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SOLUTIONS OF TWO-TERM TIME FRACTIONAL ORDER DIFFERENTIAL
EQUATIONS WITH NONLOCAL INITIAL CONDITIONS

CARLOS LIZAMA

ABSTRACT. We study the existence of mild solutions for the two-teracfional order abstract
differential equation

DI u(t) +thBu(t) —Au(t) =DZ f(t,ut)), te[0,1], 0O<a<B<1,u>0,

with nonlocal initial conditions and whew is a linear operator of sectorial type. To achieve
our goal, we use a new mixed method, which combines a geratial of the theory o€p-
semigroups, Hausdorff measure of noncompactness and gfkeicargument.

1. INTRODUCTION

Let X be a Banach space. Our concern in this paper is the studystéage of mild solutions
for fractional order differential equations of the form

(1.1)  DYu(t) + uDPu(t) — Au(t) = F(s,u(s)),0< y<2,0< B <1, u>0,te (01,

with prescribed nonlocal initial conditiong0) = 0 andu’(0) = g(u), whereA: D(A) € X — X
is a sectorial operatoF, andg are vector-valued functions, af§ denotes the Caputo fractional
derivative of ordely.

Evolution equations involving fractional derivativesime have, in some cases, better effects
in applications than traditional evolution equations aéger order in time (cf., e.g. [1, 4, 11, 12,
14, 17, 18], the survey paper [10] and the references ther€re class of fractional evolution
equations can provide an excellent instrument for the gesmom of memory and hereditary
properties of various materials and processes. What it tteechphasize is that this is the main
advantage of fractional models in comparison with integreler models, in which such effects
are in fact neglected.

Equation (1.1) is a general model that include recent inyasons in the subject. Indeed, in
[16] Lizama obtained existence and unigueness of soluflmnthe abstract equation (1.1) in
the special casg= 3 + 1 and, in [19], Stojanovi¢ and Gorenflo studied the nonlitea-term

time fractional diffusion wave equation (1.1) with<Qy < B andA = 3—;. In all the foregoing
cases, the initial value problem was considered, but traystfiexistence of solutions for the
equation (1.1) witmonlocalinitial conditions was left open. Anticipating a wide ingst in
problems modeled by (1.1), this paper contributes in filtimg important gap.

Stimulated by the observation that nonlocal initial comis are more realistic than usual
ones in treating physical problems, the study of fractianallution equations with nonlocal
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initial conditions has been recently initiated (see [5],d6d [7] for more detailed information
about the importance of nonlocal initial conditions in apgiions). For example, in [20] Wang
and Yang and, in [21] Zhang and Liu, obtained existence od swlutions for the the nonlocal
problem (1.1) in the border cage= 0 and 0< y < 1. The main hypothesis in both cases is that
A'is the generator of &p-semigroup with some qualitative property (e.g. compasgnsee [8]
and references therein).

On the other hand, in [13] Keyantuo, Lizama and Warma prohatlit is possible to give
an abstract operator approach to equation (1.1) by a meth@dyolarization, defining first an
ad-hoc solution family of strongly continuous operat§g(t) for (1.1) in casé= = 0. It turns
out, that it is a particular case of da,k)-regularized family [15]. Then, the solution of the
linear part in equation (1.1) can be written in terms of a lohgariation of constants formula.
It give us the necessary framework to apply an operator étieaf approach in the analysis of
mild solutions for the abstract fractional order diffeiahéquation (1.1).

In this paper, we will show that the use of the above descnibeithod of representation of the
solution is successful to obtain existence of mild solwitor the following regularized version
of the equation (1.1):

(1.2)

t
DEu(t) + pDfu(t) — Au(t) =/ g1 a(t—9)f(su(s)dst>0,0<a<B<1 p>0,
0

wheregy(t) := % for y > 0, u(0) = 0 and nonlocal initial condition’(0) = g(u). Indeed, in
this case, and following [13], a mild solution of (1.2) can defined as a fixed point of the
equation

(L3)  u)=(Gr*Sup)GW) +(GrxSupx H(N). 0<a<B<L p>0

Then, we can use an strategy based of Hausdorff measure compactness and a fixed point
argument, recently used by Zhu, Song and Li [22] (see alsprigyarint by Zhang and Liu [21]),
to obtain our main result (Theorem 3.1). However, in cottvath [22] it is remarkable that,
in the use of this combination of methods, neither compastioe equicontinuity condition on
the family S, (t) to get a fixed point in (1.3) is needed (compare [22] and Rer@drk being
this fact the main contribution of this paper. Finally, wenclude showing a concrete example
to illustrate the feasibility of the abstract given hypdtise

2. PRELIMINARIES

Leta > 0,m= [a] andu: [0,0) — X, whereX is a complex Banach space. We denote
by R the closed interva]0,«). The Caputo fractional derivative efe C(R..) of ordera is
defined by

D u(t) : dtm/gmat—HS)ds t>0,

wheregg(t) := ‘ﬁ(—;) t>0, 8 >0, and in casg8 = 0 we setgp(t) := 50 the Dirac measure

concentrated at the origin. When= n is integer, we defin®;' ._&E,n € N. On the other
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hand, the convolution
t
Dy “u(t) ::/ ga(t—s)u(s)ds, t>0,
0

defines the Riemann-Liouville integral of orderand stands for the fractional integral of order
a of u.

Definition 2.1. ([13]) Letu > 0and0 < a, < 1 be given. Let A be a closed linear opera-
tor with domain OA) defined on a Banach space X. We call A the generator aioa) -
regularized family if there exigb > 0 and a strongly continuous function, g : R, — %(X)

such that {A9*1+ uAP : Red > w} c p(A) and

rﬂAy::A%Awﬂ+uAB—Ay%c:A e MG, p(t)xdt, Red >w, xe€X.

Because of the uniqueness theorem for the Laplace transformn= 0 anda = 0, this
corresponds to the case ofCg-semigroup whereas the cage= 0, a = 1 corresponds to the
concept of cosine family. For more details on the Laplacestfi@m approach to semigroups
and cosine functions, we refer to the monograph [2].

Let us recall that a closed and densely defined operatsrsaid to bew-sectorial of angle
0 if there existsf € (0,1/2), M > 0 andw € R such that its resolvent exists in the sector
w+Sp:={w+A:AeC,largA)| < T+0}\{w}, and

A =A) 1| < , Aew+Sy.

A — |

These are generators of holomorphic semigroups. In@as® we merely say thatis sectorial
of angle8 + /2. Sufficient conditions to obtain generators of @n f3),-regularized family
are given in the following result.

Theorem 2.2.([13]) LetO< o < 3 <1, u > 0and A be aw sectorial operator of angl@ /2.
Then A generates a boundédl, 3),-regularized family.

We next consider the linear fractional differential eqoati
21)  Dfu(t)+wpDfu(t) —Aut)=h(t), t>0, 0<a<B<1ux>0,

with initial conditionsu(0) = x, U'(0) =y andA is aw-sectorial operator of ang|@r/2.

Recall that a functiom € C1(R; X) is called a strong solution of (2.1) d, if u(t) € D(A)
and (2.1) holds oR;.. If merely u(t) € X instead of the domain ok, we say thatu is amild
solutionof the linear equation (2.1). We note that, by [13, Cor.34] d&heorem 2.2, a mild
solution for (2.1) always exists and is given by:

(22)  u(t) =S (O)X+ (91 Sy p) ()Y + H(G11a-p * Sa,p(1)X+ (Sop* o D) (1),

where 0<a <B <1, u>0,xye Xand$, g(t) is the(a, B),-regularized family generated
by A.
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3. MAIN RESULT

In this section, we use the Hausdorff measure of noncompssiand a fixed point argument
to prove the existence of a mild solution for a special casegofation (1.1) with a nonlocal
initial condition. More precisely, we consider

(31) DI u(t)+pDPu(t) —Aut) =D f(su() t=0, O<a<B<l, H=0,

whereu(0) = 0 andu’(0) = g(u), andf : 1 x X — X, g: C([0,1]; X) — X are suitable functions.
In this case, it follows from (2.2) that a mild solution caspends, by definition, to a fixed point
of the equation:

) = (0% )09 + [ (@S p)t -9 (sUSds 0<a<p<1 u=0

As an example, note that in the particular border case f 3 = 1 andu = 0 the equation to
be considered is given by

u’(t) = Au(t) + f(t,u(t)),
with nonlocal initial conditionsu(0) = 0 andu’(0) = g(u). In consequence, A is the gener-
ator of a bounded cosine famiy(t), then$; 1(t) = C(t) and the familyS(t) := g1 * Sp1(t)
corresponds to the sine family generated®byNote the important fact th&(t) is always norm

continuous fort > 0 whenevelC(t) is bounded. Moreover, according to the choice of initial
values for the problem, the mild solution should satisfy

ut) = S(t)g(u) +/Ot S(t—s)f(s,u(s))ds

In order to give our main result, we consider the followingbthesis.

(H1) g:C(]0,1];X) — X is continuous, compact and there exists positive constaatsi d
such that|g(u)|| < c|ju|| +d, Yu € C(]0, 1]; X).

(H2) f:[0,1] x X — X satisfies the Carathéodory type conditions, thaft(sx) is measurable
for all x e X andf(t,-) is continuous for almost all<€ [0, 1].

(H3) There exists a functiom € L1(0,1;R") (hereL'(0,1;R*) is the space oR*-valued
Bochner functions ofD, 1] with the norm||x|| = fol |Ix(s)||ds) and a nondecreasing con-
tinuous functiond : R — R™ such that

(6, x)[| < m(t)(][]])

for all x e X and almost alt € [0,1].
(H4) There exists a functiod € L1(0,1;R*) such that for any boundeBIC X

y(f(t,B)) <H(t)y(B)
for almost allt € [0,1].

In (H4) y denote the Hausdorff measure of noncompactness which rsedéfiy

y(B) =inf{e > 0 :B has a finite cover by balls of radigg.
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We note that this measure of noncompactness satisfiesstitgyeegularity properties (for more
information, we refer to [3]).

(i) If AC Btheny(A) < y(B).

(i) y(A) = y(A), whereA denotes the closure of A.

(iii) y(A)=0ifand only ifAis totally bounded.

(iv) Y(AA) = |Aly(A) with A € R.

(v) y(AUB) =max{y(A),y(B)}

(vi) y(A+B) < y(A)+y(B), whereA+B={a+b: ac A beB}.
(vii) y(A) = y(co(A)) whereto(A) is the closed convex hull ¢k

Remark 3.1. It is notable that, thanks to the boundedness pg@) granted by Theorem 2.2,
the function t— g * §, g(t) is norm continuous for - 0. Indeed, we have fd <t <s

t S S
|| Sep@dr— [ Sop®)l < [ 1S0p(r)ldr < suplS, p(lls- 1]
0 0 t >0
We denoteM := sup{|[g1+ S, g(t)|| : t € [0,1]}. We are now in position to establish the main
result of this paper.

Theorem 3.2. If the hypothesis (H1)-(H4) are satisfied and there existersstant R> 0 such
that

1
M(cR+d) + MCD(R)/ m(s)ds< R
0
then the problen(3.1) has at least one mild solution.
Proof. DefineF : C([0,1]; X) — C([0,1]; X) by

= [ Sep@ad+ [ (0148 p)it -9 f(sx(9)ds te o1

for all x € C([0,1]; X). First, we show thaF is a continuous map. L€, }nen € C([0,1]; X)
be a sequence such thagt— x (in the norm ofC(|[0, 1]; X)). Note that

IF () =F I < MHQ(Xn)—g(X)HJrM/Ole(S,Xn(S))— f(sx(s))llds

by (H1) and (H2) and dominated convergence theorem we cdachat||F (x,) — F(x)|| — O
whenn — oo,

Let Br := {x € C([0,1]; X) : ||x(t)|| < Rforallt € [0,1]}. ClearlyBgr is bounded and convex.
For anyx € Bgr we have by hipothesis

IENO1 < oo pO00+ | [ a0 pt-9)T(sx(9)ds
1

< M(cR+ d)+MCD(R)/ m(s)ds< R
0
ThereforeF : Bg — Bris a bounded operator afidBg) is a bounded set. Moreover, by conti-

nuity of the functiont — g1 xS, g(t) on (0, +o), we conclude thaf (Bgr) is an equicontinuous
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set of functions. Defin® := to(F(Br)). ThenB is an equicontinuous set of functions and
F : B— Bis a continuous operator.
Lete > 0. By [22, Lemma 2.4] there exis{yn}nen C F(B) such that

(FBO) < 2/ Ohner) e < 2y ( [ 00rSup(t=9 (8 Bn(Nners) +6
@2 <M [ YE (5 D)t € < M [THO ({05

< aMy(iyn)) [ H(9dst e <amy®) [ Hisids+e

SinceH € LY(0,1;X) there existsp € C([0,1]; R.) such that 01|H(s) —¢(9)|ds< a (where
a< ﬁ). LetN:=max{¢(t):t €[0,1]}. Then
y(FB(t)) < 4My(B) [/Ot |H(S) — ¢ (s)|ds+ /thb(s)ds} +& < 4AMy(B)[a + Nt] +¢.

Sincee > 0 is arbitrary we obtain that

(3.3) y(FB(t)) < (a+bt)y(B),

wherea = 4aM andb = 4MN. Let e > 0 be given. By [22, Lemma 2.4] there eXi$t& }nen C
co(F(B)) such that

F2(E0) < 2¢ ([ 90xSuplt -9 (5 (n(S}nen)ds) +

<M /tv (S {Yn(8) bnent) S €

<4|v|/ H(s B(s)))ds+ &

<4|v|/ S))ds+¢

<4|\/|/ H(s) — $(3)| + ¢(9)](a+bs)y(B)ds+ e
M(a+ bt) / H(s >|ds+4MN(at+b7t2)+s

bt?
<ala+bt)+blat+ > +E&.

Sincee > 0 is arbitrary then

2 2 (bt)?
y(F4(B(t))) < | a +2abt+T y(B),
where 0< a< 1 andb > 0. By an iterative process we obtain
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y(F"(B(t))) < (a”+cﬁa”1bt+cﬁa“2<b2—?2 +o <bt)n) v(B).

By [22, Lemma 2.1] we obtain that

b? b"
y(F"(B)) < (a +Cra" o+ G S )y(B).

From [22, Lemma 2.5] we know that there exisgs= N such that

,b? bho
(anO+C1 nO 1b+C2 No— E_F _|__) =r< 1.

We conclude that
y(F™B) < ry(B).

By [22, Lemma 2.6] F has a fixed point i3, and this fixed point is a mild solution of equation
(3.2). O

4. APPLICATION

To finish, we present one example which do not aim at gengialitindicate how our theo-
rem can be applied to concrete problems. Xet L?(R"), u > 0 and 0< a < 8 < 1. Consider
the following integro-differential equation

(09 u(t,x) + poPu(t,x) = Au(t,x)+ a9 Lt-¥3sin(u(t))] t < [0,1];
(4.1) U(O,X) -

N
40 = 3 [ ekeyutydy xe K"

\

whereN is a positive integer, & t; <t < --- <tm < 1; k(x,y) € L?(R" x R"; R*), the constants
a,Bu satisfy O< a < 3 <1, u > 0, and the operatoh is defined by

dutx) ”. ut,x)
,Z_l 02.(92J +i;b.(x) 0z +e(xu(t,x),

with given coefficientsy; , b , T, (i,j = 1,2,...,n) satisfying the usual uniformly ellipticity
conditions, and(A) = {ve X : ve H?(R")}. We will prove that there exists> 0 sufficiently
small such that equation (4.1) has a mild solutiorXorindeed, note that system (4.1) takes the
abstract form

(4.2)

0) 0;
0

{D9+1u<t>+uDFu<t> = Aut) +DE(t,u(t)), telo,1];
u
W) = ge(u).
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where the functior, : C([0, 1], X) — X is given byge(u)x = s_ikgu(ti)(x) with (kgv)(x) =

/ k(x,y)v(y)dy, forve X,xe R", andthe functiorf : [0,1] x X — X is defined byf (t,u(t)) =
|RI"I
t=1/3sin(u(t)). Observe thaft f (t,u(t)) — f(t,v(t))|| <t~ ¥3|lu—v|, and hencd satisfiefH2).
1/2
Note that||ge(V)|| < N(/ / ekz(z,y)dydz> / |v|l, and the functiorkg is completely con-
R JRN

tinuous. It proves(H1). In addition || f(t,u(t))| < t=¥3d(||u||), with ®(|jul]) = 1, prov-

ing (H3). Finally, given a bounded subsBtof X, and from the properties af, we obtain
y(f(t,B)) < t~Y2y(sin(B)) < Ct~1/2y(B) for some constar€ > 0 and thereforéH4) is also

satisfied.

On the other hand, it follows from the theory @f-semigroups (see e.g. [9]) thAtgenerates
an analytic, non compact semigrodi (t) ;>0 on L(R"). In particular,A is 11/2-sectorial.
Furthermore, there exists a constdmt> 0 such thatM = sup{||T(t)| : t > 0} < 4. By

Theorem 2.2, the operatéyin equation (4.2) generates a boundedf3),-regularized fam-
ily {Sy,g(t)}t=0. LetK =sup{||g1+ S, g(t)|| :t € [0,1]}. Observe that there exists> 0 such

1/2
that Kc < 1 wherec = eN (fRn Jgn kz(z,y)dydz> . Therefore, there exis® > 0 such that

3K . . . ,
KcR+ — < R It follows that equation (4.2) has at least a mild solutiondt € > 0 suffi-
ciently small.
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