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SOLUTIONS OF TWO-TERM TIME FRACTIONAL ORDER DIFFERENTIAL
EQUATIONS WITH NONLOCAL INITIAL CONDITIONS

CARLOS LIZAMA

ABSTRACT. We study the existence of mild solutions for the two-term fractional order abstract
differential equation

Dα+1
t u(t)+ µDβ

t u(t)−Au(t) = Dα−1
t f (t,u(t)), t ∈ [0,1], 0 < α ≤ β ≤ 1, µ ≥ 0,

with nonlocal initial conditions and whereA is a linear operator of sectorial type. To achieve
our goal, we use a new mixed method, which combines a generalization of the theory ofC0-
semigroups, Hausdorff measure of noncompactness and a fixedpoint argument.

1. INTRODUCTION

Let X be a Banach space. Our concern in this paper is the study of existence of mild solutions
for fractional order differential equations of the form

(1.1) Dγ
t u(t)+ µDβ

t u(t)−Au(t) = F(s,u(s)), 0 < γ ≤ 2, 0 < β ≤ 1, µ ≥ 0, t ∈ [0,1],

with prescribed nonlocal initial conditionsu(0) = 0 andu′(0) = g(u), whereA : D(A)⊂ X → X
is a sectorial operator,F andg are vector-valued functions, andDγ

t denotes the Caputo fractional
derivative of orderγ.

Evolution equations involving fractional derivatives in time have, in some cases, better effects
in applications than traditional evolution equations of integer order in time (cf., e.g. [1, 4, 11, 12,
14, 17, 18], the survey paper [10] and the references therein). The class of fractional evolution
equations can provide an excellent instrument for the description of memory and hereditary
properties of various materials and processes. What it needto emphasize is that this is the main
advantage of fractional models in comparison with integer-order models, in which such effects
are in fact neglected.

Equation (1.1) is a general model that include recent investigations in the subject. Indeed, in
[16] Lizama obtained existence and uniqueness of solutionsfor the abstract equation (1.1) in
the special caseγ = β +1 and, in [19], Stojanović and Gorenflo studied the nonlinear two-term
time fractional diffusion wave equation (1.1) with 0< γ < β andA = d2

dx2 . In all the foregoing
cases, the initial value problem was considered, but the study of existence of solutions for the
equation (1.1) withnonlocal initial conditions was left open. Anticipating a wide interest in
problems modeled by (1.1), this paper contributes in fillingthis important gap.

Stimulated by the observation that nonlocal initial conditions are more realistic than usual
ones in treating physical problems, the study of fractionalevolution equations with nonlocal
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initial conditions has been recently initiated (see [5], [6] and [7] for more detailed information
about the importance of nonlocal initial conditions in applications). For example, in [20] Wang
and Yang and, in [21] Zhang and Liu, obtained existence of mild solutions for the the nonlocal
problem (1.1) in the border caseµ = 0 and 0< γ < 1. The main hypothesis in both cases is that
A is the generator of aC0-semigroup with some qualitative property (e.g. compactness, see [8]
and references therein).

On the other hand, in [13] Keyantuo, Lizama and Warma proved that it is possible to give
an abstract operator approach to equation (1.1) by a method of regularization, defining first an
ad-hoc solution family of strongly continuous operatorsSγ ,β (t) for (1.1) in caseF ≡ 0. It turns
out, that it is a particular case of an(a,k)-regularized family [15]. Then, the solution of the
linear part in equation (1.1) can be written in terms of a kindof variation of constants formula.
It give us the necessary framework to apply an operator theoretical approach in the analysis of
mild solutions for the abstract fractional order differential equation (1.1).

In this paper, we will show that the use of the above describedmethod of representation of the
solution is successful to obtain existence of mild solutions for the following regularized version
of the equation (1.1):
(1.2)

Dα+1
t u(t)+ µDβ

t u(t)−Au(t) =
∫ t

0
g1−α(t−s) f (s,u(s))ds, t ≥ 0, 0 < α < β ≤ 1, µ > 0,

wheregγ(t) := tγ−1

Γ(γ)
for γ > 0, u(0) = 0 and nonlocal initial conditionu′(0) = g(u). Indeed, in

this case, and following [13], a mild solution of (1.2) can bedefined as a fixed point of the
equation

(1.3) u(t) = (g1∗Sα,β )(t)g(u)+(g1∗Sα,β ∗ f )(t), 0 < α ≤ β ≤ 1, µ > 0.

Then, we can use an strategy based of Hausdorff measure of noncompactness and a fixed point
argument, recently used by Zhu, Song and Li [22] (see also thepreprint by Zhang and Liu [21]),
to obtain our main result (Theorem 3.1). However, in contrast with [22] it is remarkable that,
in the use of this combination of methods, neither compactness or equicontinuity condition on
the familySα,β (t) to get a fixed point in (1.3) is needed (compare [22] and Remark3.1), being
this fact the main contribution of this paper. Finally, we conclude showing a concrete example
to illustrate the feasibility of the abstract given hypothesis.

2. PRELIMINARIES

Let α > 0, m = ⌈α⌉ andu : [0,∞) → X, whereX is a complex Banach space. We denote
by R+ the closed interval[0,∞). The Caputo fractional derivative ofu ∈ C(R+) of orderα is
defined by

Dα
t u(t) :=

dm

dtm

∫ t

0
gm−α(t −s)u(s)ds, t > 0,

wheregβ (t) := tβ−1

Γ(β ) , t > 0, β > 0, and in caseβ = 0 we setg0(t) := δ0, the Dirac measure

concentrated at the origin. Whenα = n is integer, we defineDn
t := dn

dtn ,n ∈ N. On the other
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hand, the convolution

D−α
t u(t) :=

∫ t

0
gα(t −s)u(s)ds, t > 0,

defines the Riemann-Liouville integral of orderα and stands for the fractional integral of order
α of u.

Definition 2.1. ([13]) Let µ ≥ 0 and0 ≤ α,β ≤ 1 be given. Let A be a closed linear opera-
tor with domain D(A) defined on a Banach space X. We call A the generator of an(α,β )µ-
regularized family if there existω ≥ 0 and a strongly continuous function Sα,β : R+ → B(X)

such that {λ α+1+ µλ β : Reλ > ω} ⊂ ρ(A) and

H(λ )x := λ α(λ α+1+ µλ β −A)−1x =
∫ ∞

0
e−λ tSα,β (t)xdt, Reλ > ω, x∈ X.

Because of the uniqueness theorem for the Laplace transform, if µ = 0 andα = 0, this
corresponds to the case of aC0-semigroup whereas the caseµ = 0, α = 1 corresponds to the
concept of cosine family. For more details on the Laplace transform approach to semigroups
and cosine functions, we refer to the monograph [2].

Let us recall that a closed and densely defined operatorA is said to beω-sectorial of angle
θ if there existsθ ∈ (0,π/2), M > 0 andω ∈ R such that its resolvent exists in the sector
ω +Sθ := {ω +λ : λ ∈ C, |arg(λ )|< π

2 +θ}\{ω}, and

||(λ −A)−1|| ≤
M

|λ −ω|
, λ ∈ ω +Sθ .

These are generators of holomorphic semigroups. In caseω = 0 we merely say thatA is sectorial
of angleθ + π/2. Sufficient conditions to obtain generators of an(α,β )µ-regularized family
are given in the following result.

Theorem 2.2. ([13]) Let0< α ≤ β ≤ 1, µ > 0 and A be aω sectorial operator of angleβπ/2.
Then A generates a bounded(α,β )µ-regularized family.

We next consider the linear fractional differential equation

(2.1) Dα+1
t u(t)+ µDβ

t u(t)−Au(t) = h(t), t ≥ 0, 0 < α ≤ β ≤ 1, µ ≥ 0,

with initial conditionsu(0) = x, u′(0) = y andA is aω-sectorial operator of angleβπ/2.
Recall that a functionu∈C1(R+;X) is called a strong solution of (2.1) onR+ if u(t) ∈ D(A)

and (2.1) holds onR+. If merely u(t) ∈ X instead of the domain ofA, we say thatu is amild
solutionof the linear equation (2.1). We note that, by [13, Cor.3.4] and Theorem 2.2, a mild
solution for (2.1) always exists and is given by:

(2.2) u(t) = Sα,β (t)x+(g1∗Sα,β )(t)y+ µ(g1+α−β ∗Sα,β (t))x+(Sα,β ∗gα ∗h)(t),

where 0< α ≤ β ≤ 1, µ > 0, x,y∈ X andSα,β (t) is the(α,β )µ -regularized family generated
by A.
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3. MAIN RESULT

In this section, we use the Hausdorff measure of noncompactness and a fixed point argument
to prove the existence of a mild solution for a special case ofequation (1.1) with a nonlocal
initial condition. More precisely, we consider

(3.1) Dα+1
t u(t)+ µDβ

t u(t)−Au(t) = Dα−1 f (s,u(s)) t ≥ 0, 0 < α ≤ β ≤ 1, µ ≥ 0,

whereu(0) = 0 andu′(0) = g(u), and f : I ×X → X, g : C([0,1];X)→ X are suitable functions.
In this case, it follows from (2.2) that a mild solution corresponds, by definition, to a fixed point
of the equation:

u(t) = (g1∗Sα,β )(t)g(u)+

∫ t

0
(g1∗Sα,β )(t−s) f (s,u(s))ds, 0 < α ≤ β ≤ 1, µ ≥ 0.

As an example, note that in the particular border case ofα = β = 1 andµ = 0 the equation to
be considered is given by

u′′(t) = Au(t)+ f (t,u(t)),

with nonlocal initial conditionsu(0) = 0 andu′(0) = g(u). In consequence, ifA is the gener-
ator of a bounded cosine familyC(t), thenS1,1(t) ≡ C(t) and the familyS(t) := g1 ∗S1,1(t)
corresponds to the sine family generated byA. Note the important fact thatS(t) is always norm
continuous fort > 0 wheneverC(t) is bounded. Moreover, according to the choice of initial
values for the problem, the mild solution should satisfy

u(t) = S(t)g(u)+
∫ t

0
S(t−s) f (s,u(s))ds.

In order to give our main result, we consider the following hypothesis.

(H1) g : C([0,1];X) → X is continuous, compact and there exists positive constantsc andd
such that‖g(u)‖ 6 c‖u‖+d, ∀u∈C([0,1];X).

(H2) f : [0,1]×X →X satisfies the Carathéodory type conditions, that is,f (·,x) is measurable
for all x∈ X and f (t, ·) is continuous for almost allt ∈ [0,1].

(H3) There exists a functionm∈ L1(0,1;R+) (hereL1(0,1;R+) is the space ofR+-valued
Bochner functions on[0,1] with the norm‖x‖ =

∫ 1
0 ‖x(s)‖ds) and a nondecreasing con-

tinuous functionΦ : R+ → R+ such that

‖ f (t,x)‖ 6 m(t)Φ(‖x‖)

for all x∈ X and almost allt ∈ [0,1].
(H4) There exists a functionH ∈ L1(0,1;R+) such that for any boundedB⊆ X

γ( f (t,B)) 6 H(t)γ(B)

for almost allt ∈ [0,1].

In (H4) γ denote the Hausdorff measure of noncompactness which is defined by

γ(B) = inf{ε > 0 : B has a finite cover by balls of radiusε}.
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We note that this measure of noncompactness satisfies interesting regularity properties (for more
information, we refer to [3]).

(i) If A⊆ B thenγ(A) 6 γ(B).
(ii) γ(A) = γ(A), whereA denotes the closure of A.
(iii) γ(A) = 0 if and only ifA is totally bounded.
(iv) γ(λA) = |λ |γ(A) with λ ∈ R.
(v) γ(A∪B) = max{γ(A),γ(B)}

(vi) γ(A+B) 6 γ(A)+ γ(B), whereA+B = {a+b : a∈ A, b∈ B}.
(vii) γ(A) = γ(co(A)) whereco(A) is the closed convex hull ofA.

Remark 3.1. It is notable that, thanks to the boundedness of Sα,β (t) granted by Theorem 2.2,
the function t→ g1∗Sα,β (t) is norm continuous for t> 0. Indeed, we have for0 < t < s

‖

∫ t

0
Sα,β (τ)dτ −

∫ s

0
Sα,β (t)‖ ≤

∫ s

t
‖Sα,β (τ)‖dτ ≤ sup

τ≥0
‖Sα,β (τ)‖|s− t|.

We denoteM := sup{||g1∗Sα,β (t)|| : t ∈ [0,1]}. We are now in position to establish the main
result of this paper.

Theorem 3.2. If the hypothesis (H1)-(H4) are satisfied and there exists a constant R> 0 such
that

M(cR+d)+MΦ(R)

∫ 1

0
m(s)ds6 R

then the problem(3.1)has at least one mild solution.

Proof. DefineF : C([0,1];X)→C([0,1];X) by

(Fx)(t) =

∫ t

0
Sα,β (τ)g(x)dτ +

∫ t

0
(g1∗Sα,β )(t−s) f (s,x(s))ds, t ∈ [0,1]

for all x∈ C([0,1];X). First, we show thatF is a continuous map. Let{xn}n∈N ⊆ C([0,1];X)
be a sequence such thatxn → x (in the norm ofC([0,1];X)). Note that

‖F(xn)−F(x)‖ 6 M‖g(xn)−g(x)‖+M
∫ 1

0
‖ f (s,xn(s))− f (s,x(s))‖ds,

by (H1) and (H2) and dominated convergence theorem we conclude that‖F(xn)−F(x)‖ → 0
whenn→ ∞.
Let BR := {x∈ C([0,1];X) : ‖x(t)‖ 6 R for all t ∈ [0,1]}. ClearlyBR is bounded and convex.
For anyx∈ BR we have by hipothesis

‖(Fx)(t)‖ 6 ‖g1∗Sα,β (t)g(x)‖+

∥

∥

∥

∥

∫ t

0
g1∗Sα,β (t−s) f (s,x(s))ds

∥

∥

∥

∥

6 M(cR+d)+MΦ(R)
∫ 1

0
m(s)ds6 R.

ThereforeF : BR → BR is a bounded operator andF(BR) is a bounded set. Moreover, by conti-
nuity of the functiont → g1∗Sα,β (t) on (0,+∞), we conclude thatF(BR) is an equicontinuous
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set of functions. DefineB := co(F(BR)). ThenB is an equicontinuous set of functions and
F : B→ B is a continuous operator.

Let ε > 0. By [22, Lemma 2.4] there exists{yn}n∈N ⊂ F(B) such that

(3.2)

γ(FB(t)) 6 2γ({yn(t)}n∈N)+ ε 6 2γ
(

∫ t

0
g1∗Sα,β (t−s) f (s,{yn(s)}n∈N)ds

)

+ ε

6 4M
∫ t

0
γ( f (s,{yn(s))}n∈N)ds+ ε 6 4M

∫ t

0
H(s)γ({yn(s)}n∈N)ds+ ε

6 4Mγ({yn})

∫ t

0
H(s)ds+ ε 6 4Mγ(B)

∫ t

0
H(s)ds+ ε.

SinceH ∈ L1(0,1;X) there existsϕ ∈ C([0,1];R+) such that
∫ 1

0
|H(s)−ϕ(s)|ds< α ( where

α <
1

4M
). Let N := max{ϕ(t) : t ∈ [0,1]}. Then

γ(FB(t)) 6 4Mγ(B)

[

∫ t

0
|H(s)−ϕ(s)|ds+

∫ t

0
ϕ(s)ds

]

+ ε 6 4Mγ(B) [α +Nt]+ ε.

Sinceε > 0 is arbitrary we obtain that

(3.3) γ(FB(t)) 6 (a+bt)γ(B),

wherea= 4αM andb= 4MN. Let ε > 0 be given. By [22, Lemma 2.4] there exists{yn}n∈N ⊆
co(F(B)) such that

γ(F2(B(t))) 6 2γ
(

∫ t

0
g1∗Sα,β (t −s) f (s,{yn(s)}n∈N)ds

)

+ ε

6 4M
∫ t

0
γ( f (s,{yn(s)}n∈N))ds+ ε

6 4M
∫ t

0
H(s)γ(co(FB(s)))ds+ ε

6 4M
∫ t

0
H(s)γ(FB(s))ds+ ε

6 4M
∫ t

0

[

|H(s)−ϕ(s)|+ϕ(s)](a+bs)γ(B)ds+ ε

6 4M(a+bt)
∫ t

0
|H(s)−ϕ(s)|ds+4MN

(

at+
bt2

2

)

+ ε

6 a(a+bt)+b

(

at+
bt2

2

)

+ ε.

Sinceε > 0 is arbitrary then

γ(F2(B(t))) 6

(

a2+2abt+
(bt)2

2

)

γ(B),

where 0< a < 1 andb > 0. By an iterative process we obtain
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γ(Fn(B(t))) 6

(

an+C1
nan−1bt+C2

nan−2(bt)2

2!
+ · · ·+

(bt)n

n!

)

γ(B).

By [22, Lemma 2.1] we obtain that

γ(Fn(B)) 6

(

an +C1
nan−1b+C2

nan−2b2

2!
+ · · ·+

bn

n!

)

γ(B).

From [22, Lemma 2.5] we know that there existsn0 ∈ N such that
(

an0 +C1
n0

an0−1b+C2
n0

an0−2b2

2!
+ · · ·+

bn0

n0!

)

= r < 1.

We conclude that

γ(Fn0B) 6 rγ(B).

By [22, Lemma 2.6] ,F has a fixed point inB, and this fixed point is a mild solution of equation
(3.1). �

4. APPLICATION

To finish, we present one example which do not aim at generality but indicate how our theo-
rem can be applied to concrete problems. LetX = L2(Rn),µ > 0 and 0< α ≤ β ≤ 1. Consider
the following integro-differential equation

(4.1)



























∂ α+1
t u(t,x)+ µ∂ β

t u(t,x) = Au(t,x)+∂ α−1
t [t−1/3sin(u(t))] t ∈ [0,1];

u(0,x) = 0;

ut(0,x) =
N

∑
i=1

∫Rn
εk(x,y)u(ti,y)dy, x∈ Rn,

whereN is a positive integer, 0< t1 < t2 < · · ·< tm < 1; k(x,y)∈ L2(Rn×Rn;R+), the constants
α,β µ satisfy 0< α ≤ β ≤ 1, µ > 0, and the operatorA is defined by

(Au)(t,x) =
n

∑
i, j=1

ai j (x)
∂u(t,x)
∂zi∂zj

+
n

∑
i=1

bi(x)
u(t,x)

∂zi
+c(x)u(t,x),

with given coefficientsai j , bi , c, (i, j = 1,2, . . . ,n) satisfying the usual uniformly ellipticity
conditions, andD(A) = {v∈ X : v∈ H2(Rn)}. We will prove that there existsε > 0 sufficiently
small such that equation (4.1) has a mild solution onX. Indeed, note that system (4.1) takes the
abstract form

(4.2)







Dα+1
t u(t)+ µDβ

t u(t) = Au(t)+Dα−1
t f (t,u(t)), t ∈ [0,1];

u(0) = 0;
u′(0) = gε(u).
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where the functiongε : C([0,1],X) → X is given bygε(u)x = ε
m

∑
i=1

kgu(ti)(x) with (kgv)(x) =
∫Rn

k(x,y)v(y)dy, for v∈X,x∈Rn, and the functionf : [0,1]×X →X is defined byf (t,u(t))=

t−1/3sin(u(t)). Observe that‖ f (t,u(t))− f (t,v(t))‖6 t−1/3‖u−v‖, and hencef satisfies(H2).

Note that‖gε(v)‖ 6 N
(

∫Rn

∫Rn
εk2(z,y)dydz

)1/2
‖v‖, and the functionkg is completely con-

tinuous. It proves(H1). In addition ‖ f (t,u(t))‖ 6 t−1/3Φ(‖u‖), with Φ(‖u‖) ≡ 1, prov-
ing (H3). Finally, given a bounded subsetB of X, and from the properties ofγ, we obtain
γ( f (t,B)) ≤ t−1/2γ(sin(B)) ≤ Ct−1/2γ(B) for some constantC > 0 and therefore(H4) is also
satisfied.
On the other hand, it follows from the theory ofC0-semigroups (see e.g. [9]) thatA generates
an analytic, non compact semigroup{T(t)}t>0 on L2(Rn). In particular,A is π/2-sectorial.
Furthermore, there exists a constantM > 0 such thatM = sup{‖T(t)‖ : t > 0} < +∞. By
Theorem 2.2, the operatorA in equation (4.2) generates a bounded(α,β )µ -regularized fam-
ily {Sα,β (t)}t>0. Let K = sup{‖g1∗Sα,β (t)‖ : t ∈ [0,1]}. Observe that there existsε > 0 such

that Kc < 1 wherec = εN
(

∫Rn

∫Rn k2(z,y)dydz
)1/2

. Therefore, there existsR > 0 such that

KcR+
3K
2

< R. It follows that equation (4.2) has at least a mild solution for all ε > 0 suffi-

ciently small.
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