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Abstract: In this paper, we investigate the existence and uniqueness of almost periodic

solutions for a class of nonlinear Duffing system with time-varying delays. By using theory

of exponential dichotomies and contraction mapping principle, we establish some new results

and give an example to illustrate the theoretical analysis in this work.
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1. Introduction

In recent years, the dynamic behaviors of nonlinear Duffing equations have been widely

investigated in [1-4] due to the application in many fields such as physics, mechanics, engi-

neering, other scientific fields. In such applications, it is important to know the existence of

the almost periodic solutions for nonlinear Duffing equations. Some results on existence of

the almost periodic solutions were obtained in the literature. We refer the reader to [5−8]

and the references cited therein.

Recently, L. Q. Peng and W. T. Wang [9] considered the following model for nonlinear

Duffing equation with a deviating argument

x′′(t) + cx′(t) − ax(t) + bxm(t− τ(t)) = p(t), (1.1)
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where τ(t) and p(t) are almost periodic functions on R, m > 1, a, b and c are constants. Let

Q1(t) be a continuous and differentiable function on R. Define

y =
dx

dt
+ ξx−Q1(t), Q2(t) = p(t) + (ξ − c)Q1(t) −Q′

1(t), (1.2)

where ξ > 1 is a constant, then L. Q. Peng and W. T. Wang [9] transformed (1.1) into the

following system











dx(t)

dt
= −ξx(t) + y(t) +Q1(t),

dy(t)

dt
= −(c− ξ)y(t) + (a− ξ(ξ − c))x(t) − bxm(t− τ(t)) +Q2(t).

(1.3)

Consequently, some sufficient conditions for the existence of positive almost periodic solutions

of (1.1) and (1.3) were established in [9]. On the other hand, in the real scientific fields, the

coefficients a, b and c in (1.1) and (1.3) are usually time-varying. Hence, the system (1.3)

can be naturally extended to the following Duffing system with time-varying coefficients and

delays






dx(t)
dt

= −δ1(t)x(t) + y(t) +Q1(t)
dy(t)

dt
= δ2(t)y(t) + [α(t) − δ22(t)]x(t) − β(t)xm(t− τ(t)) +Q2(t),

(1.4)

where α(t), β(t), τ(t), δ1(t), δ2(t), Q1(t) and Q2(t) are almost periodic functions on R, m > 1

is an integer, α(t) > 0, β(t) 6= 0. However, to the best of our knowledge, few authors have

considered the problem for almost periodic solutions of system (1.4). Motivated by the above

arguments, the main purpose of this present paper is to give the conditions to guarantee the

existence of almost periodic solutions of system (1.4).

For convenience, we introduce some notations. Throughout this paper adopt the following

notations:X = (x1, x2)
T ∈ R2 to denote a column vector, in which the symbol (T ) denote the

transpose of a vector. We let |X| denote the absolute-value vector given by |X| = (|x1|, |x2|)T ,

and define ||X|| = max
1≤i≤2

|xi|. A vector X ≥ 0 means that all xi are greater than or equal to

zero. X > 0 is defined similarly. For vectors X and Y , X ≥ Y (resp. X > Y ) means that

X − Y ≥ 0(resp. X − Y > 0 ). Let δ1, δ2, δ
∗, l, θ and q be defined as

δ1 = inf
t∈R

|δ1(t)|, δ2 = inf
t∈R

|δ2(t)|, δ∗ = min{δ1, δ2}, (1.5)

l = max{
sup
t∈R

|Q1(t)|

δ∗
,

sup
t∈R

|Q2(t)|

δ∗
}, θ = max{ 1

δ∗
,

sup
t∈R

[|α(t) − δ22(t)| + |β(t)|]

δ∗
}, (1.6)

q = max{ 1

δ∗
,

sup
t∈R

[|α(t) − δ22(t)| + |β(t)|m( 2l
1−θ

)m−1]

δ∗
}. (1.7)
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Set

B = {ϕ|ϕ = (ϕ1(t), ϕ2(t))
T },

where ϕ is an almost periodic function on R. For ∀ϕ ∈ B, we define the induced modulus

||ϕ||B = sup
t∈R

||ϕ(t)|| , then B is a Banach space.

Definition 1.[10,11] Let u(t) : R → Rn be continuous in t. u(t) is said to be almost

periodic on R if, for any ε > 0, the set T (u, ε) = {λ : ||u(t + λ) − u(t)|| < ε,∀t ∈ R} is

relatively dense, i.e., for ε > 0, it is possible to find a real number L = L(ε) > 0 where,

for any interval with length L(ε) , there exists a number λ = λ(ε) in this interval such that

||u(t+ λ) − u(t)|| < ε, for all t ∈ R.

Definition 2.[10,11] Let z ∈ Rn and Q(t) be an n × n continuous matrix defined on R.

The linear system

dz(t)

dt
= Q(t)z(t), (1.8)

is said to admit an exponential dichotomy on R if there exist positive constants k, α, projec-

tion P and the fundamental solution matrix X(t) of (1.8) satisfying

||X(t)PX−1(s)|| ≤ ke−α(t−s), for all t ≥ s,

||X(t)(I − P )X−1(s)|| ≤ ke−α(s−t), for all t ≤ s.

Lemma 1.1. [10,11] Let Q(t) = (qij) be an n × n almost periodic matrix defined on R

and let there exist a positive constant ν such that

|qii(t)| −
n

∑

j=1,j 6=i

|qij(t)| ≥ ν, i = 1, 2, . . . , n.

Then the linear system (1.8) admits an exponential dichotomy on R.

Lemma 1.2. [10,11] If the linear system (1.8) admits an exponential dichotomy, then the

almost periodic system
dz(t)

dt
= Q(t)z(t) + g(t), (1.9)

has a unique almost periodic solution z(t) and

z(t) =

∫ t

−∞
X(t)PX−1(s)g(s)ds −

∫ +∞

t
X(t)(I − P )X−1(s)g(s)ds, (1.10)

2. Existence and uniqueness of almost periodic solutions
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Theorem 2.1. Assume δi(t) > 0, i = 1, 2, and let positive constants l, θ and q satisfy

θ < 1,
l

1 − θ
< 1, q < 1. (2.1)

Then there exists a unique almost periodic solution of system (1.4) in the region

B∗ = {ϕ|ϕ ∈ B, ||ϕ− ϕ0|| ≤
θl

1 − θ
},

where

ϕ0 = (

∫ t

−∞
e
−

∫

t

s
δ1(w)dw

Q1(s)ds,−
∫ +∞

t
e
−

∫

s

t
δ2(w)dw

Q2(s)ds)
T .

Proof. For any ϕ ∈ B, we consider the almost periodic solution of the nonlinear almost

periodic two-dimensional system with time-varying delays





dx(t)
dt

dy(t)
dt



 =





−δ1(t) 0

0 δ2(t)









x(t)

y(t)



 +





ϕ2(t) +Q1(t)

ϕ̃1(t)



 , (2.2)

where

ϕ̃1(t) = (α(t) − δ22(t))ϕ1(t) − β(t)ϕm
1 (t− τ(t)) +Q2(t).

Then, notice that the linear system





dx(t)
dt

dy(t)
dt



 =





−δ1(t) 0

0 δ2(t)









x(t)

y(t)



 , (2.3)

admits an exponential dichotomy on R. Define a projection P by setting

P =





1 0

0 0



 .

Thus, by Lemma 1.2, we obtain that the system (2.2) has exactly one almost periodic solution:





xϕ(t)

yϕ(t)



 =





∫ t
−∞ e

−
∫

t

s
δ1(w)dw(ϕ2(s) +Q1(s))ds

− ∫ +∞
t e

−
∫

s

t
δ2(w)dw[(α(s) − δ22(s))ϕ1(s) − β(s)ϕm

1 (s − τ(s)) +Q2(s)]ds



 .

Define a mapping T : B → B by setting

T (ϕ)(t) =





xϕ(t)

yϕ(t)



 , ∀ϕ ∈ B.
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Since B∗ = {ϕ|ϕ ∈ B, ||ϕ−ϕ0|| ≤ θl
1−θ

}, it is easy to see that B∗ is a closed convex subset of

B . According to the definition of the norm in Banach space B , we derive

||ϕ0||B = sup
t∈R

max{
∫ t
−∞ e

−
∫

t

s
δ1(w)dw|Q1(s)|ds,

∫ +∞
t e

−
∫

s

t
δ2(w)dw|Q2(s)|ds}

≤ sup
t∈R

max{sup
t∈R

|Q1(t)|
∫ t
−∞ e

−
∫

t

s
δ1(w)dw

ds, sup
t∈R

|Q2(t)|
∫ +∞
t e

−
∫

s

t
δ2(w)dw

ds}

≤ max{
sup
t∈R

|Q1(t)|

δ
1

,
sup
t∈R

|Q2(t)|

δ
2

}

≤ max{
sup
t∈R

|Q1(t)|

δ∗
,

sup
t∈R

|Q2(t)|

δ∗
} = l.

Therefore, for any ϕ ∈ B∗, we have

||ϕ||B ≤ ||ϕ − ϕ0||B + ||ϕ0||B ≤ θl

1 − θ
+ l =

l

1 − θ
< 1. (2.4)

Now, we prove that the mapping T is a self-mapping from B∗ to B∗ . In fact, for any ϕ ∈ B∗,

from (2.4), we obtain

||Tϕ− ϕ0||B
= sup

t∈R
max{| ∫ t

−∞ e
−

∫

t

s
δ1(w)dw

ϕ2(s)ds|, |
∫ +∞
t e

−
∫

s

t
δ2(w)dw[(α(s) − δ22(s))ϕ1(s)

− β(s)ϕm
1 (s− τ(s))]ds|}

≤ sup
t∈R

max{||ϕ||B
∫ t
−∞ e

−
∫

t

s
δ1(w)dw

ds,
∫ +∞
t e

−
∫

s

t
δ2(w)dw[|α(s) − δ22(s)|||ϕ||B

+ |β(s)|||ϕ||mB ]ds}
≤ sup

t∈R
max{

∫ t
−∞ e

−
∫

t

s
δ1(w)dw

ds,
∫ +∞
t e

−
∫

s

t
δ2(w)dw[|α(s) − δ22(s)| + |β(s)|]ds}||ϕ||B

≤ sup
t∈R

max{
∫ t
−∞ e

−
∫

t

s
δ1(w)dw

ds, sup
t∈R

[|α(t) − δ22(t)| + |β(t)|]
∫ +∞
t e

−
∫

s

t
δ2(w)dw

ds}||ϕ||B

≤ max{ 1
δ∗
,

sup
t∈R

[|α(t)−δ2

2
(t)|+|β(t)|]

δ∗
}||ϕ||B

= θ||ϕ||B
≤ θl

1−θ
,

which implies that Tϕ ∈ B∗. So, the mapping T is a self-mapping from B∗ to B∗ .

Next, we prove that the mapping T is a contraction mapping of the B∗. In deed, in view

of (1.5), (1.6), (1.7), (2.1), (2.4) and differential mean-value theorem, for all ϕ,ψ ∈ B∗, we
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have

|T (ϕ(t)) − T (ψ(t))|
= (|(T (ϕ(t)) − T (ψ(t)))1|, |(T (ϕ(t)) − T (ψ(t)))2|)T

= (|
∫ t
−∞ e

−
∫

t

s
δ1(w)dw[ϕ2(s) − ψ2(s)]ds|, |

∫ +∞
t e

−
∫

s

t
δ2(w)dw[(α(s) − δ22(s))(ϕ1(s) − ψ1(s))

−β(s)(ϕm
1 (s− τ(s)) − ψm

1 (s− τ(s)))]ds|)T

= (|
∫ t
−∞ e

−
∫

t

s
δ1(w)dw[ϕ2(s) − ψ2(s)]ds|, |

∫ +∞
t e

−
∫

s

t
δ2(w)dw[(α(s) − δ22(s))(ϕ1(s) − ψ1(s))

−β(s)m(ψ1(s− τ(s)) + h(s)(ϕ1(s− τ(s)) − ψ1(s − τ(s)))m−1

(ϕ1(s− τ(s)) − ψ1(s− τ(s)))]ds|)T

= (|
∫ t
−∞ e

−
∫

t

s
δ1(w)dw[ϕ2(s) − ψ2(s)]ds|, |

∫ +∞
t e

−
∫

s

t
δ2(w)dw[(α(s) − δ22(s))(ϕ1(s) − ψ1(s))

−β(s)m((1 − h(s))ψ1(s− τ(s)) + h(s)ϕ1(s− τ(s)))m−1

(ϕ1(s− τ(s)) − ψ1(s− τ(s)))]ds|)T ,

where h(s) ∈ (0, 1) is the mean point in Lagrange’s mean value theorem. Then,

|T (ϕ(t)) − T (ψ(t))|
≤ (

∫ t
−∞ e

−
∫

t

s
δ1(w)dw

ds sup
s∈R

|ϕ2(s) − ψ2(s)|,
∫ +∞
t e

−
∫

s

t
δ2(w)dw{|α(s) − δ22(t)|·

sup
s∈R

|ϕ1(s) − ψ1(s)| + |β(s)|m[sup
s∈R

|ψ1(s− τ(s))| + sup
s∈R

|ϕ1(s− τ(s))|]m−1·

sup
s∈R

|ϕ1(s− τ(s)) − ψ1(s− τ(s))|}ds|)T

≤ (
∫ t
−∞ e

−
∫

t

s
δ1(w)dw

ds||ϕ− ψ||B ,
∫ +∞
t e

−
∫

s

t
δ2(w)dw

ds sup
s∈R

[|α(s) − δ22(s)|

+|β(s)|m( 2l
1−θ

)m−1]||ϕ− ψ||B)T ,

which yields that

||T (ϕ) − T (ψ)||B ≤ max{ 1

δ∗
,

sup
t∈R

[|α(t) − δ22(t)| + |β(t)|m( 2l
1−θ

)m−1]

δ∗
}||ϕ − ψ||B = q||ϕ− ψ||B .

It follow from q < 1 that the mapping T is a contraction. Therefore, the mapping T possesses

a unique fixed point z∗ = (x∗(t), y∗(t))T ∈ B∗ ,Tz∗ = z∗. By (2.2), z∗ satisfies (1.4). So

z∗ is an almost periodic solution of system (1.4) in B∗ . The proof of Theorem 2.1 is now

completed.

If δi(t) < 0, i = 1, 2, we define a projection P by setting

P =





0 0

0 1



 ,

then using similar arguments to those above, we can show the following
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Theorem 2.2. If δi(t) < 0, i = 1, 2 , and assume that (2.1) holds. Then, there exists a

unique almost periodic solution of system (1.4) in the region

B∗
1 = {ϕ|ϕ ∈ B, ||ϕ− ϕ1|| ≤

θl

1 − θ
},

where

ϕ1 = (−
∫ +∞

t
e
−

∫

s

t
δ1(w)dw

Q1(s)ds,

∫ t

−∞
e
−

∫

t

s
δ2(w)dw

Q2(s)ds)
T .

3. An example

Example 3.1. The nonlinear Duffing equation with a deviating argument

x′′(t) + (sin t− cos t)x′(t) + (626 + 27 cos t+ 25 sin t+ cos2 t+ cos t sin t)x(t)

+ (1 + sin2 t)x3(t− cos t) = cos
√

2t+ cos
√

3t− 50 cos t− 2 cos2 t, (3.1)

has exactly one almost periodic solution x∗(t) such that

max{sup
t∈R

|x∗(t)|, sup
t∈R

|dx
∗(t)

dt
+ (25 + sin t)x∗(t) − 2 cos t|} ≤ 1

11
.

Proof. Set

δ1(t) = 25 + sin t, δ2(t) = 25 + cos t, y(t) =
dx(t)

dt
+ (25 + sin t)x(t) − 2 cos t, (3.2)

we can transform (3.1) into the following system:



















dx(t)
dt

= −(25 + sin t)x(t) + y(t) + 2 cos t,

dy(t)
dt

= (25 + cos t)y(t) + (2 − sin2 t)x(t) sin2 t− (2 − cos2 t)x3(t− cos t)

+ cos
√

2t+ cos
√

3t.

(3.3)

Since α(t) = 626 + 50 cos t+ 2cos2 t , β(t) = 2 − cos2 t , Q1(t) = −2 cos t, Q2(t) = cos
√

2t+

cos
√

3t, m = 3 , δ∗ = 25, then

l = max{
sup
t∈R

|Q1(t)|

δ∗
,

sup
t∈R

|Q2(t)|

δ∗
} =

2

25

θ = max{ 1

δ∗
,

sup
t∈R

[|α(t) − δ22(t)| + |β(t)|]

δ∗
} =

3

25

q = max{ 1

δ∗
,

sup
t∈R

[|α(t) − δ22(t)| + |β(t)|m( 2l
1−θ

)m−1]

δ∗
} =

254

3025
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It is straight forward to check that all assumptions needed in Theorem 2.1 are satisfied.

Hence, equation (3.1) has exactly one almost periodic solution x∗(t) such that

max{sup
t∈R

|x∗(t)|, sup
t∈R

|dx
∗(t)

dt
+ (25 + sin t)x∗(t) − 2 cos t|} ≤ l

1 − θ
=

1

11
.

The proof of example 3.1 is now completed.

Remark 3.1. Since equation (3.1) is a very simple form of nonlinear Duffing equation

with time-varying coefficient

c(t) = sin t− cos t, a(t) = −(626+27 cos t+25 sin t+cos2 t+cos t sin t) and b(t) = 1+sin2 t,

it is clear that the results obtained in [9] are invalid for the above example. Moreover, one

can find that main theorem in [8] is a special one of Theorem 2.1 when δ1(t) and δ2(t) are

constants. Thus, the results of this paper substantially extend and improve the main results

of refs. [8-9].
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