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1. Introduction

We study solutions of almost periodic linear differential systems. This field is called the
Favard theory what is based on the famous Favard result in [10] (see, e.g., [3, Theorem 1.2]
or [28, Theorem 1]). It is a well-known corollary of the Favard (and the Floquet) theory
that any bounded solution of a periodic linear differential system is almost periodic (see
[12, Corollary 6.5] and [13] for a generalization in the homogeneous case). This result is
no longer valid for almost periodic systems. There exist systems whose all solutions are
bounded and none of them is almost periodic (see [18, 31]). Homogeneous systems have the
zero solution which is almost periodic. But they do not need to have any non-zero almost
periodic solution. The existence of a homogeneous system, which has bounded solutions
(separated from zero) and, at the same time, all systems from some neighbourhood of it
do not possess non-trivial almost periodic solutions, is proved in [33].

In this paper, we consider almost periodic skew-symmetric homogeneous linear dif-
ferential systems. The basic motivation of our research is paper [38], where skew-Hermitian
systems are analysed. The main result of [38] says that, in an arbitrary neighbourhood
of a skew-Hermitian system, there exists another skew-Hermitian system which does not
possess an almost periodic solution other than the trivial one (not only with a fundamental
matrix which is not almost periodic—this problem is discussed in [34]). Our aim is to prove
the corresponding result for real skew-symmetric systems. Note that the process from [38]
cannot be applied in the real case.
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We use a recurrent method for constructing almost periodic functions. For non-almost
periodic solutions of homogeneous linear differential equations, we refer to [27] (and [26]),
where a method of constructions of minimal cocycles, which one gets as solutions of re-
current homogeneous linear differential systems, is mentioned. Special constructions of
almost periodic homogeneous linear differential systems with given properties can be found
in [19, 23, 24] as well. A method to construct fundamental matrices for almost periodic
homogeneous linear systems is introduced in [30].

The importance of skew-symmetric systems may be illustrated by the Cameron-Johnson
theorem which states that any almost periodic homogeneous linear differential system can
be reduced by a Lyapunov transformation to a skew-symmetric system if all solutions of
the given system and all of its limit equations are bounded (see [4]). Further, it is known
(see [32]) that the skew-symmetric systems, all of whose solutions are almost periodic, form
a dense subset in the space of all skew-symmetric systems (special cases are considered
in [20, 21] and the corresponding result about unitary difference systems is mentioned
in [36]). This fact also motivates the study of skew-symmetric systems without almost
periodic solutions.

More precisely, it is proved in [32] that, in any neighbourhood of an almost periodic
skew-symmetric system with frequency module F , there exists a system with a frequency
module contained in the rational hull of F possessing all almost periodic solutions with
frequencies belonging to the rational hull of F as well. From [35, Theorem 1] it follows that
a neighbourhood of an almost periodic skew-symmetric system with frequency module F
may not contain a system with almost periodic solutions and frequency module F .

In addition (see [34]), the systems with k-dimensional frequency basis, having solutions
which are not almost periodic, form a subset of the second category in the space of all sys-
tems with k-dimensional frequency basis. Thus, it is known (see also [32, Corollary 1]) that
the systems with k-dimensional frequency basis and with an almost periodic fundamental
matrix form a dense subset of the first category in the space of all considered systems
with k-dimensional frequency basis. For more details concerning the frequency modules
and bases of almost periodic linear differential systems and their solutions, we refer to
monograph [12, Chapters 4, 6] or to articles [28, 38].

Let us give a short literature overview about almost periodic solutions of almost periodic
linear differential equations. Sufficient conditions for the existence of almost periodic solu-
tions are mentioned in [5, 9, 17] (for generalizations and supplements, see [8, 16, 22]). Cer-
tain sufficient conditions, under which homogeneous systems that have non-trivial bounded
solutions also have non-trivial almost periodic solutions, are given in [29]. Concerning
known basic results about skew-symmetric systems and their fundamental matrices, we
refer to [2, 11, 25]. For the general theory of almost periodicity in connection with dif-
ferential equations, see [7]. We add that the elements of the theory of almost periodicity
can be found in many classical books, e.g., [1, 6].
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2. Preliminaries

Let m ∈ N \ {1} be arbitrarily given as the dimension of systems under consideration.
Throughout this paper, we will use the following notations: Mat (R, m) for the set of all
m × m matrices with real elements, SO(m) ⊂ Mat (R, m) for the set of all orthogonal
matrices with determinant 1, so(m) ⊂ Mat (R, m) for the set of all skew-symmetric (i.e.,
antisymmetric) matrices, I ∈ SO(m) for the identity matrix, O ∈ so(m) for the zero
matrix. We remark that the Lie algebra associated to the Lie group SO(m) consists of the
skew-symmetric m×m matrices (i.e., this Lie algebra is so(m) and it is sometimes called
the special orthogonal Lie algebra).

For the reader’s convenience, we recall the definition of almost periodicity and basic
properties of almost periodic functions which we will need later. Since we have to consider
the almost periodicity of vector valued and, at the same time, matrix valued functions, we
formulate the definition and the properties for functions with values in an arbitrary metric
space X with a metric µ.

Definition 1. A continuous function ψ : R → X is almost periodic if for any ε > 0, there

exists a number l(ε) > 0 with the property that any interval of length l(ε) of the real line

contains at least one point s satisfying

µ (ψ(t+ s), ψ(t)) < ε, t ∈ R.

Theorem 1. An almost periodic function with values in X is uniformly continuous on the

real line.

Proof. The theorem can be easily proved by modifying the proof of [6, Theorem 6.2]. �

Theorem 2. Let ψ : R → X be a continuous function. Then, ψ is almost periodic if and

only if from any sequence of the form {ψ(t+ sn)}n∈N
, where sn are real numbers, one can

extract a subsequence {ψ (t+ rn)}n∈N
satisfying the Cauchy uniform convergence condition

on R; i.e., for any ε > 0, there exists n(ε) ∈ N with the property that

µ(ψ(t+ ri), ψ(t+ rj)) < ε, t ∈ R,

for all i, j > n(ε), i, j ∈ N.

Proof. See, e.g., [38, Theorem 2.4]. �

Let us consider systems of m homogeneous linear differential equations of the form

x′(t) = A(t) · x(t), t ∈ R, (1)

where A : R → so(m) is an almost periodic function. Let S denote the set of all systems (1).
We can identify the function A with the system (1) which is determined by A. Especially,
we will write A ∈ S. Let XS = XS (t) denote the principal fundamental matrix of S ∈ S
satisfying XS (0) = I.

In the vector space Rm, we will use the Euclidean norm ‖ · ‖2 (one can also replace
it by the absolute norm or the maximum norm). Let ‖ · ‖ be the corresponding matrix
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norm in Mat (R, m) and let ̺ be the metric given by ‖ · ‖. Considering that every almost
periodic function is bounded (see directly the definition of almost periodicity), the distance
between two systems A,B ∈ S is defined by the norm of the matrix valued functions A,B,
uniformly on R; i.e., we introduce the metric

σ(A,B) := sup
t∈R

‖A(t) − B(t) ‖, A,B ∈ S.

For ε > 0, the symbol Oσ
ε (A) will denote the ε-neighbourhood of a system A in S and

O̺
ε(M) the ε-neighbourhood of a matrix M in a given subset of Mat (R, m).
Now we can repeat the above mentioned result (see Introduction) in a more explicit

form.

Theorem 3. Let A ∈ S and ε > 0 be arbitrary. There exists B ∈ Oσ
ε (A) whose all

solutions are almost periodic.

Proof. See [32, Theorem 1, Remark 3]. �

3. Results

To prove the announced new result, we need the following lemmas.

Lemma 1. There exist ξ > 0 and a neighbourhood Õ (O) of the zero matrix in so(m) for

which the exponential map is a bijection between Õ (O) and O̺
ξ (I) ∩ SO(m) such that the

maps

A 7→ exp (A) , A ∈ Õ (O) ; A 7→ ln (A) , A ∈ O̺
ξ (I) ∩ SO(m) (2)

are Lipschitz continuous.

Proof. It is well-known that the exponential map is a bijection between Õ (O) and O̺
ξ (I)∩

SO(m) for a sufficiently small ξ > 0 and the corresponding neighbourhood Õ (O) ⊂ so(m).
The fact that the maps in (2) are Lipschitz continuous follows from the inequality

‖ exp (X + Y ) − exp (X) ‖ ≤ ‖ Y ‖ · exp (‖X ‖) · exp (‖Y ‖) , X, Y ∈ so(m),

and, e.g., from the Richter theorem (see [15, Theorem 11.1])

ln (X) =

1
∫

0

(X − I) [t (X − I) + I]−1 dt, X ∈ O̺
ξ (I) ∩ SO(m).

�

Remark 1. Any non-singular matrix has infinitely many logarithms. But symbol ln (A)
denotes the principal logarithm, which is the unique logarithm whose spectrum lies in the
strip {z ∈ C; Im z ∈ [−π, π)}.
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Lemma 2. There exists p(ϑ) ∈ N for all ϑ > 0 with the property that, for any sequence

{P0, P1, . . . , Pn, . . . , P2n} ⊂ SO(m), n ≥ p(ϑ),

one can find matrices Q2, Q4, . . . , Q2n ∈ SO(m) for which

Q2i ∈ O̺
ϑ (P2i) , i ∈ {1, . . . , n}, P1 ·Q2 · P3 ·Q4 · · ·P2n−1 ·Q2n = P0. (3)

Proof. First we recall that the group SO(m) is the so-called transformable group (see [37,
Remark 2]). This fact implies (see again [37]) the existence of q(δ) ∈ N for all δ > 0 such
that, for any sequence {P0, P1, . . . , Pq, . . . , Pn} ⊂ SO(m), there exist T1, . . . , Tq, . . . , Tn ∈
SO(m) satisfying

Ti ∈ O̺
δ (Pi) , i ∈ {1, . . . , n}, T1 · T2 · · ·Tn = P0.

We replace matrices P1, . . . , Pn−1, Pn by P1 ·P2, . . . , P2n−3 ·P2n−2, P2n−1 ·P2n and, using the
transformability of SO(m), we obtain matrices Ti, i ∈ {1, . . . , n}. We put

R1 := (P1 · P2)
−1 · T1, . . . , Rn := (P2n−1 · P2n)−1 · Tn.

Since the multiplication of matrices is Lipschitz continuous on SO(m) as the map O 7→ OT ,
there exists L > 0 such that

Ri ∈ O̺
δL (I) , i ∈ {1, . . . , n},

and, consequently, there exists K > 0 for which

P2 · R1 ∈ O̺
δK (P2) , . . . , P2n · Rn ∈ O̺

δK (P2n) .

We see
T1 = P1 · P2 · R1, . . . , Tn = P2n−1 · P2n ·Rn,

i.e., we have (3) for Q2 := P2 · R1, . . . , Q2n := P2n ·Rn and p(ϑ) := q(ϑ/K). �

We will also use a simple method for constructing almost periodic functions with pre-
scribed values, which is formulated in the next lemma. Note that this lemma is a modifi-
cation of [38, Theorem 3.1] and that the analogous way, one can generate almost periodic
sequences with several given properties, can be found in [39].

Lemma 3. If the sequence of non-negative numbers a(i) for i ∈ N has the property that

∞
∑

i=1

a(i) <∞,

then any continuous function ψ : R → so(m) for which

ψ(t) = ψ (t− 1) , t ∈ (1, 2],

ψ(t) = ψ (t+ 2) , t ∈ (−2, 0],

ψ(t) ∈ O̺
a(1) (ψ (t− 4)) , t ∈ (2, 6],

ψ(t) = ψ (t+ 8) , t ∈ (−10,−2] ,
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ψ(t) ∈ O̺
a(2)

(

ψ
(

t− 24
))

, t ∈
(

2 + 22, 2 + 22 + 24
]

,

ψ(t) = ψ
(

t+ 25
)

, t ∈
(

−25 − 23 − 2,−23 − 2
]

,

...

ψ(t) ∈ O̺
a(n)

(

ψ
(

t− 22n
))

, t ∈
(

2 + 22 + · · ·+ 22n−2, 2 + 22 + · · · + 22n−2 + 22n
]

,

ψ(t) = ψ
(

t+ 22n+1
)

, t ∈
(

−22n+1 − · · · − 23 − 2,−22n−1 − · · · − 23 − 2
]

,

...

is almost periodic.

Proof. Let ε > 0 be arbitrarily given and let k = k(ε) ∈ N satisfy
∞

∑

i=k

a(i) <
ε

2
. (4)

From

ψ(t) ∈ O̺
a(k)

(

ψ
(

t− 22k
))

, t ∈
(

2 + 22 + · · ·+ 2k−2, 2 + 22 + · · ·+ 2k
]

,

ψ(t) = ψ
(

t+ 22k+1
)

, t ∈
(

−22k+1 − · · · − 23 − 2,−22k−1 − · · · − 23 − 2
]

,

ψ(t) ∈ O̺
a(k+1)

(

ψ
(

t− 22k+2
))

, t ∈
(

2 + 22 + · · ·+ 22k, 2 + 22 + · · ·+ 22k+2
]

,

...

it follows

ψ
(

t+ 22k
)

∈ O̺
a(k)(ψ(t)), t ∈

(

−22k−1 − · · · − 23 − 2, 2 + 22 + · · · + 22k−2
]

,

ψ
(

t− 22k
)

∈ O̺
a(k)(ψ(t)), t ∈

(

−22k−1 − · · · − 23 − 2, 2 + 22 + · · ·+ 22k−2
]

,

ψ
(

t− 22k+1
)

∈ O̺
a(k)(ψ(t)), t ∈

(

−22k−1 − · · · − 23 − 2, 2 + 22 + · · · + 22k−2
]

,

ψ
(

t+ 22k+1
)

∈ O̺
a(k)+a(k+1)(ψ(t)), t ∈

(

−22k−1 − · · · − 23 − 2, 2 + 22 + · · ·+ 22k−2
]

,

ψ
(

t+ 3 · 22k
)

∈ O̺
a(k)+a(k+1)(ψ(t)), t ∈

(

−22k−1 − · · · − 23 − 2, 2 + 22 + · · · + 22k−2
]

,

ψ
(

t+ 22k+2
)

∈ O̺
a(k+1)(ψ(t)), t ∈

(

−22k−1 − · · · − 23 − 2, 2 + 22 + · · ·+ 22k−2
]

,

ψ
(

t+ 22k + 22k+2
)

∈ O̺
a(k)+a(k+1)(ψ(t)), t ∈

(

−22k−1 − · · · − 23 − 2, 2 + 22 + · · · + 22k−2
]

,

...

Thus (see (4)), it is true

ψ
(

t+ l · 22k
)

∈ O̺
ε/2(ψ(t)), t ∈

(

−22k−1 − · · · − 23 − 2, 2 + 22 + · · ·+ 22k−2
]

, l ∈ Z.

If we express any t ∈ R as t = t1 + t2, where

t1 ∈
(

−22k−1 − · · · − 23 − 2, 2 + 22 + · · ·+ 22k−2
]

, t2 = j · 22k for j ∈ Z,
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then we have

̺
(

ψ(t), ψ
(

t+ l · 22k
))

≤ ̺ (ψ (t1 + t2) , ψ (t1)) + ̺
(

ψ (t1) , ψ
(

t1 + (j + l) 22k
))

<
ε

2
+
ε

2
= ε, t ∈ R, l ∈ Z.

This inequality implies that we can choose l(ε) := 22k(ε)+1 for any ε > 0 (see Definition 1);
i.e., the resulting function ψ is almost periodic. �

Now we can prove the result that the systems having no non-zero almost periodic solution
form an everywhere dense subset of S.

Theorem 4. Let A ∈ S and ε > 0 be arbitrary. There exists B ∈ Oσ
ε (A) which does not

have an almost periodic solution other than the trivial one.

Proof. Using Theorem 1, the almost periodicity of A implies that there exist δ ∈ (0, 1/3)

and an almost periodic matrix valued function Ã : R → so(m) satisfying Ã ∈ Oσ
ε/2(A) and

Ã|[k,k+δ] ≡ const. for any k ∈ Z. Indeed, it suffices to define Ã as follows

Ã(t) := A

(

k +
δ

2

)

, t ∈ [k, k + δ], k ∈ Z,

Ã(t) := A(k − δ) +
t− (k − δ)

δ

[

A

(

k +
δ

2

)

− A(k − δ)

]

, t ∈ [k − δ, k), k ∈ Z,

Ã(t) := A

(

k +
δ

2

)

+
t− (k + δ)

δ

[

A(k + 2δ) − A

(

k +
δ

2

)]

, t ∈ (k + δ, k + 2δ], k ∈ Z,

Ã(t) := A(t), t /∈
⋃

k∈Z

[k − δ, k + 2δ],

where δ > 0 is sufficiently small. Thus, we will assume without loss of generality that
A ∈ S is constant on all interval [k, k + δ], k ∈ Z.

Every almost periodic function is bounded. Hence, there exists η ∈ (0, 1) with the
property that

‖XS (t+ s) −XS (t) ‖ < ξ (5)

for any t ∈ R, s ∈ [0, η], and S ∈ Oσ
ε (A), where ξ > 0 is taken from Lemma 1. We can

also assume that δ < η. Further (see again Lemma 1), there exists M ∈ N satisfying

‖A− B ‖ < ϑ if A,B ∈ Õ (O) , exp (A) ∈ O̺
ϑ/M (exp (B)) ⊆ O̺

ξ (I) ∩ SO(m). (6)

We choose an increasing sequence of numbers n(i) ∈ N \ {1} for i ∈ N arbitrarily so that

2n(i)−1 ≥ p

(

ε

2iM
·
δ

2

)

, i ∈ N, (7)

where p(ϑ) is taken from Lemma 2.
Since the sum of skew-symmetric matrices is a skew-symmetric matrix and since the

sum of two almost periodic functions is almost periodic as well (see Theorem 2), we have
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A1 + A2 ∈ S for any A1, A2 ∈ S. Thus, it suffices to find C ∈ S ∩ Oσ
ε (O) for which the

system A+C does not have any non-zero almost periodic solution. We will construct such
a system C (as continuous function) applying Lemma 3 for

a (n(i)) :=
ε

2i
, i ∈ N; a (j) := 0, j /∈ {n(i); i ∈ N}.

Let us denote

ai := 2 + 22 + · · ·+ 22n(i)−2, bi := 2 + 22 + · · ·+ 22n(i)−2 + 22n(i),

d1
i :=

(

1

4
−

1

22n(i)

)

δ, d2
i :=

(

3

4
+

1

22n(i)

)

δ, i ∈ N.

In the first step of the construction, we put

C(t) := O, t ∈
(

−22n(1)−1 − · · · − 23 − 2, 2 + 22 + · · ·+ 22n(1)−2
]

,

C(t) := O, t ∈ (a1, b1] \
⋃

j∈N

(

j + d1
1, j + d2

1

]

,

C(t) := Cj−a1+1
1 , t ∈

(

j + d1
2, j + d2

2

]

⊂ (a1, b1] ,

for arbitrary matrices

Cj−a1+1
1 ∈ O̺

ε/2 (O) ∩ so(m), j ∈ {a1, . . . , b1 − 1},

and we define C so that it is linear on intervals
(

j + d1
1, j + d1

2

]

,
(

j + d2
2, j + d2

1

]

, j ∈ {a1, . . . , b1 − 1} .

In the second step, we put

C(t) := C
(

t+ 22n(1)+1
)

, t ∈
(

−22n(1)+1 − · · · − 23 − 2,−22n(1)−1 − · · · − 23 − 2
]

,

C(t) := C
(

t− 22n(1)+2
)

, t ∈
(

2 + 22 + · · · + 22n(1), 2 + 22 + · · ·+ 22n(1)+2
]

,

...

C(t) := C
(

t+ 22n(2)−1
)

, t ∈
(

−22n(2)−1 − · · · − 23 − 2,−22n(2)−3 − · · · − 23 − 2
]

,

C(t) := C
(

t− 22n(2)
)

, t ∈ (a2, b2] \
⋃

j∈N

(

j + d1
2, j + d2

2

]

,

and we define C as linear on intervals
(

j + d1
2, j + d1

3

]

,
(

j + d2
3, j + d2

2

]

, j ∈ {a2, . . . , b2 − 1}.

At the same time, we define

C(t) := Cj−a2+1
2 ∈ so(m), t ∈

(

j + d1
3, j + d2

3

]

, j ∈ {a2, . . . , b2 − 1},

arbitrarily so that
∥

∥C(t) − C
(

t− 22n(2)
) ∥

∥ <
ε

4
, t ∈ (a2, b2] .
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We proceed further in the same way. In the i-th step, we put

C(t) := C
(

t+ 22n(i−1)+1
)

, t ∈
(

−22n(i−1)+1 − · · · − 23 − 2,−22n(i−1)−1 − · · · − 23 − 2
]

,

C(t) := C
(

t− 22n(i−1)+2
)

, t ∈
(

2 + 22 + · · ·+ 22n(i−1), 2 + 22 + · · · + 22n(i−1)+2
]

,

...

C(t) := C
(

t+ 22n(i)−1
)

, t ∈
(

−22n(i)−1 − · · · − 23 − 2,−22n(i)−3 − · · · − 23 − 2
]

,

C(t) := C
(

t− 22n(i)
)

, t ∈ (ai, bi] \
⋃

j∈N

(

j + d1
i , j + d2

i

]

, (8)

and we define C as a linear function on intervals
(

j + d1
i , j + d1

i+1

]

,
(

j + d2
i+1, j + d2

i

]

, j ∈ {ai, . . . , bi − 1},

and

C(t) := Cj−ai+1
i ∈ so(m), t ∈

(

j + d1
i+1, j + d2

i+1

]

, j ∈ {ai, . . . , bi − 1},

arbitrarily so that
∥

∥C(t) − C
(

t− 22n(i)
) ∥

∥ <
ε

2i
, t ∈ (ai, bi] .

For

ζ := max
{∥

∥Cj
1

∥

∥ ; j ∈
{

1, . . . , 22n(1)
}}

<
ε

2
,

we have

‖C(t) ‖ ≤ ζ, t ∈
(

−22n(1)−1 − · · · − 23 − 2, 2 + 22 + · · · + 22n(1)
]

,

‖C(t) ‖ < ζ +
ε

4
, t ∈

(

−22n(2)−1 − · · · − 23 − 2, 2 + 22 + · · ·+ 22n(2)
]

,

...

‖C(t) ‖ < ζ +
ε

4
+ · · · +

ε

2i
, t ∈

(

−22n(i)−1 − · · · − 23 − 2, 2 + 22 + · · · + 22n(i)
]

,

...

i.e., there exists ε̃ ∈ (0, ε) with the property that ‖C(t) ‖ < ε̃, t ∈ R. Thus, we obtain an
almost periodic (continuous) function C ∈ S ∩Oσ

ε (O).
We denote

Ii := [ai, bi] =
[

2 + 22 + · · ·+ 22n(i)−2, 2 + 22 + · · ·+ 22n(i)−2 + 22n(i)
]

.

In the construction, we can choose constant values C1
i , . . . , C

22n(i)

i on 22n(i) subintervals
of Ii, where the length of each one of these intervals is

d2
i+1 − d1

i+1 ∈

(

δ

2
, δ

)

. (9)
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Each value Cj
i can be chosen arbitrarily from the (ε/2i)-neighbourhood of a skew-sym-

metric matrix, which is given by the previous steps of the construction. Further (see (8)),
the function C is determined on intervals
(

ai, ai + d1
i

]

,
(

ai + d2
i , ai + 1 + d1

i

]

, . . .
(

bi − 2 + d2
i , bi − 1 + d1

i

]

,
(

bi − 1 + d2
i , bi

]

by prescription C(t) = C
(

t− 22n(i)
)

.
We repeat that C is linear on the remaining subintervals of Ii. These intervals will be

denoted by J1
i , . . . , J

22n(i)+1

i , where

J2j−1
i :=

(

ai + j − 1 + d1
i , ai + j − 1 + d1

i+1

]

, j ∈
{

1, . . . , 22n(i)
}

,

J2j
i :=

(

ai + j − 1 + d2
i+1, ai + j − 1 + d2

i

]

, j ∈
{

1, . . . , 22n(i)
}

.
(10)

Especially, we see that the length of each J j
i is less than δ/22n(i) and that

J1
i , . . . , J

2j
i ⊂ (ai, ai + j) , J2j+1

i , . . . , J22n(i)+1

i ⊂ (ai + j, bi) , j ∈
{

1, . . . , 22n(i) − 1
}

,

i.e., the total length lki of all subintervals J j
i ⊂ [ai, ai + k] is

lki <
2kδ

22n(i)
, k ∈

{

1, . . . , 22n(i)
}

. (11)

Let us consider S = A+C ∈ Oσ
ε (A). To describe the principal fundamental matrix XS,

we define

X̃ i
S(t) := XS(t), t ∈

[

ai, ai + d1
i

]

,

X̃ i
S(t) := X̃ i

S

(

ai + d1
i

)

, t ∈
(

ai + d1
i , ai + d1

i+1

]

,

X̃ i
S(t) := exp

((

A+ C1
i

) (

t− ai − d1
i+1

))

· X̃ i
S

(

ai + d1
i+1

)

, t ∈
(

ai + d1
i+1, ai + d2

i+1

]

,

X̃ i
S(t) := X̃ i

S

(

ai + d2
i+1

)

, t ∈
(

ai + d2
i+1, ai + d2

i

]

,

X̃ i
S(t) := XS (t) ·

(

XS

(

ai + d2
i

))

−1
· X̃ i

S

(

ai + d2
i

)

, t ∈
(

ai + d2
i , ai + 1 + d1

i

]

,

...

X̃ i
S(t) := XS (t) ·

(

XS

(

bi − 2 + d2
i

))

−1
· X̃ i

S

(

bi − 2 + d2
i

)

,

t ∈
(

bi − 2 + d2
i , bi − 1 + d1

i

]

,

X̃ i
S(t) := X̃ i

S

(

bi − 1 + d1
i

)

, t ∈
(

bi − 1 + d1
i , bi − 1 + d1

i+1

]

,

X̃ i
S(t) := exp

((

A+ C22n(i)

i

)

(

t− bi + 1 − d1
i+1

)

)

· X̃ i
S

(

bi − 1 + d1
i+1

)

,

t ∈
(

bi − 1 + d1
i+1, bi − 1 + d2

i+1

]

,

X̃ i
S(t) := X̃ i

S

(

bi − 1 + d2
i+1

)

, t ∈
(

bi − 1 + d2
i+1, bi − 1 + d2

i

]

,

X̃ i
S(t) := XS (t) ·

(

XS

(

bi − 1 + d2
i

))

−1
· X̃ i

S

(

bi − 1 + d2
i

)

, t ∈
(

bi − 1 + d2
i , bi

]

.
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Since

XS (t2) −XS (t1) =

t2
∫

t1

S(s)XS (s) ds, t1, t2 ∈ R,

it is valid that (see also (10))

∥

∥

∥
XS (t) − X̃ i

S (t)
∥

∥

∥
≤

k
∑

j=1

ai+j−1+d1
i+1

∫

ai+j−1+d1
i

‖S(s)XS (s) ‖ ds

+
k

∑

j=1

ai+j−1+d2
i

∫

ai+j−1+d2
i+1

‖S(s)XS (s) ‖ ds

(12)

if t ≤ ai + k, k ∈
{

1, . . . , 22n(i)
}

. Considering S ∈ Oσ
ε (A) and XS (t) , X̃ i

S (t) ∈ SO(m),
t ∈ R, from (11) and (12) it follows that there exists N ∈ N satisfying

∥

∥

∥
XS (t) − X̃ i

S (t)
∥

∥

∥
<

Nk

22n(i)−1
(13)

for t ∈ [ai, ai + k], k ∈
{

1, . . . , 22n(i)
}

.
Let n0 ∈ N be such that

N ·
4n(i) 2n(i)

22n(i)−1
<

1

3
, i ≥ n0 (i ∈ N). (14)

We put X1 := −I, X2 = −I, when m is even, and

X1 :=













1 0 0 · · · 0
0 −1 0 · · · 0
0 0 −1 · · · 0
...

...
...

. . .
...

0 0 0 · · · −1













∈ SO(m), X2 :=













−1 · · · 0 0 0
...

. . .
...

...
...

0 · · · −1 0 0
0 · · · 0 −1 0
0 · · · 0 0 1













∈ SO(m)

for odd m. If we express

X̃ i
S

(

ai + d2
i+1

)

= exp
((

A + C1
i

) (

d2
i+1 − d1

i+1

))

· X̃ i
S

(

ai + d1
i+1

)

,

X̃ i
S

(

ai + 1 + d1
i+1

)

= XS

(

ai + 1 + d1
i

)

·
(

XS

(

ai + d2
i

))

−1
· X̃ i

S

(

ai + d2
i+1

)

,

...

X̃ i
S

(

bi − 1 + d1
i+1

)

= XS

(

bi − 1 + d1
i

)

·
(

XS

(

bi − 2 + d2
i

))

−1
· X̃ i

S

(

bi − 2 + d2
i+1

)

,

X̃ i
S

(

bi − 1 + d2
i+1

)

= exp
((

A+ C22n(i)

i

)

(

d2
i+1 − d1

i+1

)

)

· X̃ i
S

(

bi − 1 + d1
i+1

)

,

X̃ i
S (bi) = XS (bi) ·

(

XS

(

bi − 1 + d2
i

))

−1
· X̃ i

S

(

bi − 1 + d2
i+1

)

,
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then it is seen that we can use Lemma 2 to choose values Cj
i on subintervals

(

ai + j − 1 + d1
i+1, ai + j − 1 + d2

i+1

]

, j ∈
{

1, . . . , 22n(i)
}

,

so that we obtain

X̃ i
S

(

ai + 2n(i)
)

= I, X̃ i
S

(

ai + 2n(i) +
(

2n(i) − 1
))

= X1,

X̃ i
S

(

ai + 3 · 2n(i)
)

= I, X̃ i
S

(

ai + 3 · 2n(i) +
(

2n(i) − 1
))

= X2,

X̃ i
S

(

ai + 4 · 2n(i) + 2n(i)
)

= I, X̃ i
S

(

ai + 4 · 2n(i) + 2n(i) +
(

2n(i) − 21
))

= X1,

X̃ i
S

(

ai + 4 · 2n(i) + 3 · 2n(i)
)

= I, X̃ i
S

(

ai + 4 · 2n(i) + 3 · 2n(i) +
(

2n(i) − 21
))

= X2,

...

X̃ i
S

(

ai + 4 (n(i) − 1) 2n(i) + 2n(i)
)

= I,

X̃ i
S

(

ai + 4 (n(i) − 1) 2n(i) + 2n(i) +
(

2n(i) − 2n(i)−1
))

= X1,

X̃ i
S

(

ai + 4 (n(i) − 1) 2n(i) + 3 · 2n(i)
)

= I,

X̃ i
S

(

ai + 4 (n(i) − 1) 2n(i) + 3 · 2n(i) +
(

2n(i) − 2n(i)−1
))

= X2.

Indeed, it suffices to consider the form of matrices

exp
((

A+ Cj
i

) (

d2
i+1 − d1

i+1

))

for which (see (5), (9))
∥

∥ exp
((

A+ Cj
i

) (

d2
i+1 − d1

i+1

))

− I
∥

∥ < ξ,

inequality (7) with M ∈ N satisfying (6) and with

d2
i+1 − d1

i+1 >
δ

2
, 2n(i) − 1 > 2n(i) − 21 > · · · > 2n(i) − 2n(i)−1 = 2n(i)−1,

and the fact that we can choose all matrix Cj
i from the (ε/2i)-neighbourhood of a given

skew-symmetric matrix arbitrarily. Note that

ai + 4 (n(i) − 1) 2n(i) + 3 · 2n(i) +
(

2n(i) − 2n(i)−1
)

< ai + 4n(i) · 2n(i) (15)

and ai + 4n(i)2n(i) < bi for sufficiently large i ∈ N, i.e., we can construct the resulting
function C with the above mentioned properties on Ii for all i ≥ n0 (see also (14)).

Now we use (13) and (14) in connection with (15). For k ∈
{

1, . . . , 4n(i)2n(i)
}

, where
i ≥ n0, we have

∥

∥

∥
XS (t) − X̃ i

S (t)
∥

∥

∥
< N ·

4n(i) 2n(i)

22n(i)−1
<

1

3
, t ∈ [ai, ai + k]. (16)

Especially, for all i ≥ n0 (i ∈ N), we obtain
∥

∥

∥
XS

(

si
j

)

− X̃ i
S

(

si
j

)

∥

∥

∥
<

1

3
, j ∈ {1, . . . , 4n(i)}, (17)
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where
si
1 := ai + 2n(i), si

2 := ai + 2n(i) +
(

2n(i) − 1
)

,

si
3 := ai + 3 · 2n(i), si

4 := ai + 3 · 2n(i) +
(

2n(i) − 1
)

,
...

si
4n(i)−3 := ai + 4 (n(i) − 1) 2n(i) + 2n(i),

si
4n(i)−2 := ai + 4 (n(i) − 1) 2n(i) + 2n(i) +

(

2n(i) − 2n(i)−1
)

,

si
4n(i)−1 := ai + 4 (n(i) − 1) 2n(i) + 3 · 2n(i),

si
4n(i) := ai + 4 (n(i) − 1) 2n(i) + 3 · 2n(i) +

(

2n(i) − 2n(i)−1
)

.

We recall that we need to prove that any non-trivial solution of S is not almost periodic.
By contradiction, suppose that the solution

x(t) = XS(t) · u (18)

of the Cauchy problem
x′(t) = S(t) · x(t), x(0) = u,

where u ∈ Rm, || u ||2 = 1, is almost periodic. Applying Theorem 2 for ε = 1/3 and
si = 2n(i), i ∈ N, we obtain

∥

∥x
(

t+ 2n(i(1))
)

− x
(

t+ 2n(i(2))
) ∥

∥

2
<

1

3
, t ∈ R, (19)

for all i(1), i(2) from an infinite set N0 ⊆ N.
It is immediately seen that

max {||X1 · u− u ||2, ||X2 · u− u ||2} ≥ 1. (20)

Thus, from the construction, (17), (20), and from
∥

∥

∥
X̃ i

S(t) · u− X̃ i
S(s) · u

∥

∥

∥

2
≤

∥

∥

∥
X̃ i

S(t) · u−XS(t) · u
∥

∥

∥

2
+

‖XS(t) · u−XS(s) · u ‖2 +
∥

∥

∥
XS(s) · u− X̃ i

S(s) · u
∥

∥

∥

2

for
t = si

4, s = si
3; t = si

2, s = si
1;

...

t = si
4n(i), s = si

4n(i)−1; t = si
4n(i)−2, s = si

4n(i)−3,

respectively, it follows

1 <
1

3
+

∥

∥XS

(

si
4j

)

· u−XS

(

si
4j−1

)

· u
∥

∥

2
+

1

3
or

1 <
1

3
+

∥

∥XS

(

si
4j−2

)

· u−XS

(

si
4j−3

)

· u
∥

∥

2
+

1

3
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for j ∈ {1, . . . , n(i)}. Hence, we have

max
{ ∥

∥XS

(

si
4j

)

· u−XS

(

si
4j−1

)

· u
∥

∥

2
,
∥

∥XS

(

si
4j−2

)

· u−XS

(

si
4j−3

)

· u
∥

∥

2

}

>
1

3
(21)

for all j ∈ {1, . . . , n(i)} and i ≥ n0. Since

si
2 − si

1 = 2n(i) − 1 = si
4 − si

3,

si
6 − si

5 = 2n(i) − 21 = si
8 − si

7,
...

si
4n(i)−2 − si

4n(i)−3 = 2n(i) − 2n(i)−1 = si
4n(i) − si

4n(i)−1,

inequality (21) implies (see (18))

sup
t∈R

∥

∥x(t) − x
(

t+ 2n(i) − 2j−1
) ∥

∥

2
>

1

3
(22)

for all i ≥ n0 and j ∈ {1, . . . , n(i)}. Of course, we can rewrite (19) into

sup
t∈R

∥

∥x(t) − x
(

t+ 2n(i(2)) − 2n(i(1))
) ∥

∥

2
≤

1

3
, i(1), i(2) ∈ N0.

Considering (22), we see that (19) cannot be true for all i(1), i(2) from an infinite set N0.
This contradiction proves the theorem. �

The presented process can be applied to prove the existence of systems from S with
several properties. For example, we mention the following result.

Theorem 5. Let A ∈ S and ε > 0 be arbitrarily given. There exists B ∈ Oσ
ε (A) with the

property that

{XB(t); t ∈ R} = SO(m).

Proof. Let a sequence {Xk}k∈N
⊂ SO(m) be dense in SO(m). In the proof of Theorem 4,

we can replace considered matrices X1, X2 by arbitrary matrices Xk, Xk+1. Thus, there is
shown the existence of a system S = A+ C ∈ Oσ

ε (A) with the property that (see (16))

∥

∥XS

(

si
j

)

−Xj

∥

∥ < N ·
4n(i) 2n(i)

22n(i)−1

for some si
j ∈ R and all j ∈ {1, . . . , 2n(i)}, i ≥ n0. Now it suffices to consider that

lim
i→∞

N ·
4n(i) 2n(i)

22n(i)−1
= 0.

�

At the end, we remark that the question of generalizations of Theorem 4 concerning other
homogeneous linear differential systems, which can have only almost periodic solutions,
remains open (contrary to the corresponding discrete case, see [14, 37]).
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