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1 Introduction

Impulsive differential equations have become more important in recent years in some mathematical
models of real processes and phenomena studied in physics, chemical technology, biotechnology and
economics. There has been a significant development in impulse theory ([I][2]).

The differential equations with parameters play important roles and tools not only in mathematics but

also in physics, population dynamics, control systems, dynamical systems and engineering to create the
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mathematical modelling of many physical phenomena. It is more accurate than the average differential
equations to describe the objective world. And the existence of solutions for the BVPS of these equations
have been studied by many authors([I1]-[T3]).

Especially, there is an increasing interest in the study of nonlinear mixed integro-differential equations
with deviating arguments and multipiont BVPS(H]-[I0]) for impulsive differential equations. And theo-
rems about existence, uniqueness of differential and impulsive functional differential abstract evolution
Cauchy problem with nonlocal conditions have been studied by Byszewski and Lakshmikantham [21], by
G.Infants [22], by Chang et al.]20]|25], by Anguraj et al.[T9], and by Akca et al.[24] and the references
therein.

In this paper, we are concerned with the following BVPS for the nonlinear mixed impulsive functional

integro-differential equations with a parameter:

u'(t) = f(t,u(t),u(a(t)), Tu, Su,0) t#ty, teJ=][0,T)

Au(ty) = Ix(u(ty), 0) k=1,2,---,m (1)
u(0) = Mu(T) + Xz fy w(s,u(s))ds + S agu(n;) +¢
Qu(T), 0) =0,

where 0 =1t <t; <ta < - <ty <ty <tmyr =T,f € C(JXR®R), I € C(RxR,R), (Tu)(t) =
) =

B(t) ) T
/ E(t, s)u(vy(s))ds, (Su)(t / h(t, s)u(d(s))ds, and Au(ty) = u(t]) —u(t;), w € C(J x R, R),
QO € C(Rx R,R), 0 < )\ <1, OOS A, 0 < a;, ;0 € R, and 0 < 7n; < T. The assumption about
a, B3,7,90,k and h will appear latter.
Special cases
(X =1,a,=X=k=0,(i=1,2,---p) then the Eq.(1.1)reduces to the periodic boundary value
problem which has been studied in ([T4]-[T6] [18]).
() faj=14+M,7=0,A=k=0, a, =0, (i =1,2,j—1,j+1,---p) then the Eq.(1.1) reduces to
the anti-periodic boundary value problem which has been studied in ([3] [T7] [T9]).
(iii) If g #0,a;, =k =0, (i =1,2,---p) then the Eq.(1.1) reduces to the integral boundary value
problem which has been studied in [23].
(iv)Ifa; 20, 0<n <T, Aa=k=0, (i=1,2,---p) then the Eq.(1.1) can be regarded as the nonlocal
Cauchy problem.

The article is organized as follow. In section 2, we establish new comparison principles. In section 3,
by using of the monotone iterative technique and the method of upper and lower solutions, we obtain the
existence result for the extremal solutions of BVPS(1.1). In section 4, we give an example that illustrates

our results.
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2 Preliminaries and lemmas

Let PC(J) = {z: J — R;z(t) is continuous everywhere except for some #;, at which z(¢;) and z(t,) ex-
ist and z(ty) = z(t, ), k=1,2,---,m}; PCY(J) ={z € PC(J) : 2/(t) is continuous everywhere except
for some ¢, at which 2/(¢) and 2/ (t;) exist and 2/(ty) = 2'(t;, ), k =1,2,--- ,m}. Let J~ = J\{tg, k =
1,2,---,m}, PC(J) and PC'(J) are Banach spaces with the norms | z ||pc= sup{|z(t)| : t € J} and
| z [|[pcr= maz{|| = ||pc, || 2’ |pc}. (z,7) € PCY(J) x R is called a solution of BVPS (1.1) if it
satisfies Fq.(1.1) .

Let (z;(t), ;) € PCH(J) x R(i = 1,2), 11 < 72, 21(t) < 22(t) denote that (z1(t),71) < (w2(t), 72). The

(z
interval [z1, z2] X [11, T2] denote that {(x(t),7) € PC(J) x R| 11 <7 < 7o, x1(t) < z(t) < x2(t)}.

For conveniences, we set

N*(t) = N(t)efr; M(S)dsef foa(t) M(S)dS, K*(t) — K(t)efr: M(s)ds7
H*(t) = H(t)ef[; M(S)dsa k*(t, S) = ]{:(lf7 s)e* OW(S) M(T)d"'7 (2'1)
hE(t, s) = h(t, s)e= Jo O MDAT px — o= [ M(s)ds,

07 (t) = N*(t) + K*(t) [Tk (¢, 5)ds + H* (1) [ h*(t,5)ds £ 0 for t € J, u* = [ 6% (t)dt.

m

(o) [ + 3 L] < v
k=1

Lemma 2.1 Assume that (H;)(Hz) hold and ¢ € PC'(.J) such that

q(t) < =M@t)q(t) - (Hq)t) t#te, t€J=[0,T]
tr) < —Li(q(ty)) k=1,2,---'m (2.2)

where the operator 7 is defined as

B(t) T
(#q)(t) = N(B)g(a(t) + K(2) / K(t,s)q(y(s))ds + H{(1) / (t, $)(6(s))ds.

Then ¢(t) <0 for t € J.
Proof :Let p(t) = q(t)e)o M4 Obviously p(t) and g(t) have the same sign on J. In view of (2.2), we

have
p'(t) < —(H*p)t) t#ty, teJ=10,T]

Ap(tk) < _Lk(p(tk)> k= 1, 2a e, M (23)
p(0) < rp(T),

where (7£7p)(t) = N*()p(a()) + K*(8) [y k*(t, $)p(y(s))ds + H(t) [} h*(t, 5)p(3(s))ds.

Next, we will show p(t) < 0.
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Suppose, to the contrary, that p(t) > 0 for some ¢ € J.

(DIf p(t) > 0, p(t) £ 0 for t € J, we get p'(t) < 0, in view of the first inequality of (2.3). By the second
one in (2.3), we obtain that p(t) is non-increasing in J. Then 0 < p(T) < p(t) < p(0). On the other hand,
by the third inequality in (2.3), if r* = 1, then p(T") < p(t) < p(0) < p(T'), we get p(t) = C > 0. Hence
p'(t) = 0. By the first inequality in (2.3) again, we have

0 < —Co(t) vt e J.

By (H;) we get that C < 0 which is a contradiction.
If 0 < r* < 1, then p(T) < p(0) < r*p(T), so p(T)(1 — r*) < 0. we have 0 < p(T) < 0. Since p is
non-increasing in J, we infer p(t) = 0. It is a contradiction.
(ii) If p(t*) = ilelgp(t) >0, p(ts) = tlggp(t) = —\A <0, then A > 0.
Case 1 If ¢, < t*, integrating from ¢, to t*, we get from (2.3)

0<p(t) = plt)+ / Pe)s+ Y Aplt)

* ta <tp<t*
-
< k[ - Y L)
28 o <tg<t*
< SAHEAEND L
k=1
Hence
L<p*+) L
k=1

which is in contradiction to (Hz).

Case 2 If t* < t., we have

0<p(t) = p(0)+/0 p'(s)ds + Z Ap(t)

0<t, <t*

IN

p(O)—i—/O —(A"p)(s)ds + A Z L,

0<tp<t*

p(0)+/\/0 0*(s)ds+ X Y L,

0<ty <t*

IN

p(T) = plt)+ / Pe)s+ S Ap(ty)

* te <t <T

T
—)\—|—/ —(H*p)(s)ds + A Z Ly

te <tp<T

IN

IN

t
T
—)\+)\/ 0" (s)ds+ X > L.
ta

te <tp <T
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By the two inequalities above, we obtain

A+iA/T9*()d + L1 > L
o . s)as o k

te <tp<T

T
—/\+)\/ 0*(s)ds+ X > L
tx

te <tp<T

Y

v

p(T) > r—l*p(O)

1. [v 1
_— O (s)ds — —A > L
> T*)\/o (s)ds 7‘*)\ &

0<tp<t*

1 b 1
- 0*(s)ds — — L.
T*)\/o (s)ds 7‘*)\ Z &

0<t) <t

Y

Therefore, we get that (u* + >~ L) > r*, which is in contradiction to (Hs). Hence p(t) <0, ¢(t)

We complete the proof.

<0.

Lemma 2.2Assume that (Hy), (Hz) and fo s)ds > 0asr = 1 aresatisfied. Let Cy,d € R,0 € PC(J).

Then the linear problem

W(t) = —M()u(t) — (Hu)(t) +o(t), t#tk teJ=1[0,T),

Au( k):_Lk( (tk))—FOk, k=1,2,---,m
u(0) = ru(T) + d,

3

has a unique solution # € PC!(J, E) and it is represented by:

eft M(T)dr G »
t =
w) = S o / — (u)(s))ds
re” fo f M(7)dr
f Z elo (—Li(u(ty)) + Ck)
€’o T k=1
+ Z e,,; M MO (L (u(tr)) + C),
0<tp<t
where -
eft M(‘r)drefos M(T)dr
T ) 0<s<t<T,
efo M(r)dr _ r
G(t,s) =
Tefts M(T)dr

efoT M(r)dr _ 7‘7

(2.4)

(2.5)

(2.6)
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Proof : First, differentiating (2.5), we have

d  delid M(r)d

T)dT T
u'(t) = a[ﬁ—l—/o G(t,s)(o(s) — (Hu)(s))ds

_fo m b
- > el MO (L u(ti)) + Cr)

7
M(r
elo _Tkl

b e I MO S M@ (L (1)) + C)]

0<tp<t

= —M()

M(7)dr

deftT M(r)dr

T
St [ Gllels) — (Fu)s
—fo M(‘r)dT m -
e 2 e MO (Li(u(ie) + i)
e’o -r k 1

+ YD e MOl MO (L (u(ty) + C)
O0<tp<t

. i M(r)dr v
e a0 ()

= —M(t)u(t) — (Hu)(t) + o(t) vte J,

+(

Auftr) u(ty) —ulty)

Z Au(t;) — Z Ault;)

0<t,; <ty 0<t; <ty
k k—1

= > (—Li(ulty) + C5) = Y (=Lj(ulty)) + C;)

j=1 j=1

Also

SM(T);T defoT M(T)dr

)

0 ef(;rM(T)d‘r_,r + efOTM(T)dT —r

ef(f M(r)dr d
-I—fo ﬁ(a(s) — (Ju)(s))ds + M

It is easy to check that u(0) = ru(T) + d. Hence, we know that (2.5) is a solution of (2.4).

Next we show that the solution of (2.4) is unique. Let wuj,us are the solutions of (2.4) and set
P = u; — Uz, we get
o= u -

= —M(O)u(t) — (A u)(t) +o(t)

(=M (t)uz(t) = (Hu2)(t) + o (1))
= —Mp—(Ap)1),
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Ap(ty) = Aup — Aug
= —Lyui(te) + Cx — (—Liua(te) + C)
= —Lkp(tx),

u1(0) — u2(0)

rui(T) +d — (rus(T) + d)

= p(T).

In view of Lemma 2.1, we get p < 0 which implies u; < uy. Similarly, we have u; > us. Hence u; = uo.

]

~—~
=)

~—
Il

The proof is complete.

Lemma 2.3 Let 0 € PC(J), and L >0, M € C(J,R), 0 < r < 1, fo s)ds > 0 as r = 1. If (Hs)
holds m
o = el M@ldr(q - Y+ > Ly <1, (2.7)

efoT M(r)dr _

T B(?) T
where = / [N(t) + K(t)/ k(t,s)ds + H(t)/ h(t, s)ds]dt, then Eq.(2.5) has a unique solution u
0 0 0
in PC(J).
Proof : Define an operator F' by

deft T
(Fu)(t) = + [ G( — (Hu)(s))ds
ef M(r)dr _ 0
I M(T)dT mo
re Jo k
- Jok M(7)dr L t +C
e u
R, T)dT—r,; (=Li(u(te)) + Ck)
+ 3 e S M@t MO (L (u(t)) + Cr).
0<tp<t
fO<s<t<T,
eftT M(T)dTefos M(r)dr ef(;r M
fT M(7)dr < fT M(7)dr
e’o —-T e’o —-T
efoT M(r)dr _ r4r
- efoT M(r)dr _ r
T
= 1+ - ,
ef[;r M(r)dr _ r
f0<t<s<T,
’f‘effs M(T)dr refoT M(T)dr

<
efoT M(r)dr _ r - efoT M(r)dr _ r
efoT M(7)dr
efoT M(r)dr _ r
r
= 1 + —_—,
ef[;r M(r)dr _ r

IN
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it is easy to see that
r

efOTM(T)dT —T'

max{G(t,s), (t,s) € J*} =1+

Now, for z,y € PC(J), we have

I (F;v)(f) — (Fy)(@) [[Po

= | / G(t,5)(=(H2)(5) + (H)(s))ds
7(367 f[f M(r)dr ™ t
e 2o T (L) + Du(y(t)
e’o =T k=1
+ Y0 e MOl MO (L (2(t)) + Li(y(t))) o
O<tp<t

(1+

IN

r T
) / | (—r(s) + Ay(s))ds |

ef()T M(T)dT —

(14— ymax{ > O L) + Lily(tn)) |
eo M)dr _ 0<trp<t

+ 3 IO | (L (a(te)) + Liy(t)) |}

t<tp<T

(1+

IN

T
) / | (—0x(s) + Hy(s))ds |

efoT M(r)dr _

'S T
(Ut g ) max{ Y el MONT Ly (a(tr) + Li(y (i) |
€0 -r 0<tp<t

4 Z eJo IM(7)|dr | (—Lg(z(tx)) + Le(y(tr))) |}

t<tp<T
m

Y+ Li)llz—ylrc

k=1

r

< M@
efoT M(r)dr _ r

= w|r—ylerc,

Consequently, the Banach fixed point theorem implies that F' has a unique fixed point u in PC(J), and

the lemma is proved.
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3 Main Results

For convenience, let us list the following conditions:

(Hy) There exist (ug, o), (vo, o) € PCY(J) x R satisfying

(3.1)
vh(t) > ft,v0(t), vo(e(t)), Tvo, Svo, Bo) t#tk, t€J=10,T]
AUO(tk) Zlk(vo(tk)uﬁo) k:1727 ,m
v0(0) > Mwo(T) + Az [ w(s, vo(s))ds + 7 aivo(mi) + ¢
0> Q(vo(T), Bo)-
(Hs) f and I are nondecreasing with respect to the last variable.
(Hs)
ft,w u(a(t)), Ta, Su, 0) — f(t, u, u(a(t)), Tu, Su, o) (3.2)
> -—M@)(@—u) — N@t)(@(a(t)) —u(a(t)) — K@OT(@—u) — H(t)S([@—u),
Ik (ﬂv Q) - Ik (’U,, Q) 2 —Lk(ﬂ - ’U,), (33)
where ug < u <u < vg.
(H7) There exist 0 < M7, 0 < My satisfying
Q(T@,2) — Qu, 0) > My(u — u) — Ma(2 — 0), (3.4)
where ug < u <7 < v, ap < 0 <7 < fo.
(Hg) Assume that a(t) is non-negative integrabe function, such that
’LU(t,ﬂ) - U}(t, u) Z a(t)(ﬂ - ’U,), (35)

where ug < u <u < vg.

Theorem 3.1 Assume the hypotheses (H;) — (Hs) hold. Suppose in addition that fOT M(s)ds > 0
as A\ = 1, and (ug, ), (vo,B0) € PCH(J) x R such that ug < wvo, ag < Bp. Then Eq.(1.1) has the
extremal solutions (u*(t),a*), (v*(¢), 5*) € [uo,vo] X [0, Bo]- And there exist two sequences {(un, )}

and {(vn, Bn)} satisfying
up Sur < Sty <o Sy <o < op < v, (36)

<o <<, << By << By < B, (3.7)
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such that {uy},{v,} uniformly converge to u*(t), v*(t) on J, respectively, and {a, },{3,} converge to a*,
B* on J, respectively. Where {u,}, {v,} are defined as :

eftTM(T)d"' T
Uy = m(zaiun—l(ni)+)\2/o w(s, un—1(s))ds + ¢)

1 =1
+ fOT G*(t,8){f(s,un—-1,un—1(a(s)), Ttn—-1,SUn—1, ¥n_1)
+M (s)un—1 — (H (up — un—1))(s)}ds

— M@ m (3.8)
+)}M(T 2 e MO (= Lyt tr) + Tiltn-1(8)s on1) + -1 1)
+ S0 e I MOt MO (L (t) + T (w1 (), 1) + Liwn—1(t1,)
0<tp<t
Vie Jn=1,2,---
ftT M(T)dr P T
U = m(; iV —1(1:) +>\2/0 w(s, vn—1(s))ds + C)
+ fOT G* (tu 5){f(57 Un—1, ’Un_l(Oé(S)), T’Un_l, S’Un—la ﬁn—l)
+M(s)vn—1 — (H (vn — vp—1))(s)}ds
—f()"‘ M(r)dr ™ t (39)
+§1T6M—A SR MO (L (1) + Tuon 1 (80), Bu1) + Livn1 (1))
e’o 1 k=1
+ ) e ~J5 M@ Jat MEVT (L (1) + T (01 (t), Bu1) + Livn—1(tr)
0<trp<t
Ve Jn=1,2-
Proof : For (¢, e) € [ug, vo] X [, Bo], considering the following problem
u'(t) = =M(t)u(t) — (Hu)(t) + M(£)E(?)
+ (1) + [(£,6(1), (b)), TE, S8 €),  t# bk, te=]0,T], (3.10)
Au(tr) = —Li(u(t)) + Ie(§(tr), €) + Lrg (tr), k=12 m,
u(0) = Mu(T) + Ao fy w(s. §(s))ds + BLa:€ () + ¢,
QE(T),e) + My (u(T) = &§(T)) — Mz(e —e) = 0. (3.11)

By Lemma 2.2 and Lemma 2.3, the BVPS has a unique solution (u, ¢) € [ug, vo] X [ao, Bo]-

We define an operator ¢ by (u, 9) = (&, e), then ¢ is an operator from [ug, vg] X [ag, Bo] to PC(J) X R
We claim that

(a) (uo,a0) < p(ug,0) ,  @(vo, Bo) < (vo, Bo),

(b) ¢ is nondecreasing on [ug, vo] X [0, Bo)-
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We prove (a)v let (ulval) = QD(U(),OZ()), p(t) = uo(t) - ul(t)v q = Qo — Qi,

/

p

up — uh

f(tv ’U,O(t), uo(a(t)), T'up, San 050) - [f(ta UO(t)a UO(a(t))v T'uy, Su07 aO)
+M(t)u0(t) + (%Uo)(f) - Mul(t) - (%ul)(t)]

—Mp(t) — (Ap)(1),

IN

Ap(tk) = AUO(tk) — Aul (tk)
< Ii(uo(tr), o) — [ (uo(te); co) — Li(ur — uo)]
= _Lk?p(tk)v

p(0) = uo(0) —ui(0)
Ao (T) + Ao fy w(s, uo(s))ds + 0, asuo(ni) +¢
—(Mur(T) + o fOT w(s,ug(s))ds + Y_0_, a;uo(n;) + €)
= p(T).
By Lemma 2.1, we have p < 0. That is ug < u;.
And 0 = Q(uo(t), o) + Mi(u1(t) — uo(t)) — M2(a1 — ag) > —Ma(a1 — ag) = Mag, which implies ¢ < 0.

IN

Then ap < ;. Hence we have (ug, ag) < (u1, o). Similarly, we can prove (v1, 81) < (vo, 5o)-
To prove (b), let (v1, 01), (2, 02) € [uo, vo] X [0, o], and 1 < 72, 01 < 02, (7], 07) = @(71,01), (73, 03) =
¢(72,02), p =71 =73, ¢ = 0] — 05 then

Pty = n =7
= ft,m(@®),n(a®)), Ty, 57, 01)
+My(t) + (H)(t) — MAi(t) — (A7)(F)
=[f(t,v2(t), v2(a(t), T2, Sy2, 02)
FM2(t) + (A 72)(t) — M3 (t) — (H73)(1)]

< ftn(t), n(a(t), Ty, Sy, 02)
+My(t) + (A )(t) — MAi(t) — (A7)(F)
=[f(t,v2(t), v2(a(t), T2, Sy2, 02)
M2 (t) + (A 72)(t) — M3 (t) — (H73)(1)]
< —Mp—(p)(1),
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Ap(ty) = Ay{(te) — Avs(tk)
= Ip(n(tk), 01) = Li(77 (tk) — 71(tk))
=Lk (y2(tk), 02) = Li(73 (tk) — 72(tk)))
te), 01) — Ie(v2(tr), 02) + Li(vi — 72) — Le(i —3)
I (v1(tr), 02) — Ix(2(tr), 02) + Li(y1 — v2) — Li(vy —3)
—Lgp(tr),

= Ir(n(
(

IN A

!

~—
=)

~—
Il

¥ (0) —~3(0)
MY (T) + X fy w(s, v (9))ds + S0y ai(m) +¢

—(M3(T) + Az [y w(s, 2 (s))ds + 30, aiva(mi) +C)

Mp(T) + s fy als)(1(s) = 2(s))ds + 30y ai(y1 () — v2(mi))

IN

< Aip(T).
In view of Lemma 2.1, we know 7 < v3.
And
0 = Qn(t) o)+ MOit) —m(®) — Ma(ef — 01)
—Q(2(t), 02) = My (73 () — 72(t)) + Ma(03 — 02)
= Q(nl(t), 1) = Q(12(t), 02) + M2(01 — 02)

—Mi(71(t) — y2(t)) — Mag + Mi(v5(t) — 5 (t))
_M2Q7

IN

which implies ¢ < 0. We get o} < 5. Hence (b) holds.
We define two sequences {(uy, )} and {(v,,B,)} in PCY(J) x R

(un+17 an+1) = <P(un7 an)a (Un+176n+1) = @(Unvﬁn) (TL =0,1,2,-- )

By (a) and (b), we know that (3.6)(3.7) hold.
And each {(un,an)}, {(vn, Bn)} in PC(J) x R satisfies

up, (t) = f(t un—1(t), s un—1(a(t)), Tn—1, Stn—1, atn—1) = M(t)(un(t) — un—1(t))
—(H(up, — up—1))(t), t#tg,, teJ=][0,T],

Ay (ty) = —Liun (tr) + Ie(wn—1(te), @n—1) + Lptn—1(tk), k=1,2,--- ,m,
un(0) = AMun(T) + A2 fOT (8,un—1(8))ds + 30| ajun—1(n;) + ¢,

Qun—1(T), an—1) + My (un(T) — tn-1(T)) = Ma(an — an-1) =0,
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v () = f(t,vn—1(t), va—1((t)), Tvn-1, SUn—1, Bn-1) —

—(H(vn —v_1))(t), t#tr teJ=[0,T),

Avy, (ty) = —Livn (tr) + I (vn-1(tk), Bn-1) + Lrvn_1(tr),
8, Un—1(8))ds + >7_ 1 aivn—1(mi) + ¢,
- ﬁn—l) =0.

0 (0) = Mwn(T) + Ao [ w(

Q(’Un—l(T)a ﬁn—l) + Ml (Un(T) - Un—l(T)) - M?(ﬁn

M(t)(vn, — vp—1)

k=1,2,---,m

3

Therefore, we have that {uy}, {vn} are monotonically and uniformly convergent to w*(t) and v*(¢) on J,

respectively, and {«a,}, {8} converge to a*, 5* on J, respectively. By the Ascoli-Arzela theorem, this

implies that (

u*(t),a"), (v

*(t), B*) are solutions of Eq.(1.1).

Finally, we assert that if (u, ) € [ug, vo] X

af < p < B* on J. We will prove that if u, < u < vy, ap, < 0 < By, forn = 0,1,2,--- |

Unt1(t) < u(t) < vpgi1(t), angr < 0 < Brta-

[, Bo] is any solution of Eq.(1.1), then v*(t) < u(t) < v*(¢),
then

Letting p(t) = wn41(t)

—u(t), ¢ = any1 — o then

Pt) = upp —u(t)

= [t un(t), un(a(t)), Tun, Stn, an) + Mu,(t) +

(A un)(t)

(A un)(t)

— I (u(ty), o)
— I (u(tk), 0)

—Mup1(t) = (Huni1)(t) — f(t,u(t), u(a(t)), Tu, Su, o)
< flun(t), un(at)), Ttun, Stn, 0) + Mun(t) +
—Mupi1(t) = (Huns1)(t) — f(t, u(t), u(a(t), Tu, Su, o)
< —M(unga(t) —u(t)) = (H(uns1 — u))(t)
< —Mp—(Hp),
Ap(ty) Aty11(tg) — Au(ty)
= Ii(un(te), an) — Li(tns1(tr) — un(tr))
< Ii(un(te), @) — Li(unta (tr) — un(ty))
< —Ly(un(te) — w(te)) = Li(unt1(te) — unlte))
= —Lp(uny1(te) — u(te))
= —Lp(ty),
p(0) = un41(0) —u(0)
< Mun1(T) + A2 fOTw (8,un(s))ds + >0, aiun(n;) + ¢
—(Mul(T) + Xz fy w(s,uls))ds + X0 aiu(m) + )
= Mp(T) + Az [y a(s)(un(s) — u(s))ds + S0y ai(un(n:) — uln))
< Ap(T).

By Lemma 2.1, we have p(t) < 0 for all ¢ € J, that is up41(t) < u(t).
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And

o
I

Qun(t), an) + Mi(unt1(t) — un(t)) — Ma(ant1 — o) — Q(ult), 0)
M (up41(t) — u(t)) — Ma(omi1 — o)
< —Moagq.

IN

We have a1 < p. Hence (un41,@nt1) < (u, ). Similarly, we can prove (u, 9) < (vn+1,8n+1), which
implies (u(t), 0) € [u*(t),v*] x [a*, 3*]. The proof is complete.

Remark In (1.1), if w(s, z(s)) = a(s)x(s), where a(t) is non-negative integral function, then (Hg) is not
required in Theorem 3.1, and we have the following theorem.

Theorem 3.2 Suppose that conditions (H;) — (H7)are satisfied. Let fOT M(s)ds > 0 as Ay = 1, and
(uo, o), (vo, Bo) € PC*(J) x R such that ug < vg, ag < Bp. Then the conclusion of Theorem 3.1 holds.

The proof is almost similar to theorem 3.1, so we omit it.

4 Example

Consider the following problems
1

thu(t)  t t t [t t3 1
li _ o _ - _ — —
u'(t) = 100"~ 600 51n(u(2)) 100/0 su(s)ds 1000 J, u(s)ds + o, t# 2,t€J [0,1],
Au(z) = — i (5) +
260" ¢ Con )
= —u(l) + — — — 8)ds + — 1
u(0) = gu(1) + gyl + g5 [ () = s+ 15 we o1l
—3u(1) + 0% = 0.
(4.1)
Let f(t,z,y, z,w )—tél—gc—L —Lz—t?’w—i— ER,M(t)=0 N(t)—i K(t)—L H(t) =
) 7y7 ) 7@ - 100 600y 100 t Q? Q ) - ) 1 - 6007 - 1 07 -
1 1 t
3, k(t,s) = ts, h(t,s) = ——, Tu(t) =t d t) = ——u(s)d t) = =, B(t) =
K = s, W) = o Tult) = ¢ [ su@ds, Su) = [ e, o) = 560

t, v(s) = s, 6(s) = s, w(s,u(s)) =u(s) —s.
We can easily verify that (4.1) admits the lower solution (ug(t) = 0,a9 = 0) and the upper solution
(vo(t), Bo = 2), where

2 1

—t+1 t 0, =

3 + ) e[ 72]7
vo(t) =

2 2 1

42, te(=1],

3 +3 (2 ]

and ug(t) < wvo(t), ap < Po. It is easy to see that

Ie(x(tr), 0) — Ie(y(t, 0) = ——=(a"(tx) — v’ (tx))
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3
where uo(tr) < y(tk) < 2(tk) < voltr), L1 = 5

Obviously,
ft,w u(a(t)), Ta, Sa, 0) — f(t,u, u(a(t)), Tu, Su, o)
> _M(t)(@— u) — N(t)(@— u)(alt) — K(T(@—w) — HE)S(@ - ),

W) — W (1, u(0) = T(t) — u(t) 2 5 (3(0) — u(?))

for all ug(t) < u(t) <u(t) < wvo(t) in J.

1 m
And it is obvious that (Hs) (H7) hold. And we can check that r* = r = 3 "+ ZLk] < r,
k=1
efoTlM(r)\dr(l + W)(u + Z Lj) < 0.96 < 1, then all conditions of Theorem 3.1 are satisfied.
eJo MATAT

k=1
Therefore, the conclusion of Theorem 3.1 holds for the problem (4.1).
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