whether the general assumptions of Proposi-
tion 2.1(iii) imply that the space D∞(A) is non-trivial. Now we would like
to observe that the assertions of [13, Theorem 2.1.27(xiii)-(xiv), Theorem
2.5.1-Theorem 2.5.3, Remark 2.5.4(iii), Theorem 2.5.5-Theorem 2.5.6] and
[16, Theorem 2.1, Corollary 2.2, Theorem 2.3, Corollary 2.4] can be simply
reformulated for (analytic) q-exponentially equicontinuous (a, k)-regularized
C-resolvent families in SCLCSs. This is not the case with the assertions
of [12, Theorem 2.14-Theorem 2.15]; even on reflexive spaces, the adjoint
of a q-exponentially equicontinuous (C0, 1)-semigroup need not be of the
same class ([2]). Notice also that Proposition 2.1(ii) can allow one to con-
struct some artificial examples of q-exponentially equicontinuous (not expo-
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nentially equicontinuous, in general) (a, k)-regularized C-resolvent families,
with C 6= I or k(0) = 0.

The following theorem is an extension of [12, Theorem 3.9].

Theorem 2.1. Assume kβ(t) satisfies (P1), 0 < α < β, γ = α/β and A
is a subgenerator of a q-exponentially equicontinuous (gβ, kβ)-regularized C-
resolvent family (Sβ(t))t≥0 satisfying (4) with R(·) replaced by Sβ(·) therein.
Assume that there exist a continuous function kα(t) satisfying (P1) and a
number υ > 0 such that kα(0) = kβ(0) and

k̃α(λ) = λγ−1k̃β

(
λγ

)
, λ > υ.(5)

Then A is a subgenerator of a q-exponentially equicontinuous (gα, kα)-regularized
C-resolvent family (Sα(t))t≥0, given by

Sα(t)x :=

∫ ∞

0

t−γΦγ

(
st−γ

)
Sβ(s)xds, x ∈ E, t > 0 and Sα(0) := kα(0)C.

Furthermore,

p
(
Sα(t)x

)
≤ cγMp exp

(
ω1/γ

p t
)
qp(x), p ∈ ⊛, t ≥ 0, x ∈ E.(6)

Let p ∈ ⊛. Then the condition

p
(
Sβ(t)x

)
≤ Mp

(
1 + tξp

)
eωptqp(x), t ≥ 0, x ∈ E

(
ξp ≥ 0

)
,(7)

resp.,

p
(
Sβ(t)x

)
≤ Mpt

ξpeωptqp(x), t ≥ 0, x ∈ E,(8)

implies that there exists M ′
p ≥ 1 such that

p
(
Sα(t)x

)
≤ M ′

p

(
1 + tξpγ

)(
1 + ωpt

ξp(1−γ)
)
exp

(
ω1/γ

p t
)
qp(x), t ≥ 0, x ∈ E,

(9)

resp.,

p
(
Sα(t)x

)
≤ M ′

pt
ξpγ

(
1 + ωpt

ξp(1−γ)
)
exp

(
ω1/γ

p t
)
qp(x), t ≥ 0, x ∈ E.

(10)

We also have the following:
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(i) The mapping t 7→ Sα(t), t > 0 admits an extension to Σmin(( 1
γ
−1)π

2
,π)

and, for every x ∈ E, the mapping z 7→ Sα(z)x, z ∈ Σmin(( 1
γ
−1)π

2
,π) is

analytic.

(ii) Let ε ∈ (0, min(( 1
γ
− 1)π

2
, π)). If, for every p ∈ ⊛, one has ωp = 0, then

(Sα(t))t≥0 is an equicontinuous analytic (gα, kα)-regularized C-resolvent
family of angle min(( 1

γ
− 1)π

2
, π).

(iii) If ωp > 0 for some p ∈ ⊛, then (Sα(t))t≥0 is a q-exponentially equicon-
tinuous, analytic (gα, kα)-regularized C-resolvent family of angle
min(( 1

γ
− 1)π

2
, π

2
).

Proof. By definition of Wright function and (3), we have that (cf. also the
proof of [3, Theorem 3.1]):

p
(
Sα(t)x

)
≤ qp(x)

∞∫

0

t−γΦγ

(
st−γ

)
Mpe

ωpsds

= Mpqp(x)Eγ

(
ωpt

γ
)
≤ Mpcγ exp

(
ω1/q

p t
)
qp(x), p ∈ ⊛, x ∈ E, t ≥ 0,

which implies (6). By the proof of the above-mentioned theorem, we get that
(Sα(t))t≥0 is strongly continuous. It can be easily seen that Sα(t)A ⊆ ASα(t)
and Sα(t)C = CSα(t) (t ≥ 0). Let x ∈ D(A) and p ∈ ⊛ be fixed. Using
[3, (3.10)], the functional equation of (Sβ(t))t≥0 (cf. Definition 1.1(i.3) with
a(t) = gβ(t) and k(t) = kβ(t)), the Fubini theorem and the elementary
properties of vector-valued Laplace transform, it follows that there exists a
sufficiently large number κp > υ such that (the integrals are taken in the
sense of convergence in Ep):
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∞∫

0

e−λtΨp

(
Sα(t)x

)
dt

=

∞∫

0

∞∫

0

Ψp

(
e−λtt−γΦγ

(
st−γ

)
Sβ(s)x

)
dsdt

=

∞∫

0

∞∫

0

Ψp

(
e−λtt−γΦγ

(
st−γ

)
Sβ(s)x

)
dtds

= λγ−1

∞∫

0

e−λγsΨp

(
Sβ(s)x

)
ds(11)

= λγ−1

∞∫

0

e−λγsΨp

(
kβ(s)Cx +

s∫

0

gβ(s − r)Sβ(r)Axdr
)
ds

= λγ−1k̃β

(
λγ

)
Ψp(Cx) + λγ−1λ−βγ

∞∫

0

e−λγsΨp

(
Sβ(s)Ax

)
ds

= λγ−1k̃β

(
λγ

)
Ψp(Cx) + λ−αλγ−1

∞∫

0

e−λγsΨp

(
Sβ(s)Ax

)
ds

=

∞∫

0

e−λtΨp

(
kα(t)Cx

)
dt +

∞∫

0

e−λtΨp

( t∫

0

gα(t − s)Sα(s)Axds
)
dt

(12)

=

∞∫

0

e−λtΨp

(
kα(t)Cx +

t∫

0

gα(t − s)Sα(s)Axds
)
dt, λ > κp,

where (12) follows from (5) and (11). Therefore,

∞∫

0

e−λtΨp

(
Sα(t)x − kα(t)Cx −

t∫

0

gα(t − s)Sα(s)Axds
)
dt = 0, λ > κp.

(13)
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By the uniqueness theorem for the Laplace transform and the fact that
E is Hausdorff, we obtain from (13) that Sα(t)x = kα(t)Cx +

∫ t

0
gα(t −

s)Sα(s)Axds, t ≥ 0. Suppose now that Sα(t)x = 0, t ≥ 0 for some x ∈ E.
Then, for every p ∈ ⊛, there exists a sufficiently large ξp > 0 such that
(11) holds for any λ > ξp, which implies by the uniqueness theorem for the
Laplace transform that Ψp(Sβ(t)x) = 0, t ≥ 0. Therefore, Sβ(t)x = 0, t ≥ 0
and x = 0, because (Sβ(t))t≥0 is non-degenerate. Hence, (Sα(t))t≥0 is a q-
exponentially equicontinuous (gα, kα)-regularized C-resolvent family with a
subgenerator A. Suppose now that (7), resp. (8), holds. Using the integral
representation of the Wright Function [3, (1.30)], the Fubini theorem and the
Laplace transform, it can be simply proved that there exists M ′′

p ≥ 1 such
that:

∞∫

0

eωpstγΦγ(s)s
ξpds ≤ M ′′

p

(
1 +

(
ωpt

γ
) ξp(1−γ)

γ

)
exp

(
ω1/γ

p t
)
,

provided ωp > 0 and t ≥ ω
(−1)/γ
p . This immediately implies that (9), resp.

(10), holds. The proofs of (i)-(iii) essentially follows from [12, Lemma 3.3,
Theorem 3.4] and the proof of [3, Theorem 3.3]; here the only non-trivial
part is the continuity of mapping z 7→ Sα(z)x on closed sectors contain-
ing the non-negative real axis (x ∈ E). For the convenience of the reader,
we will prove this assertion in the case that ωp > 0 for some p ∈ ⊛ (cf.
(iii)). Put κγ := min(( 1

γ
− 1)π

2
, π

2
). Let p ∈ ⊛, x ∈ E and δ ∈ (0, κγ) be

fixed, and let δ′ ∈ (δ, κγ). By the proof of [3, Theorem 3.3], we infer that
there exist Mp,δ′ ≥ 1 and ωp,δ′ > 0 such that p(Sα(z)x) ≤ Mp,δ′e

ωp,δ′ℜzqp(x),
z ∈ Σδ′ and that the mapping z 7→ 〈x∗, Sα(z)x〉, z ∈ Σκγ (x∗ ∈ E∗) is
analytic, which implies the analyticity of mapping z 7→ Sα(z)x, z ∈ Σκγ .
Let ξp,δ′ > ωp,δ′. Then the function z 7→ e−ξp,δ′zΨp(Sα(z)x), z ∈ Σδ′ is an-
alytic and bounded. Since limt↓0+ Ψp(Sα(t)x) = Ψp(kα(0)Cx), we obtain
from [12, Theorem 3.4(ii)] that limz→0,z∈Σδ

Ψp(Sα(z)x) = Ψp(kα(0)Cx). The
above yields limz→0,z∈Σδ

p(Sα(z)x − kα(0)Cx) = 0, and since p is arbitrary,
limz→0,z∈Σδ

Sα(z)x = kα(0)Cx. �

Combining the proof of Theorem 2.1 with [1, Lemma 1.6.7], we obtain
the following slight generalization of the abstract Weierstrass formula [12,
Theorem 3.21]:

Theorem 2.2.
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(i) Assume k(t) and a(t) satisfy (P1), and there exist M > 0 and ω > 0
such that |k(t)| ≤ Meωt, t ≥ 0. Assume, further, that there exist a num-
ber ω′ ≥ ω and a function a1(t) satisfying (P1) and ã1(λ) = ã(

√
λ),

ℜλ > ω′. Let A be a subgenerator of a q-exponentially equicontinuous
(a, k)-regularized C-resolvent family (C(t))t≥0. Then A is a subgener-
ator of a q-exponentially equicontinuous, analytic (a1, k1)-regularized
C-resolvent family (R(t))t≥0 of angle π

2
, where:

k1(t) :=

∞∫

0

e−s2/4t

√
πt

k(s)ds, t > 0, k1(0) := k(0), and

R(t)x :=

∞∫

0

e−s2/4t

√
πt

C(s)xds, t > 0, x ∈ E, R(0) := k(0)C.

(ii) Suppose a > 0, β > 0 and k2β(t) satisfies (P1). Let A be a sub-
generator of a q-exponentially equicontinuous (g2β, k2β)-regularized C-
resolvent family (R2β(t))t≥0 and let kβ(t) satisfy (P1), kβ(0) = k2β(0)

and k̃β(λ) = λ(−1)/2k̃2β(λ1/2), ℜλ > a. Then A is a subgenerator of a q-
exponentially equicontinuous, analytic (gβ, kβ)-regularized C-resolvent
family (Rβ(t))t≥0 of angle π

2
, where:

Rβ(t)x :=

∞∫

0

e−s2/4t

√
πt

R2β(s)xds, t > 0, x ∈ E, Rβ(0) := kβ(0)C.

It is clear that Theorem 2.1-Theorem 2.2 can be applied to a class of
differential operators with variable coefficients on S(Rn) (cf. [2, Section 6]
and [7]). For example, let S(R) be topologized as before and let the operator
A ∈ L(S(R)) be defined by (Af)(x) := x2f ′′(x) + xf ′(x), x ∈ R, f ∈ S(R).
Then A is the integral generator of a q-exponentially equicontinuous cosine
function (C(t)⋄ ≡ 1

2
(⋄(et·) + ⋄(e−t·)))t≥0 in S(R), which implies by Theorem

2.1 that, for every α ∈ (0, 2), the operator A is the integral generator of a
q-exponentially equicontinuous, analytic (gα, g1)-regularized resolvent family
of angle δα ≡ min(( 2

α
− 1)π

2
, π

2
). Therefore, for every α ∈ (0, 2), the abstract

Cauchy problem:

Dα
t u(t, x) = x2uxx(t, x) + xux(t, x), t > 0, x ∈ R;
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u(0, x) = f0(x), and ut(0, x) = f1(x) if α ∈ (1, 2),

has a unique solution for any f0, f1 ∈ S(R), and the mapping t 7→ u(t, ·) ∈
S(R), t > 0 is analytically extensible to the sector Σδα ([13]). Further-
more, Theorem 3.1 stated below and [13, Theorem 2.4.19] together imply
that, for every α ∈ (0, 1), A is the integral generator of a q-exponentially
equicontinuous, analytic (gα, g1)-regularized resolvent family of angle δ′α ≡
min(( 2

α
− 1)π

2
, π).

We close this section with the following observation. Keeping in mind the
proof of Arendt-Widder theorem in SCLCSs [27, Theorem 2.1, p. 8] (cf. also
[1]), we obtain the representation formulae for (a, k)-regularized C-resolvent
families whose existence have been proved in the subordination principle [12,
Theorem 2.11]. Here we would like to observe that it is not clear whether
the above-mentioned result can be transferred to the class of q-exponentially
equicontinuous (a, k)-regularized C-resolvent families in SCLCSs by means
of these formulae and the method described in the proof of Theorem 2.1.
Nevertheless, Theorem 3.1 enables one to prove a generalization of the sub-
ordination principle for a subclass of q-exponentially equicontinuous (a, k)-
regularized resolvent families in complete locally convex spaces.

3. A generation result for q-exponentially equicontinuous (a, k)-
regularized resolvent families and its consequences

The proofs of structural results given in [2] do not work any longer in
the case of a general q-exponentially equicontinuous (a, k)-regularized C-
resolvent family (R(t))t≥0. We must restrict ourselves to the case in which
C = I and (4) holds with qp = p (cf. also [2, Theorem 2.8]). In other words,
we will consider a q-exponentially equicontinuous (a, k)-regularized resolvent
family (R(t))t≥0 which satisfies that, for every p ∈ ⊛, there exist Mp ≥ 1 and
ωp ≥ 0 such that:

p(R(t)x) ≤ Mpe
ωptp(x), t ≥ 0, x ∈ E.(14)

In the sequel, the operator R(t)p will be also denoted by Rp(t) (t ≥ 0).
We call a closed linear operator A acting on E compartmentalized (w.r.t.

⊛) if, for every p ∈ ⊛, Ap := {(Ψp(x), Ψp(Ax)) : x ∈ D(A)} is a function
([2]). For example, every operator T ∈ L⊛(E) is compartmentalized.

Theorem 3.1.
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(i) Suppose a(t) satisfies (P1), k(0) 6= 0 and A is a subgenerator of a q-
exponentially equicontinuous (a, k)-regularized resolvent family (R(t))t≥0

which satisfies that, for every p ∈ ⊛, there exist Mp ≥ 1 and ωp ≥ 0
such that (14) holds. Then A is a compartmentalized operator and, for
every p ∈ ⊛, Ap is a subgenerator of the exponentially bounded (a, k)-
regularized resolvent family (Rp(t))t≥0 in Ep satisfying that:

∥∥Rp(t)
∥∥ ≤ Mpe

ωpt, t ≥ 0.(15)

Assume additionally that (2) holds. Then, for every p ∈ ⊛,

Ap

t∫

0

a(t − s)Rp(s)xpds = Rp(t)xp − k(t)xp, t ≥ 0, xp ∈ Ep,

(16)

the integral generator of (R(t))t≥0 ((Rp(t))t≥0), provided that a(t) is
kernel or that k(t) satisfies (P1), is A (Ap), and (Rp(t))t≥0 is a q-
exponentially equicontinuous, analytic (a, k)-regularized resolvent fam-
ily of angle β ∈ (0, π], provided that (R(t))t≥0 is.

(ii) Suppose a(t) and k(t) satisfy (P1), E is complete, A is a compartmen-
talized operator in E and, for every p ∈ ⊛, Ap is a subgenerator of
an exponentially bounded (a, k)-regularized resolvent family (Rp(t))t≥0

in Ep satisfying (15)-(16). Then, for every p ∈ ⊛, (14) holds and A
is a subgenerator of a q-exponentially equicontinuous (a, k)-regularized
resolvent family (R(t))t≥0 satisfying (2). Furthermore, (R(t))t≥0 is a q-
exponentially equicontinuous, analytic (a, k)-regularized resolvent fam-
ily of angle β ∈ (0, π] provided that, for every p ∈ ⊛, (Rp(t))t≥0 is a
q-exponentially bounded, analytic (a, k)-regularized resolvent family of
angle β.

Proof. Suppose x, y ∈ D(A) and p(x) = p(y) for some p ∈ ⊛. Then
p(R(t)(x − y) +

∫ t

0
a(t − s)R(s)A(y − x)ds) = 0, t ≥ 0, which implies
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p(
∫ t

0
a(t − s)R(s)A(y − x)ds) = 0, t ≥ 0. Therefore,

∞∫

0

e−λtΨp

( t∫

0

a(t − s)R(s)A(y − x)ds
)
dt

=

∞∫

0

e−λt

t∫

0

a(t − s)Ψp(R(s)A(y − x))dsdt = 0, ℜλ > max(abs(a), ωp),

and by the uniqueness theorem for the Laplace transform, Ψp(R(t)A(x−y)) =
0, t ≥ 0. Using the fact that (R(t))t≥0 is non-degenerate, we obtain that
p(A(x−y)) = 0 and p(Ax) = p(Ay), so that Ap is a linear operator in Ep. Let
(xn) be a sequence in D(A) with limn→∞ Ψp(xn) = 0 and limn→∞ Ψp(Axn) =

y in Ep. Then we have limn→∞ p(
∫ t

0
a(t− s)R(s)Axnds) = limn→∞ ||

∫ t

0
a(t−

s)Ψp(R(s)Axn)ds||Ep
= limn→∞ ||

∫ t

0
a(t − s)Rp(s)Apxnds||Ep

= 0, t ≥ 0,

which implies 0 = limn→∞

∫ t

0
a(t−s)Rp(s)Apxnds =

∫ t

0
a(t−s)Rp(s)yds = 0,

t ≥ 0. Taking the Laplace transform, one obtains Rp(t)y = 0, t ≥ 0 and, in
particular, y = 0 since Rp(0) = k(0)I and k(0) 6= 0. The above implies that
Ap is a closable linear operator in Ep and that A is a compartmentalized
operator in E. It is checked at once that Rp(t)Ap ⊆ ApRp(t), t ≥ 0. Further-
more, (15) holds and the mapping t 7→ Rp(t)xp, t ≥ 0 is continuous for any
xp ∈ Ep, which implies by the standard limit procedure that the mapping
t 7→ Rp(t)xp, t ≥ 0 is continuous for any xp ∈ Ep. The functional equal-

ity of (R(t))t≥0 implies Rp(t)xp − k(t)xp =
∫ t

0
a(t − s)Rp(s)Apxpds, t ≥ 0,

xp ∈ D(Ap), and therefore, Rp(t)xp−k(t)xp =
∫ t

0
a(t−s)Rp(s)Apxpds, t ≥ 0,

xp ∈ D(Ap). Hence, Ap is a subgenerator of the exponentially bounded,
non-degenerate (a, k)-regularized resolvent family (Rp(t))t≥0 in Ep. If (2)

holds, then Rp(t)xp − k(t)xp = Ap

∫ t

0
a(t − s)Rp(s)xpds, t ≥ 0, xp ∈ Ep,

which implies (16). It is not difficult to see that the integral generator of
(R(t))t≥0 ((Rp(t))t≥0), provided that a(t) is kernel or that k(t) satisfies (P1),
is A (Ap). Suppose now that (R(t))t≥0 is a q-exponentially equicontinuous,
analytic (a, k)-regularized resolvent family of angle β. Then the mapping
z 7→ Rp(z)xp, z ∈ Σβ is analytic for any p ∈ ⊛ and xp ∈ Ep, because the
mapping z 7→ R(z)x, z ∈ Σβ (x ∈ E) is infinitely differentiable and Ψp(·) is
continuous. It is clear that the condition

p(R(z)x) ≤ Mp,εe
ωp,ε|z|p(x), x ∈ E, z ∈ Σβ−ε, p ∈ ⊛(17)
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for some Mp,ε ≥ 1, ωp,ε ≥ 0 and ε ∈ (0, β) implies the following one:
∥∥Rp(z)

∥∥ ≤ Mp,εe
ωp,ε|z|, z ∈ Σβ−ε.(18)

Now the analyticity of the mapping z 7→ Rp(z)xp, z ∈ Σβ (p ∈ ⊛, xp ∈ Ep)
follows from Vitali’s theorem [1, Theorem A.5]. Let δ ∈ (0, β). Then the
mapping z 7→ Rp(z)xp, z ∈ Σδ (p ∈ ⊛, xp ∈ Ep) is continuous, which implies
by (18) the continuity of mapping z 7→ Rp(z)xp, z ∈ Σδ (p ∈ ⊛, xp ∈ Ep). The
above implies that (Rp(t))t≥0 is a q-exponentially equicontinuous, analytic
(a, k)-regularized resolvent family of angle β (p ∈ ⊛). In order to prove
(ii), notice first that the projective limit of {Ap : p ∈ ⊛} is A and that
(x, y) ∈ D(A) iff (Ψp(x), Ψp(y)) ∈ Ap for all p ∈ ⊛. Set, for every p ∈ ⊛,
ω′

p := max(abs(a), abs(k), ωp). By [11, Theorem 2.6], for every p ∈ ⊛, the
following holds:

k̃(λ)(I − ã(λ)Ap)
−1xp =

∞∫

0

e−λtRp(t)xpdt, xp ∈ Ep, ℜλ > ω′
p, k̃(λ) 6= 0.

Define Fp : {λ ∈ C : ℜλ > ω′
p} → L(Ep) by Fp(λ)xp :=

∫ ∞

0
e−λtRp(t)xpdt,

λ ∈ D(Fp), xp ∈ Ep (p ∈ ⊛). Then Fp(·) is analytic and Fp(λ) = k̃(λ)(I −
ã(λ)Ap)

−1, provided ℜλ > ω′
p and k̃(λ) 6= 0. Suppose now p, q ∈ ⊛ and

p ≫ q. Then it is clear that πqp(Rp(0)xp) = Rq(0)πqp(xp), xp ∈ Ep. Fix
for a moment t > 0. Then, for every λ ∈ C with ℜλ > max(ω′

p, ω
′
q) and

k̃(λ)ã(λ) 6= 0, we have by [2, Lemma 4.1]:

πqp

(
k̃(λ)(I − ã(λ)Ap)

−1xp

)

= πqp

( k̃(λ)

ã(λ)

( 1

ã(λ)
− Ap

)−1
xp

)

=
k̃(λ)

ã(λ)

( 1

ã(λ)
− Aq

)−1

πqp(xp)

= k̃(λ)
(
I − ã(λ)Aq

)−1
πqp(xp), xp ∈ Ep.

The above implies πqp(Fp(λ)xp) = Fq(λ)πqp(xp), ℜλ > max(ω′
p, ω

′
q), xp ∈ Ep,

and:

πqp

( dn

dλn
Fp(λ)xp

)
=

dn

dλn
Fq(λ)πqp(xp), ℜλ > max(ω′

p, ω
′
q), xp ∈ Ep, n ∈ N.

(19)
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By the Post-Widder inversion formula ([1]) and (19), we get that:

πqp

(
Rp(t)xp

)
= lim

n→∞
πqp

(
(−1)nn!−1

(n

t

)n+1
[ dn

dλn
Fp(λ)

]
λ=n/t

xp

)

= lim
n→∞

(−1)nn!−1
(n

t

)n+1
[ dn

dλn
Fq(λ)

]
λ=n/t

πqp(xp)

= Rq(t)πqp(xp), xp ∈ Ep.

Hence, {Rp(t) : p ∈ ⊛} is a projective family of operators. Denote by
(R(t))t≥0 ⊆ L(E) the projective limit of the above family. Then it can be
verified without any substantial difficulties that (R(t))t≥0 is a q-exponentially
equicontinuous (a, k)-regularized resolvent family which satisfies the required
properties. Suppose now that, for every p ∈ ⊛, (Rp(t))t≥0 is a q-exponentially
equicontinuous, analytic (a, k)-regularized resolvent family of angle β and
that, for every ε ∈ (0, β), (18) holds. Using the equality πqp

(
Rp(t)xp

)
=

Rq(t)πqp(xp), t > 0, xp ∈ Ep and the fact that πqp(·) is a continuous homo-
morphism from Ep onto Eq, we obtain from the uniqueness theorem for an-
alytic functions that πqp

(
Rp(z)xp

)
= Rq(z)πqp(xp), z ∈ Σβ , xp ∈ Ep. There-

fore, {Rp(z) : p ∈ ⊛} is a projective family of operators (z ∈ Σβ). Define
R(z) as the projective limit of {Rp(z) : p ∈ ⊛} (z ∈ Σβ). Then the mapping
z 7→ R(z)x, z ∈ Σβ ∪ {0} (x ∈ E) is continuous on any closed subsector of
Σβ ∪{0} and, for every ε ∈ (0, β), there exist Mp,ε ≥ 1 and ωp,ε ≥ 0 such that
(17) holds. Let x ∈ E and let C be an arbitrary closed contour in Σβ. Then,
for every p ∈ ⊛, Ψp

(∮
C

R(z)xdz
)

=
∮

C
Ψp(R(z)x)dz =

∮
C

Rp(z)Ψp(x)dz = 0,
which implies

∮
C

R(z)xdz = 0. Hence, for every x∗ ∈ E∗,
∮

C
〈x∗, R(z)x〉dz = 0

and the mapping z 7→ 〈x∗, R(z)x〉, z ∈ Σβ is analytic by Morera’s theorem. It
follows that the mapping z 7→ R(z)x, z ∈ Σβ is analytic, and the proof of the-
orem is completed through a routine argument. �

Remark 3.1. In order for the proof of Theorem 3.1(ii) to work, one has
to identify the operator A with the projective limit of family {Ap : p ∈ ⊛}.
This can be done only in the case that the space E is complete.

Keeping in mind Theorem 3.1 and [12, Theorem 2.8, Theorem 3.6-
Theorem 3.7], one can simply formulate the Hille-Yosida type theorems for
(analytic) q-exponentially equicontinuous (a, k)-regularized resolvent families
in complete locally convex spaces, provided that a(t) and k(t) satisfy (P1),
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and that k(0) 6= 0.
The proof of following result follows immediately from Theorem 3.1 and

[15, Theorem 2.11-Theorem 2.12, Corollary 2.15, Remark 2.16].

Theorem 3.2. Let E be complete.

(i) Suppose z ∈ C, B ∈ L⊛(E), A is densely defined and generates a q-
exponentially equicontinuous (a, k)-regularized resolvent family (R(t))t≥0

satisfying (14). Let (P1) hold for a(t), k(t), b(t), let ã(λ)/k̃(λ) =
b̃(λ) + z, ℜλ > ω, k̃(λ) 6= 0, for some ω > max(abs(a), abs(k), abs(b))
and let k(0) 6= 0. Suppose that, for every p ∈ ⊛, there exists a suffi-
ciently large number µp > 0 and a number γp ∈ [0, 1) such that:

∞∫

0

e−µptp
(
B

t∫

0

b(t − s)R(s)xds + zBR(t)x
)
dt ≤ γpp(x), x ∈ D(A).

Then the operator A + B is the generator of a q-exponentially equicon-
tinuous (a, k)-regularized resolvent family (RB(t))t≥0. Furthermore, for
every t ≥ 0 and x ∈ D(A) :

RB(t)x = R(t)x +

t∫

0

RB(t − r)
(
B

r∫

0

b(r − s)R(s)xds + zBR(r)x
)
dr.

(ii) Suppose B ∈ L⊛(E), l ∈ N, A is densely defined and generates a q-
exponentially equicontinuous (a, k)-regularized resolvent family (R(t))t≥0

satisfying (14). Let k(0) 6= 0, let a(t) and k(t) satisfy (P1) and let the
following conditions hold:

(ii.1) AjB ∈ L⊛(E), 1 ≤ j ≤ l.

(ii.2) There exist a function b(t) satisfying (P1) and z, ω ∈ C such that:

ã(λ)l+1
/
k̃(λ) = b̃(λ) + z, ℜλ > max(ω, abs(a), abs(k)), k̃(λ) 6= 0.

(ii.3) limλ→+∞

∫ ∞

0
e−λt|a(t)|dt = 0 and limλ→+∞

∫ ∞

0
e−λt|b(t)|dt = 0.

Then A+B is the generator of a q-exponentially equicontinuous (a, k)-
regularized resolvent family (RB(t))t≥0.
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(iii) Suppose α > 0, A is densely defined and generates a q-exponentially
equicontinuous (gα, g1)-regularized resolvent family (R(t))t≥0 satisfying
(14). Assume exactly one of the following conditions:

(iii.1) α ≥ 1 and B ∈ L⊛(E).

(iii.2) α < 1 and AjB ∈ L⊛(E), 0 ≤ j ≤ ⌈1−α
α

⌉.

Then the operator A + B is the generator of a q-exponentially equicon-
tinuous (gα, g1)-regularized resolvent family (RB(t))t≥0. Furthermore, if
(R(t))t≥0 is a q-exponentially equicontinuous, analytic (gα, g1)-regular-
ized resolvent family of angle β ∈ (0, π/2], then (RB(t))t≥0 is.

Concerning Theorem 3.2(iii), it is worthwhile to mention that the asser-
tion of [15, Corollary 2.15] (cf. also [13, Theorem 2.5.7-Theorem 2.5.8]) does
not admit a satisfactory reformulation for q-exponentially equicontinuous
(gα, gαβ+1)-regularized C-resolvent families in Fréchet spaces, unless C = I
and β = 0.

Example 3.1.

(i) Let α ∈ (0, 1). Set aα(t) := L−1( λα

λ+1
)(t), t ≥ 0, kα(t) := e−t, t ≥ 0 and

δα := min(π
2
, πα

2(1−α)
). Suppose E is complete, f ∈ L1

loc([0,∞) : E) and

A is the integral generator of a q-exponentially equicontinuous (C0, 1)-
semigroup (R(t))t≥0 satisfying (14). Then Theorem 3.1 combined with
the analysis given in [15, Example 3.7] implies that A is the integral gen-
erator of a q-exponentially equicontinuous, analytic (aα, kα)-regularized
resolvent family of angle δα, which can be applied (cf. [20]-[21] and [15]
for more details) in the study of qualitative properties of the abstract
Basset-Boussinesq-Oseen equation:

u′(t) − ADα
t u(t) + u(t) = f(t), t ≥ 0, u(0) = 0,

describing the unsteady motion of a particle accelerating in a viscous
fluid under the action of the gravity.

(ii) Put E := {f ∈ C∞([0,∞)) : limx→+∞ f (k)(x) = 0 for all k ∈ N0}
and ||f ||k :=

∑k
j=0 supx≥0 |f (j)(x)|, f ∈ E, k ∈ N0. Then the topol-

ogy induced by these norms turns E into a Fréchet space. Suppose
c0 > 0, β > 0, s > 1, l > 0 and define the operator A by D(A) :=
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{u ∈ E : c0u
′(0) = βu(0)} and Au := c0u

′′, u ∈ D(A). Then A
cannot be the generator of a C0-semigroup since D(A) is not dense
in E ([10]). Put A1 := A/c0, ωl,s(λ) :=

∏∞
p=1(1 + lλ

ps ), λ ∈ C and

kl,s(t) := L−1( 1
ωl,s(λ)

)(t), t ≥ 0. Using the well-known estimates for as-

sociated functions ([13]) and [11, (2.36)], we infer that there exists a
constant c1 > 0 such that, for every ǫ ∈ (0, π),

∣∣ωl,s(λ)
∣∣ ≥ exp

(
c1

(
l(1 + cot ǫ)−1|λ|

)1/s)
, λ ∈ Σπ−ǫ.(20)

Furthermore, 0 ∈ suppkl,s, kl,s(0) = 0 and kl,s(t) is infinitely differ-
entiable in t ≥ 0. We will prove that A is the integral generator of
an equicontinuous analytic kl,s-convoluted semigroup of angle π/2 and
that there does not exist n ∈ N such that A is the integral genera-
tor of an exponentially equicontinuous n-times integrated semigroup
on E (cf. also the proofs of [5, Theorem 4.1-Theorem 4.2, pp. 384–
386]). It is checked at once that the operator λ − A is injective for all
λ ∈ C \ (−∞, 0]. Let λ = reiθ (r > 0, |θ| < π), f ∈ E and µ = λ1/2.
Then de L’Hospital’s rule implies that, for every k ∈ N0, the C∞-
functions x 7→ u1,k(x) :=

∫ x

0
e−µ(x−s)f (k)(s)ds = e−µx

∫ x

0
eµsf (k)(s)ds,

x ≥ 0 and x 7→ u2,k(x) :=
∫ ∞

x
eµ(x−s)f (k)(s)ds = eµx

∫ ∞

x
e−µsf (k)(s)ds,

x ≥ 0 tend to 0 as x → +∞. Taken together with the computation
given in the proof of the estimate (23), the above implies that the
function

u(x) :=
1

2µ

[∫ x

0

e−µ(x−s)f(s)ds +

∫ ∞

x

eµ(x−s)f(s)ds
]
, x ≥ 0,

belongs to E. Now it readily follows that the function ω(x) := u(x) +
[ c0µ−β
c0µ+β

1
2µ

∫ ∞

0
e−µsf(s)ds]e−µx := u(x) + κ(µ, f)e−µx, x ≥ 0, belongs to

D(A1) and that (λ−A1)ω = f ; therefore, λ ∈ ρ(A1) and (λ−A1)
−1f =

ω. Direct computation shows that

sup
x≥0

|u(x)| ≤ supx≥0 |f(x)|
|λ| cos θ

2

and sup
x≥0

|u1,k(x)| ≤ supx≥0 |f (k)(x)|
|λ|1/2 cos θ

2

, k ∈ N0.

(21)

Now we obtain that there exists an absolute constant c > 0 such that,
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for every n ∈ N,

∥∥(λ − A1)
−1f

∥∥
n

=
n∑

j=0

sup
x≥0

∣∣u(j)(x) + κ(µ, f)(−1)jµje−µx
∣∣

≤
n∑

j=1

{
sup
x≥0

∣∣∣ 1

2µ

[∫ x

0

e−µ(x−s)f (j)(s)ds +

j−1∑

l=0

(−1)lµlf (j−1−l)(0)e−µx

−
j∑

l=1

l−1∑

l0=0

(
j

l

)
µj−l

(
l − 1

l0

)
(−1)l−1−l0µl−1−l0f (l0)(x)

+ µj

∫ ∞

x

eµ(x−s)f(s)ds
]

+ κ(µ, f)(−1)jµje−µx
∣∣∣
}

+
c||f ||0
|λ| cos θ

2

≤ c||f ||0
|λ| cos θ

2

+
n∑

j=1

[ ||f ||j
2|λ| cos θ

2

+ j
(
|µ|−1 + |µ|j−1

)
||f ||j−1

]

+

n∑

j=1

[
4j−1

(
|λ|(−1)/2 + |λ|(j−1)/2

)
||f ||j−1

+
1

2
|λ|(j−2)/2 ||f ||0

cos θ
2

+
c|µ|j||f ||0
|λ| cos θ

2

]

≤ n||f ||n
1

2|λ| cos θ
2

+ 2n2
(
|µ|−1 + |µ|n−1

)
||f ||n−1 +

2cn||f ||0
(
1 + |µ|n

)

|λ| cos θ
2

+ n4n−1
(
|λ|1/2 + |λ|(n−1)/2

)
||f ||n−1 + n

(
1 + |λ|n/2

) ||f ||0
2|λ| cos θ

2

.

(22)

The inequality exp(−ζx1/s)xη ≤ (sη/ζ)ηs, x > 0, ζ > 0, η > 0 combined

with (20)-(22) implies that, for every ǫ ∈ (0, π), the family {λk̃l,s(λ)(λ−
A)−1 : λ ∈ Σπ−ǫ} is equicontinuous. Moreover, limλ→+∞ λk̃l,s(λ)(λ −
A)−1f = 0 = kl,s(0)f, f ∈ E. By [12, Theorem 3.7] and its proof, it
follows that A is the integral generator of an equicontinuous analytic
kl,s-convoluted semigroup (R(t))t≥0 of angle π/2 satisfying additionally
that, for every k ∈ N0 and ǫ ∈ (0, π), there exists c(k, ǫ) > 0 such
that ||R(z)f ||k ≤ c(k, ǫ)||f ||k, z ∈ Σπ−ǫ, f ∈ E. Assume that there
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exists n ∈ N such that A is the integral generator of an exponentially
equicontinuous n-times integrated semigroup on E. Without loss of
generality, we may assume that 2n + 3 > 2β/c0. Then there exists a
sufficiently large ν > 0 such that the family {λ−n(λ − A)−1 : λ > ν}
is equicontinuous, which simply implies that there exist cn > 0 and
n′ ∈ N with:

sup
x≥0

∣∣∣ 1

2λ1/2

[∫ x

0

e−λ1/2(x−s)f (2n+5)(s)ds

+

2n+4∑

j=0

(−1)jλj/2f (2n+4−j)(0)e−λ1/2x
]

+
1

2

[
λn+2

∫ ∞

x

eλ1/2(x−s)f(s)ds −
2n+5∑

l=1

l−1∑

l0=0

(
2n + 5

l

)
λ(2n+3−l0)/2

× (−1)l−1−l0

(
l − 1

l0

)
f (l0)(x)

]
−

[c0λ
1/2 − β

c0λ1/2 + β

1

2λ1/2

∫ ∞

0

e−λ1/2sf(s)ds
]

× λ(2n+5)/2e−λ1/2x
∣∣∣ ≤ cnλ

n
∥∥f

∥∥
n′

, λ > ν, f ∈ E.

(23)

Denote by gf (x, λ) the function whose supremum appears in (23). Since∑2n+5
l=1

(
2n+5

l

)
(−1)l−1 = 1 and

∑2n+5
l=1

(
2n+5

l

)
(l − 1)(−1)l = 1, it can

be easily seen that there exists a sufficiently large number an > 0,
depending only on n, such that:

2 sup
x≥0

ge−·(x, λ) ≥ 2ge−·(0, λ)

≥ λn
∣∣∣2λ + λ1/2 +

2n+5∑

l=1

(
2n + 5

l

)(
l − 1

2

)
(−1)lλ1/2

+
2βλ2

(c0λ1/2 + β)(1 + λ1/2)

∣∣∣ − anλ
n, λ > an,

which implies limλ→+∞ λ−n supx≥0 ge−·(x, λ) = +∞. A contradiction.
The question whether there exists an injective operator C ∈ L(E) such
that A is the integral generator of an exponentially equicontinuous
C-regularized semigroup on E is non-trivial and will not be further
discussed in the context of this paper; let us only mention in passing
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that the existence of such an operator C can be proved only with the
help of results concerning ultradistribution semigroups in locally convex
spaces (cf. [13, Subsection 3.6.2] for the Banach space case, and [25]).
Now we will explain how one can use the obtained result in the analysis
of a control problem for a one-dimensional heat equation for materials
with memory (cf. [23, pp. 146-147]). Let L1

loc([0,∞)) ∋ a satisfy (P1),
let abs(a) = 0 and let the analytic function â : C\(−∞, 0] → C\(−∞, 0]
satisfy â(λ) = ã(λ), ℜλ > 0. Suppose that σ ∈ (0, 1) and, for every
ǫ ∈ (0, π) and n ∈ N, there exist c1

ǫ,n > 0 and c2
ǫ,n > 0 such that

|â(λ)|−n ≤ c1
ǫ,n exp(c2

ǫ,n|λ|σ), λ ∈ Σπ−ǫ. By [12, Theorem 3.7], we get
that, for every l > 0 and s ∈ (1, 1/σ), the operator A is the integral
generator of an equicontinuous analytic (a, kl,s)-regularized resolvent
family (S(t))t≥0 of angle π/2 satisfying additionally that, for every k ∈
N0 and ǫ ∈ (0, π), there exists c(k, ǫ)′ > 0 with ||S(z)f ||k ≤ c(k, ǫ)′||f ||k,
z ∈ Σπ−ǫ, f ∈ E. This, in particular, implies the existence of regularized
solutions to the problem [23, (5.68), p. 147].

(iii) Suppose E = L2(Rn), 0 ≤ l ≤ n and 1 ≤ α ≤ 2. Put Nl
0 := {η ∈

Nn
0 : ηl+1 = · · · = ηn = 0} and recall that the space El is defined by

El := {f ∈ E : f (η) ∈ E for all η ∈ Nl
0}. The totality of seminorms

(qη(f) :=
∑

µ≤η ||f (µ)||L2(Rn), f ∈ El; η ∈ Nl
0) induces a Fréchet topol-

ogy on El ([27]). Let aη ∈ C, 0 ≤ |η| ≤ N, let P (x) =
∑

|η|≤N aηx
η,

x ∈ R
n, and let ω ≥ 0 satisfy supx∈Rn ℜ(P (x)1/α) ≤ ω. Suppose that

the operator P (D)f :=
∑

|η|≤N aη(−i)|η|f (η) acts on El with its maximal

distributional domain. Then we know that P (D) generates an expo-
nentially equicontinuous (gα, g1)-regularized resolvent family (Rα(t))t≥0

in the space El (cf. [12, Example 3.17] and [14, Remark 2.2]) and that
there exists a constant M ≥ 1 such that:

qη

(
Rα(t)f

)
≤ Meωtqη(f), t ≥ 0, f ∈ El, η ∈ N

l
0.

Let ϕ ∈ C∞(Rn) possess bounded derivatives of all orders and let
(Bf)(x) := ϕ(x)f(x), f ∈ El, x ∈ Rn. Then B ∈ L⊛(El) and, by
Theorem 3.2(iii), the operator P (D) + B generates a q-exponentially
equicontinuous (gα, g1)-regularized resolvent family (RB

α (t))t≥0 in the
space El.
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12. M. Kostić, Abstract Volterra equations in locally convex spaces, Sci.
China Math. 55 (2012), no. 9, 1797–1825.

EJQTDE, 2012 No. 94, p. 25
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