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ABSTRACT. Cooke and Yorke developed a theory of biological growth and epidemics

based on an equation x′(t) = g(x(t))−g(x(t−L)) with the fundamental property that g is

an arbitrary locally Lipschitz function. They proved that each solution either approaches

a constant or ±∞ on its maximal right-interval of definition. They also raised a number of

interesting questions and conjectures concerning the determination of the limit set, periodic

solutions, parallel results for more general delays, and stability of solutions. Although their

paper motivated many subsequent investigations, the basic questions raised seem to remain

unanswered.

We study such equations with more general delays by means of two successive applica-

tions of contraction mappings. Given the initial function, we explicitly locate the constant

to which the solution converges, show that the solution is stable, and show that its limit

function is a type of ”selective global attractor.” In the last section we examine a problem

of Minorsky in the guidance of a large ship. Knowledge of that constant to which solutions

converge is critical for guidance and control.

1. Introduction.

In this study we focus on a celebrated paper on epidemics by Cooke and Yorke [7]

who presented three models of considerable interest for the growth of a population. Our

analysis of these problems is by means of contraction mappings which offer a very simple,

quick, and effective way of treating many qualitiative behavior problems in functional

differential equations.

The models of Cooke and Yorke on which we focus are:
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(a) x′(t) = g(x(t))− g(x(t− L)), L > 0,

(b) x′(t) = g(x(t− L1)) − g(x(t− L1 − L2)), Li > 0,

and

(c) x′(t) = g(t, x(t))− g(t, x(t− L)), g(t+ L, x) = g(t, x).

These equations share three fundamental properties:

(A) g is any locally Lipschitz function.

(B) Every constant function is a solution of each of them.

(C) Each equation has a first integral.

They prove that every solution of (a) satisfies either:

(I) x(t) tends to a constant,

or

(II) x(t) tends to +∞,

or

(III) x(t) tends to −∞

on its maximal right-interval of definition.

They claim that (b) is too difficult for their methods and they do not attempt (c).

Later, Kaplan, Sorg, and Yorke [13] proved the same three conclusions for a more

general equation than (a) which still enjoyed (A) and (B), but not (C). A vast number

of papers followed treating equations more general than (a) which fail to allow (A) and

(C), but strengthen the conclusion to (I) alone. Recently, Arino and Pituk [1] considered

a very general equation with finite delay along the same lines, asking only a type of global

Lipschitz condition, and used fixed point theory to prove that solutions tend exponentially

to a constant solution and that the constant solution is uniformly stable.

The literature will show that (A) will eliminate one point of uncertainty in biological

investigations. It was a brilliant contribution of Cooke and Yorke, and is the center of our

focus.

Here, we note a tacit assumption of Cooke and Yorke which suggests a contraction

mapping approach. Moreover, Cooke and Yorke suggest asking |g(x)| ≤ K|x| for large |x|

in order to ensure that all solutions can be continued for all future time. If we adopt a

variant of these two conditions, we can show that:
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(i) Every solution approaches a constant.

(ii) The limit constant can be known in advance.

(iii) Each solution is stable and the limit constant is a ”selective global attractor,”

attracting all solutions having initial functions with the same ”average value.”

(iv) All the work can be done in exactly the same way for very general delays, including

pointwise, distributed, infinite, and combinations. All are illustrated here.

(v) The problem (b) is not harder than (a); in fact, the analysis is the same.

(vi) The periodic case (c) is handled in the same way. But it does not yield the result

they had conjectured in the form of a periodic solution to which all others converged. That

behavior is not promoted by such equations.

(vii) Neutral equations can also be handeled in the same way.

(viii) Higher order equations possessing properties (A), (B), and (C) can be treated

similarly.

(ix) The general construction of g(x(t)) − g(x(t − L)) in an equation can result in

extremely stable behavior of solutions. It is very useful in designing control problems in

which it is simple to specify a target and initial conditions to achieve that target.

All of this is done with great simplicity using contractions. Fixed point theory can be

very effective in dealing with problems for which we can invert the equation in such a way

that a mapping is produced which will map the set of desired candidates for solutions into

itself. We can not, however, treat the more general problems of Kaplan, Sorg, and Yorke

[13] because we have been unable to invert them in a usable way.

It should be mentioned early on that if
∫ x

0
g(s)ds→ −∞ as |x| → ∞ then the trivial

Liapunov function will show that all solutions of (a) are bounded and (I) holds. The

Liapunov functional is

V (x(·)) = −2

∫ x

0

g(s)ds+

∫ t

t−L

g2(x(s))ds

and its derivative along solutions of (a) satisfies

V ′
(a) = −2g2(x) + 2g(x)g(x(t− L)) + g2(x) − g2(x(t− L))

= −g2(x) + 2g(x)g(x(t− L) − g2(x(t− L))

= −(g(x) − g(x(t− L))2
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Thus, V (x) → ∞ as |x| → ∞ and V ′ ≤ 0 yields all solutions bounded, the maximal

interval of definition is [0,∞), and both (II) and (III) are impossible. When solutions

depend continuously on initial conditions, then a classical result by Krasovskii [14; p. 153]

and Hale [11] shows that every bounded solution approaches the set where V ′ = 0. That

set consists of those functions where g(x(t)) = g(x(t − L)) and so x′(t) = 0 and x(t) is

constant. The particular proof given by Krasovskii bears more study. It seems likely that

the required continuous dependence of solutions on initial conditions might be reduced.

2. The fundamental assumption.

In 1973 Cooke and Yorke [7] introduced a delay-differential equation as a proposed

model for an epidemic. In fact, Cooke [5] had proposed the model some years earlier,

but the 1973 paper contained substantial analysis. The model itself, if not the biological

application, generated enormous interest for thirty years. The purpose of this work is to

point out that fixed point theory provides an excellent means of attack which preserves

the outstanding feature of the Cooke-Yorke problem, a feature lost in most of the other

attacks to be found in the literature.

In many population problems there is endless speculation on the form of the functions

generating growth and decline. The classic monograph by Maynard-Smith [16] devotes

Chapters 2 and 3 to describing several choices for growth functions with less than strong

reason for choosing one over the other. Pielou [18; p. 20] suggests a mechanical choice

by picking the simplest part of a Tayor series which will generate an S-shaped curve; this

yields g(x) = ax− bx2 with a and b positive constants. It is to be noted that in so many

of the papers motivated by the Cooke-Yorke paper, monotonicity and sign conditions on g

are assumed. Thus, those papers seem outside the general framework of interest here and

will not be discussed. The interested reader may pick more than fifty references to such

work from the bibliographies of Arino and Pituk [1], Haddock [8], and Krisztin [15].

Cooke and Yorke by-passed all those questions. Their discussion is worth repeating

and the next paragraph is a quote of their work from [7; pp. 76-77].

”Thus, if x(t) denotes the number of individuals in a population at time t, the number

of births B(t) is some function of x(t), say B(t) = g(x(t)). Let us assume at first that
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every individual has life span L, a constant. Inasmuch as every individual dies at age

L, the number of deaths per unit time at time t is g(x(t − L)). Since the difference

g(x(t))−g(x(t−L)) is net change in population per unit time, the growth of the population

is governed by the equation

(1) x′(t) = g(x(t))− g(x(t− L)).

This is one of the equations to be analyzed here. Models of this type were suggested by one

of the authors in [5]. We must emphasize that g is allowed to be any differentiable

function in our results.”

The bold emphasis is ours and it is really the critical part of their paper, putting

it far ahead of so many similar investigations, both before and after publication of that

paper. It should be noted that Cooke continued the investigation in [6]. So many of the

subsequent investigators focused on solutions approaching constants, but seemed to ignore

this all-important lack of condition on g.

3. Limits, first integrals, tacit assumptions.

To specify a solution of (1) we require an initial function on an initial interval. Typ-

ically, we need a continuous function ψ : [−L, 0] → R and obtain a continuous function

x(t, 0, ψ) with x(t, 0, ψ) = ψ(t) on [−L, 0], while x satisfies (1) for t > 0. Although x is

continuous, the derivative may fail at t = 0. Equation (1) is autonomous so we lose nothing

by starting the solution at zero. At times we will consider non-autonomous equations and

may still start at zero for simple convenience. Existence theory can be found in Chapter

3 of [4], for example.

In [7; p. 78], Cooke and Yorke note that (1) has a first integral

(2∗) x(t) =

∫ t

t−L

g(x(s))ds+ c

where c is a constant of integration. They claim that ”to have a correct biological inter-

pretation we must have c = 0.” In fact, for a given initial function ψ, then

(3) c = ψ(0)−

∫ 0

−L

g(ψ(s))ds.
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Thus, we focus on (2∗) with c defined by (3) and we denote it by

(2) x(t) = ψ(0) −

∫ 0

−L

g(ψ(s))ds+

∫ t

t−L

g(x(s))ds.

The discussion of Cooke and Yorke [7] suggests that they have two tacit assumptions in

mind. We find both of those assumptions fundamental for the investigation. By formalizing

and strengthening those assumptions we are able to very simply answer the questions posed

in the paper using contraction mappings. First, to understand what the aforementioned

condition c = 0 may mean for the problem, we note that Cooke and Yorke [7; p. 83] assume

a local Lipschitz condition and suggest that the reader may wish to insert the requirement

that there is a constant K with

|g(x)| ≤ K|x| for all large x.

Such a condition ensures that solutions can be continued for all future time. It is well-

known that if g(x) > 0 on an interval [a,∞) with
∫ ∞

a
ds

g(s)
<∞, then solutions can not be

continued for all future time. Thus, if we want to continue solutions for all future time and

if we want to allow g to be free of sign restricitons, then some kind of growth condition

must be assumed. Our investigation rests squarely on a growth restriction in the form of

a global Lipschitz condition.

The situation discussed above is sufficiently critical that an example should be given.

Suppose we have g(x) = x − x2. With that g in (1), there will be solutions with finite

escape time whenever the initial function is negative. Such initial functions seldom, if

ever, have any biological significance. However, in [7; p. 87] Cooke and Yorke ask that we

consider a g(t, x) with g periodic in t, representing seasonal changes in the growth. Thus,

if we take g(t, s) = p(t)(x−x2) with p continuous and periodic, even if the initial function

is positive it is readily shown that there can be finite escape time if p is negative at one

point.

Next, Cooke and Yorke consistently state that c should be zero for correct biological

applications. They also focus on the fact that every constant function is a solution. If we

were to ask c = 0, ask for a constant solution x(t) = k 6= 0, and ask that g(x) = Kx, then

(3) would become

0 = k −KkL
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so that

(4) KL = 1

since we ask for a solution x = k 6= 0. The choice of c = ψ(0) −
∫ 0

−L
g(ψ(s))ds permits

all constants to be solutions of (2). We allow all constants in this discussion. But we also

need to control KL just a bit more strongly than Cooke and Yorke would with (4). We

need α < 1 with KL ≤ α.

4. Some solutions of the problems of Cooke and Yorke.

We will assume that there is a fixed positive constant K such that x, y ∈ R implies

that

(5) |g(x)− g(y)| ≤ K|x− y|,

a global Lipschitz condition. Next, we suppose there is a positive constant α < 1 with

(6) KL ≤ α.

Theorem 1. Let (5) and (6) hold and let ψ : [−L, 0] → R be a given continuous

function. Then there is a unique constant k satisfying

(7) k = ψ(0) + g(k)L−

∫ 0

−L

g(ψ(s))ds

such that the unique solution of (2) with initial function ψ satisfies x(t, 0, ψ) → k as t→ ∞.

Proof. Let us first show that (7) has a unique solution. Define a mapping Q : R→ R

by k ∈ R implies that

Qk = ψ(0) + g(k)L−

∫ 0

−L

g(ψ(s))ds.

Then for k, d ∈ R and | · | denoting absolute value we have

|Qk −Qd| ≤ L|g(k)− g(d)| ≤ LK|k − d| ≤ α|k − d|,

so Q is a contraction on the complete metric space (R, | · |). Thus Q has a unique fixed

point k.
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Next, let (M, ‖ · ‖) be the complete metric space of bounded continuous functions

φ : [−L,∞) → R with φ(t) = ψ(t) on [−L, 0], φ(t) → k as t → ∞, and ‖ · ‖ is the

supremum metric.

Define P : M →M by φ ∈M implies that (Pφ)(t) = ψ(t) on [−L, 0] and for t > 0 let

(8) (Pφ)(t) = ψ(0) −

∫ 0

−L

g(ψ(s))ds+

∫ t

t−L

g(φ(s))ds;

we have used (2) to define P and a fixed point will solve (1) and (2). Notice that since

φ(t) → k we have
∫ t

t−L
g(φ(s))ds→ g(k)L as t→ ∞. Using this, (8), and then (7) we see

that (Pφ)(t) → k as t → ∞. Thus, P : M → M. To see that P is a contraction we note

that for φ, η ∈M then

|(Pφ)(t) − (Pη)(t)| ≤

∫ t

t−L

|g(φ(s))− g(η(s))|ds

≤ LK‖φ− η‖

so P is a contraction with unique fixed point φ ∈ M . By the way (8) was constructed, φ

satisfies (2).

Remark 1. This theorem tells us precisely what the limit of each solution will be,

based on its initial function. We note that in [7; p. 84] Cooke and Yorke show that if g

of a solution stays above a certain value for L time units, then g of it will never go below

that value. They also show that if g of the solution stays below a certain value for L time

units, then g of it will stay below that value forever. These results can require care in

interpretation unless g(x) has the sign of x, a condition which is studiously avoided here.

Our result is much sharper than that of Cooke and Yorke; given an initial function, we

know exactly the limiting value of the corresponding solution. There is no need at all for

the solution to stay above a certain value over an interval of length L; it merely needs to

do so on some well-defined type of average. While the aforementioned papers of Kaplan,

Sorg, and York [13] and Arino and Pituk [1] deal with general Lipschitz equations and show

that solutions approach a constant, they do not seem to be able to identify that constant

directly from the initial function. Moreover, both are restricted to finite delay, while we

will illustrate that any of our problems can be extended to infinite delay equations.
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Remark 2. Examine Equation (7) which determines the unique constant k to which

the solution x(t, 0, ψ) converges. Notice that ψ enters as

ψ(0)−

∫ 0

−L

g(ψ(s))ds.

If η : [−L, 0] → R is continuous and satisfies

η(0) −

∫ 0

−L

g(η(s))ds = ψ(0) −

∫ 0

−L

g(ψ(s))ds

then Theorem 1 will also show that x(t, 0, η) → k. For a given ψ, there is an infinite set of

functions η which qualify and ‖η‖ is unbounded. We can think of k as being a ”selective

global attractor”. The same observation can be made in all of the subsequent problems.

Remark 3. Equation (1) is also an extremely stable control problem. Given a desired

target k, solve (7) for ∫ 0

−L

g(ψ(s))ds− ψ(0) = g(k)L− k.

The right-hand-side is a fixed constant. Pick any ψ satisfying that equation. Use the

chosen ψ as the initial function. The resulting solution will approach the desired target, k.

This will have significant application in a second order control problem in the last section

of this paper.

Theorem 1 is in the way of a stability result. Continual dependence of solutions on

initial functions tells us that solutions which start close will remain close on finite inter-

vals. But under conditions of Theorem 1 they remain close forever and their asymptotic

constants are close.

This is the only stability result we will state, but parallel work can be done for all the

equations considered here.

Theorem 2. Under the conditions of Theorem 1, every continuous initial function is

stable: for each ε > 0 there is a δ > 0 such that ‖ψ1 − ψ2‖ < δ implies that |x(t, 0, ψ1) −

x(t, 0, ψ2)| < ε for t ≥ 0. In particular, if x(t, 0, ψ1) → k1 and x(t, 0, ψ2) → k2 then

|k1 − k2| < ε.

Proof. We will use the notation of the proof of Theorem 1 and we have also denoted

the supremum of initial functions ψ on [−L, 0] by ‖ψ‖, even though we also use that as the
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supremum metric on [−L,∞). Let ψ1 be fixed and let ψ2 be any other continuous initial

function. Then by Theorem 1 there are unique φ1, φ2, k1, k2 such that if Pi is the mapping

defined with ψi then

P1φ1 = φ1, P2φ2 = φ2, φ1(t) → k1, φ2(t) → k2.

Notice that since φi = ψi on [−L, 0] we have

|φ1(t) − φ2(t)| = |(P1φ1)(t) − (P2φ2)(t)|

≤ |ψ1(0) − ψ2(0)| +

∫ 0

−L

|g(ψ1(s)) − g(ψ2(s))|ds

+

∫ t

t−L

|g(φ1(s)) − g(φ2(s))|ds

≤ |ψ1(0) − ψ2(0)| +KL‖ψ1 − ψ2‖ +KL‖φ1 − φ2||

or

‖φ1 − φ2‖ ≤
KL+ 1

1 −KL
‖ψ1 − ψ2‖ < ε

provided that

‖ψ1 − ψ2‖ <
ε(1 −KL)

1 +KL
=: δ.

This proves the first part.

For the second part, we have |φi(t) − ki| → 0 as t→ ∞ and so

|k1 − k2| = |k1 − φ1(t) + φ1(t) − φ2(t) + φ2(t) − k2|

≤ |k1 − φ1(t)| + ‖φ1 − φ2‖ + |φ2(t) − k2|

and the last term tends to ‖φ1 − φ2‖ < ε. This completes the proof.

Cooke and Yorke [7; p.85] show that for (1) solutions tend to a constant or to ±∞.

They remark that periodicity in g might yield a periodic solution (for each initial function)

to which other solutions might converge. Their idea is that the growth is seasonally

affected. Thus, it appears that they would divide L into a fixed number of periods so that

L, itself, would be a period, although probably not the smallest period. We will now show
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that simple inspection reveals that the only solutions of period L are constant functions.

As in Theorem 1, for a given ψ there is a constant to which the solution converges.

Consider the equation

(9) x′(t) = f(t, x(t))− f(t, x(t− L))

where f is continuous and

(10) f(t+ L, x) = f(t, x)

for all x. By (10) we can write (9) as

x′(t) =f(t, x(t))− f(t− L, x(t− L))

=
d

dt

∫ t

t−L

f(s, x(s))ds.(11)

Theorem 3. If (10) is satisfied and if (9) has a periodic solution of period L, then

that solution is constant.

Proof. If x(t) is a solution of (9) with period L, then we can integrate (11) and write

(12) x(t) = x(0) +

∫ t

t−L

f(s, x(s))ds−

∫ 0

−L

f(s, x(s))ds.

As x(t+ L) = x(t), it follows from (10) that

F (t) := f(t, x(t))

satisfies F (t+L) = F (t). Thus, the integral of F over any period of length L has the same

constant value. It then follows from (12) that x(t) = x(0) for all t. This completes the

proof.

Continuing with their question about periodicity, if L is a period of f , then we can

again find asymptotic limits of solutions. We will need a counterpart of (5). Suppose there

is a constant K such that t, x, y ∈ R implies that

(13) |f(t, x)− f(t, y)| ≤ K|x− y|.
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Theorem 4. Let (6), (10), and (13) hold for (9) and let ψ : [−L, 0] → R be a given

continuous function. Then there is a unique constant k satisfying

(14) k = ψ(0) +

∫ t

t−L

f(s, k)ds−

∫ 0

−L

f(s, ψ(s))ds

and the unique solution of (9) with this initial function satisfies x(t, 0, ψ) → k as t→ ∞.

Here is a brief sketch. The proof proceeds exactly as that of Theorem 1 when we

notice in (14) that f(s, k) has period L in s so that
∫ t

t−L
f(s, k)ds is constant; thus, Q

has a fixed point. Defining P from (12) and M as before, it readily follows that φ(t) → k

implies that (Pφ)(t) → k. We will see more detail of this type in later, more difficult,

theorems.

Cooke and Yorke [7; p. 87] continue the study and propose a model in which they

postulate a time lag L1 between conception and birth. Then the number of births at time

t is g(x(t− L1)) and (1) is replaced by

(15) x′(t) = g(x(t− L1)) − g(x(t− L1 − L2))

or in integrated form

(16) x(t) = c+

∫ t−L1

t−L1−L2

g(x(s))ds.

They state that the integral in (16) is the number of individuals born in the past generation

[t−L2, t] (conceived in [t−L1 −L2, t−L1]). Their view is that c must be zero for correct

biological interpretation.

It is worth taking a look at their statement in [7; p. 87] concerning (1) and (16) in

order to see what fixed point theory can do for this type of study. They state that analysis

of (15) is much more difficult than that of (1) and they state that they have no result for

(16). By contrast, we show that with fixed point theory analysis of (1) and (16) is the

same. Moreover, they state that they expect a wider range of behavior of solutions of (16)

than of (1) and, indeed, expect (16) to have periodic solutions. Fixed point theory shows

that the behavior of solutions of (1) and (16) is the same and that there are no periodic

solutions, except constants.
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To fully describe (16) we need a continuous initial function ψ : [−L1 − L2, 0] → R.

Under (5) this will yield a unique solution x(t, 0, ψ) of (15) satisfying

(17) x(t) = ψ(0) +

∫ t−L1

t−L1−L2

g(x(s))ds−

∫ −L1

−L1−L2

g(ψ(s))ds

for t > 0. In this problem, L is replaced by L2 in (6) so we ask that there exist α < 1 with

(18) KL2 ≤ α.

Theorem 5. Let (5) and (18) hold and let ψ : [−L1−L2, 0] → R be a given continuous

function. Then there is a unique constant k satisfying

k = ψ(0) + L2g(k) −

∫ −L1

−L1−L2

g(ψ(s))ds

and the solution x(t, 0, ψ) of (15) converges to k as t→ ∞.

Proof. The mapping Q of the proof of Theorem 1, adapted to (18), is a contraction

with unique solution k. Let (M, ‖ · ‖) be the complete metric space with the supremum

metric and with

M = {φ : [−L1 − L2,∞) → R|φ ∈ C, φ(t) = ψ(t) on [−L1 − L2, 0], lim
t→∞

φ(t) = k}.

Define P : M →M by φ ∈M implies that (Pφ)(t) = ψ(t) on [−L1 − L2, 0], and for t ≥ 0

then

(Pφ)(t) = ψ(0) +

∫ t−L1

t−L1−L2

g(φ(s))ds−

∫ L1

−L1−L2

g(ψ(s))ds.

If φ, η ∈M then we readily find that

|(Pφ)(t) − (Pη)(t)| ≤ L2K‖φ− η‖,

so P is a contraction. Since φ(t) → k as t→ ∞, it follows that

(Pφ)(t) → ψ(0) + L2g(k) −

∫ −L1

−L1−L2

g(ψ(s))ds = k.

This completes the proof.
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5. Jehu’s periodic theory.

Jehu [12] considers an equation in the spirit of (9), although he does not mention the

Cooke-Yorke work. His equation is

x′(t) = −f(t, x(t)) + f(t, x(t− 1)) + h(t)

in which f(t + 1, x) = f(t, x), h(t + 1) = h(t),
∫ 0

−1
h(s)ds = 0, and f(t, x) is strictly

increasing in x for fixed t. The equation does not have the property that each constant is

a solution, unless h(t) = 0. He shows that each solution approaches a periodic solution.

It is to be noted that his work does not require uniqueness and it does yield a periodic

solution which is not necessarily constant. Jehu’s work is totally different from ours, but

there is one marked similarity. We have explicitly found the constant to which solutions

converge, and Jehu explicitly finds the periodic function to which solutions converge.

Our purpose in this section is to show that f can be replaced with a function which

is simply Lipschitz, instead of being strictly increasing, but the Lipschitz constant must

be restricted. That will force solutions to be unique as well.

Consider the equation

(19) x′(t) = −f(t, x(t)) + f(t, x(t− L)) + h(t)

where (6), (10), and (13) hold, h is continuous, h(t+ L) = h(t), and
∫ 0

−L
h(s)ds = 0. This

equation will have a first integral since it can be written as

x(t) = −
d

dt

∫ t

t−L

f(s, x(s))ds+
d

dt

∫ t

0

h(s)ds

and
∫ t

0
h(s)ds is also L−periodic since h has mean value zero.

For a given continuous initial function ψ : [−L, 0] → R we have

(20) x(t) = −

∫ t

t−L

f(s, x(s))ds+

∫ t

0

h(s)ds+ ψ(0) +

∫ 0

−L

f(s, ψ(s))ds

and we define

(21) c := ψ(0) +

∫ 0

−L

f(s, ψ(s))ds.
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Theorem 6. If (6), (10), and (13) hold, then there is an L-periodic function γ

satisfying

γ(t) = c−

∫ t

t−L

f(s, γ(s))ds+

∫ t

0

h(s)ds

and the unique solution x(t, 0, ψ) of (2) converges to γ as t→ ∞.

Proof. Let (Y, ‖·‖) be the Banach space of continuous L-periodic functions φ : R→ R

with the supremum norm and define a mapping Q : Y → Y by φ ∈ Y implies that

(Pφ)(t) = c−

∫ t

t−L

f(s, φ(s))ds+

∫ t

0

h(s)ds.

Because of (10) and the fact that h has mean value zero, Q does map Y into Y . Because

of (6) and (13), Q is a contraction and there is a unique fixed point γ in Y .

Notice that γ does satisfy (19) and for each constant c there is such a periodic solution

of (19).

Let (X, ‖ · ‖) be the complete metric space of continuous functions φ : [−L,∞) → R

satisfying φ(t) = ψ(t) on [−L, 0], φ(t) → γ(t) as t → ∞. Define P : X → X by φ ∈ X

implies that (Pφ)(t) = ψ(t) on [−L, 0] and

(Pφ)(t) = −

∫ t

t−L

f(s, φ(s))ds+

∫ t

0

h(s)ds+ c.

Since (Pφ)(0) = ψ(0), P does map X → X. By (6) and (13), P is a contraction. Moreover,

if −J ≤ γ(t) ≤ J for some J > 0, since f is uniformly continuous on [0, L] × [−2J, 2J ],

since f is periodic in t, and since φ(t) → γ(t), it follows that

|

∫ t

t−L

f(s, φ(s))ds−

∫ t

t−L

f(s, γ(s))ds| → 0;

thus, (Pφ)(t) → γ(t). This completes the proof.

6. Some generalizations of the delay: periodicity.

Brilliant as was the idea of Cooke and Yorke to let g be an arbitrary differentiable

function, it was not matched by the assumption that the number of deaths would be

represented by g(x(t − L)). The deaths of those born at time t would be distributed all

along the time period [t, t+ L], and certainly a few beyond t+ L.
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A seemingly more appropriate model was offered by Haddock and Terjeki [10] (see

also [8]) in the form of

(23) x′(t) = −g(x(t)) +

∫ 0

−L

p(s)g(x(t+ s))ds

with ∫ 0

−L

p(s)ds = 1

but was removed from the Cooke-Yorke class by the additional assumptions of g(0) = 0

and g strictly increasing. They also considered

(24) x′(t) = F [−x(t) + ax(t− L) + b

∫ 0

−∞

p(s)x(t+ s)ds]

with F increasing, F (0) = 0, a + b = 1,
∫ 0

−∞
p(s)ds = 1. The linearity inside F and the

monotonicity of F seem critical.

We will examine what can be said for these kinds of distributed delays, without the

monotonicity assumptions, using contraction mappings. Thus, we consider

(25) x′(t) = g(x(t))−

∫ t

t−L

p(s− t)g(x(s))ds

with p continuous,

(26)

∫ 0

−L

p(s)ds = 1,

and assume that there is a constant K such that for all real x, y we have

(27) |g(x)− g(y)| ≤ K|x− y|.

For the contraction condition we will need α < 1 such that

(28) K

∫ 0

−L

|p(s)|(−s)ds ≤ α.

Remark 4. If p(t) = 1/L so that there is a uniform distribution of deaths over an

interval of length L then (26) is satisfied, while (28) yieldsKL/2 ≤ α, a weaker requirement

than in the constant delay case.

EJQTDE, 2004 No. 11, p. 16



We can write (25) as

(29) x′(t) =
d

dt

∫ 0

−L

p(s)

∫ t

t+s

g(x(u))duds.

Then to specify a solution we need a continuous function ψ : [−L, 0] → R so that we can

write (25) as

(30) x(t) = ψ(0) +

∫ 0

−L

p(s)

∫ t

t+s

g(x(u))duds−

∫ 0

−L

p(s)

∫ 0

s

g(ψ(u))duds.

This theorem is actually a corollary to Theorem 8, but the proof is so simple it seems

wrong to embed it in that framework with a much more complicated proof.

Theorem 7. Suppose that (26), (27), and (28) hold. For the given initial function ψ

there is a unique constant k satisfying

(31) k = ψ(0) + g(k)

∫ 0

−L

p(s)(−s)ds−

∫ 0

−L

p(s)

∫ 0

s

g(ψ(u))duds

and the unique solution x(t, 0, ψ) of (3) converges to k as t→ ∞.

Sketch of proof. Use (31) to define a mapping Q as we did in the proof of Theorem 1.

The mapping will be a contraction because of (28). We then define

(32) M = {φ : [−L, 0] → R|φ ∈ C, φ(t) = ψ(t) on [−L, 0], lim
t→∞

φ(t) = k}.

With the supremum metric, M is a complete metric space. Use (30) to define a mapping P

of that space into itself. In particular, we note that φ ∈M implies (Pφ)(t) → k as t→ ∞.

Also, P will be a contraction because of (28) with unique fixed point. This completes the

proof.

Consider the scalar equation

(33) x′(t) = g(t, x(t))−

∫ t

t−L

p(s− t)g(s, x(s))ds

where g and p are continuous, there is a K > 0 such that x, y ∈ R implies

(34) |g(t, x)− g(t, y)| ≤ K|x− y|,
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(35) g(t+ L, x) = g(t, x),

and p satisfies (26).

We can write (33) as

(36) x′(t) =
d

dt

∫ 0

−L

p(s)

∫ t

t+s

g(u, x(u))duds.

Then for a continuous initial function ψ we can write (36) as

x(t) =

∫ 0

−L

p(s)

∫ t

t+s

g(u, x(u))duds+ ψ(0) −

∫ 0

−L

p(s)

∫ 0

s

g(u, x(u))duds.

In the next result we could also prove that the solutions are stable following the ideas

in the proof of Theorem 2.

Theorem 8. If (26), (28), (34), and (35) hold, then for a given continuous function

ψ : [−L, 0] → R there is a unique periodic solution γ of (33) having period L and the

unique solution x(t, 0, ψ) of (33) tends to γ as t → ∞. Also, γ is constant only if there is

a k ∈ R with

g(t, k) =

∫ 0

−L

p(s)g(t+ s, k)ds.

Proof. Let c = ψ(0)−
∫ 0

−L
p(s)

∫ 0

s
g(u, ψ(u))duds and let (X, ‖·‖) be the Banach space

of continuous L-periodic functions with the supremum norm. Define Q : X → X by φ ∈ X

implies that

(Qφ)(t) = c+

∫ 0

−L

p(s)

∫ t

t+s

g(u, φ(u))duds.

Note that

(Qφ)(t+ L) = c+

∫ 0

−L

p(s)

∫ t+L

t+L+s

g(u, φ(u))duds

= c+

∫ 0

−L

p(s)

∫ t

t+s

g(u+ L, φ(u+ L))duds

= (Qφ)(t).

To see that Q is a contraction, if φ, η ∈ X then

|(Qφ)(t) − (Qη)(t)| ≤

∫ 0

−L

|p(s)|

∫ t

t+s

Kduds‖φ− η‖ ≤ α‖φ− η‖.
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Hence, Q has a unique fixed point γ ∈ X, an L-periodic solution of (33).

Now, let (M, ‖ · ‖) be the complete metric space of continuous functions φ with φ(t) =

ψ(t) on [−L, 0] and φ(t) → γ(t) as t→ ∞. We take the supremum metric.

Define a mapping P : M →M by φ ∈M implies that (Pφ)(t) = ψ(t) on [−L, 0], and

for t > 0 define

(Pφ)(t) = ψ(0) −

∫ 0

−L

p(s)

∫ 0

s

g(u, ψ(u))duds

+

∫ 0

−L

p(s)

∫ t

t+s

g(u, φ(u))duds

= c+

∫ 0

−L

p(s)

∫ t

t+s

g(u, φ(u))duds.

We must show that (Pφ)(t) → γ(t). From the definition of γ and P for t > L we have

|(Pφ)(t) − γ(t)| = |

∫ 0

−L

p(s)

∫ t

t+s

g(u, φ(u))du−

∫ 0

−L

p(s)

∫ t

t+s

g(u, γ(u))duds|

≤

∫ 0

−L

|p(s)|

∫ t

t+s

K|φ(u) − γ(u)|duds

≤

∫ 0

−L

|p(s)|

∫ t

t−L

K|φ(u) − γ(u)|duds

and the last term tends to zero as t → ∞ since |φ(u) − γ(u)| → 0 as u → ∞ and p is

continuous (so is bounded).

The details for showing that P is a contraction are identical to that of showing that

Q is a contraction. Hence, P has a unique fixed point in M and that fixed point does

converge to γ.

If (33) has a constant solution k, then x′(t) = k′ = 0 so in (36)

∫ 0

−L

p(s)[g(t, k)− g(t+ s, k)]ds = 0

or

g(t, k)

∫ 0

−L

p(s)ds =

∫ 0

−L

p(s)g(t+ s, k)ds

and since
∫ 0

−L
p(s)ds = 1 we have

g(t, k) =

∫ 0

−L

p(s)g(t+ s, k)ds.
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This completes the proof.

Remark 5. It is worth thinking about the proof for a moment. One is tempted

to say that P and Q are the same, but they are not because P is defined separately on

[−L, 0]. The solution φ will be periodic only if one is so fortunate as having guessed an

initial function ψ whose periodic extension to all of R is a fixed point of Q.

7. Our preferred model.

Cooke and Yorke produced the model (15) and provided the rationale given with it.

We have just considered the model of Haddock and Terjeki (23). And we have yet to

consider their model (24). Careful consideration of these three models leads us to suggest

the model

(37) x′(t) =

∫ t

t−L

p(s− t)g(x(s))ds−

∫ t

−∞

q(s− t)g(x(s))ds

as the one embracing the most realistic properties from each of the models. The first term

on the right takes into account the ideas from (15) in a more general form. The second

term takes into account the deaths distributed over all past times. Here, we suppose that

(38)

∫ 0

−L

p(s)ds = 1

while

(39)

∫ 0

−∞

q(s)ds = 1 and

∫ 0

−∞

∫ v

−∞

|q(u)|dudv exists .

Moreover, the equation offers an interesting challenge in that it does not have a ready first

integral. There is a simple fixed point solution, but there is a price to pay. Write (37) as

(40) x′(t) =

∫ t

t−L

p(s− t)g(x(s))ds− g(x(t)) + g(x(t))−

∫ t

−∞

q(s− t)g(x(s))ds

and then write

(41) x′(t) = −
d

dt

∫ 0

−L

p(s)

∫ t

t+s

g(x(u))duds+
d

dt

∫ t

−∞

∫ s−t

−∞

q(u)dug(x(s))ds.

If c is any constant then

(42) x(t) = c−

∫ 0

−L

p(s)

∫ t

t+s

g(x(u))duds+

∫ t

−∞

∫ s−t

−∞

q(u)dug(x(s))ds
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is a solution of (41).

Let ψ : (−∞, 0] → R be a bounded continuous function and write (41) as

x(t) = −

∫ 0

−L

p(s)

∫ t

t+s

g(x(u))duds+

∫ t

−∞

∫ s−t

−∞

q(u)dug(x(s))ds

ψ(0) +

∫ 0

−L

p(s)

∫ 0

s

g(ψ(u))duds−

∫ 0

−∞

∫ s

−∞

q(u)dug(ψ(s))ds.(43)

It will be convenient to denote

(44) c := ψ(0) +

∫ 0

−L

p(s)

∫ 0

s

g(ψ(u))duds−

∫ 0

−∞

∫ s

−∞

q(u)dug(ψ(s))ds.

We suppose there is a K > 0 such that x, y ∈ R implies that

(45) |g(x)− g(y)| ≤ K|x− y|

and there is an α < 1 such that

(46)

∫ 0

−L

|p(s)|(−s)ds+

∫ 0

−∞

∫ v

−∞

|q(u)|dudv ≤ α/K.

Theorem 9. Let (38), (39), (45), and (46) hold. Then there is a unique constant k

satisfying

(47) k = c− g(k)

∫ 0

−L

p(s)(−s)ds+ g(k)

∫ 0

−∞

∫ v

−∞

q(u)dudv

where c is defined in (44). The unique solution x(t, 0, ψ) of (43) approaches k as t→ ∞.

Proof. Use (47) to define a mapping Q : R→ R by

Qk = c− g(k)

∫ 0

−L

p(s)(−s)ds+ g(k)

∫ 0

−∞

∫ v

−∞

q(u)dudv

so that for k, d ∈ R we have

|Qk −Qd| ≤ K|k − d|

∫ 0

−L

|p(s)s|ds+K|k − d|

∫ 0

−∞

∫ v

−∞

|q(u)|dudv

≤ α|k − d|

by (46). This yields the unique k.
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For the given ψ and the fixed point k, define M as the set of continuous functions

φ : (−∞,∞) → R with φ(t) = ψ(t) on (−∞, 0] and φ(t) → k as t→ ∞. Use the supremum

metric. Define P : M → M by φ ∈ M implies that (Pφ)(t) = ψ(t) on (−∞, 0] and for

t ≥ 0 then use (43) and (44) to define

(Pφ)(t) = c−

∫ 0

−L

p(s)

∫ t

t+s

g(φ(u))duds+

∫ t

−∞

∫ s−t

−∞

q(u)dug(φ(s))ds.

We must show that (Pφ)(t) → k as t→ ∞.

For a fixed φ ∈ M , let ε > 0 be given and find positive numbers J and T such that

|g(φ(t))− g(k)| ≤ J for all t and |φ(t) − k| < ε if T ≤ t <∞.

First, it is clear that

∫ 0

−L

p(s)

∫ t

t+s

g(φ(u))duds→ g(k)

∫ 0

−L

p(s)(−s)ds

as t→ ∞. Next,

|

∫ t

−∞

∫ s−t

−∞

q(u)du(g(φ(s))− g(k))ds|

≤ J

∫ T

−∞

∫ s−t

−∞

|q(u)|duds+

∫ t

T

∫ s−t

−∞

|q(u)|duKεds

= J

∫ T−t

−∞

∫ s

−∞

|q(u)|duds+Kε

∫ t

−∞

∫ s−t

−∞

|q(u)|duds.

In the last line, the first term tends to zero as t→ ∞ because of the assumed convergence

in (46). The second term is bounded by Kεα/K = αε by (46). Hence,

∫ t

−∞

∫ s−t

−∞

q(u)dug(φ(s))ds→ g(k)

∫ t

−∞

∫ s−t

−∞

q(u)duds

as t→ ∞. Comparing these results with (47) shows that (Pφ)(t) → k.

To see that P is a contraction, if φ, η ∈M then

|(Pφ)(t) − (Pη)(t)|

≤ K‖φ− η‖

∫ 0

−L

|p(s)s|ds+K‖φ− η‖

∫ t

−∞

∫ s−t

−∞

|q(u)|duds

≤ α‖φ− η‖.
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There is a fixed point in M which meets the conditions in the theorem.

Remark 6. This is the only inifinite delay problem we will do here, but the interested

reader will see that all of our delays could be changed to infinite delays and the analysis

would be parallel to that just given. We could also follow the proof of Theorem 8 and

introduce periodicity in t in g(t, x). Finally, solutions are stable and each limit constant is

a selective global attractor.

9. Neutral equations

Considerable effort has gone into extending the theory of equations where each con-

stant is a solution to neutral equations. And there is good reason for doing so. The

problem has its roots in mathematical biology, a subject in which neutral-type behavior

is ubiquitous. Every parent and every gardener has observed a living organism displaying

ordinary or sub-ordinary growth. Suddenly, growth accelerates and acceleration gives birth

to more acceleration until the observer may claim to actually see the growth taking place.

This is typical of neutral growth. Present growth rate depends not only on the past state,

but on the past growth rate. A typical example in our context is

(48)
d

dt
(x(t) − h(x(t− L1))) = g(x(t))− g(x(t− L2)).

Clearly, any constant function is a solution. We suppose that g, h : R→ R and that there

are positive constants K1, K2 so that for all x, y ∈ R we have

(49) |h(x) − h(y)| ≤ K1|x− y|

and

(50) |g(x)− g(y)| ≤ K2|x− y|

with an α < 1 such that

(51) K1 + L2K2 ≤ α.

If L = max(L1, L2) and if ψ : [−L, 0] → R is continuous, then we can write our

equation with that initial function as

(52) x(t) = h(x(t− L1)) +

∫ t

t−L2

g(x(s))ds+ ψ(0) − h(ψ(−L1)) −

∫ 0

−L2

g(ψ(s))ds.
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Theorem 10. Let the above conditions hold and let ψ be a given continuous function.

There is a unique constant k satisfying

(53) k = h(k) + g(k)L2 + ψ(0) − h(ψ(−L1)) −

∫ 0

−L2

g(ψ(s))ds

and the unique solution x(t, 0, ψ) of (52) tends to k as t→ ∞.

Proof. Use (53) to define a mapping Q as before. By (51) it will be a contraction

with unique fixed point. For the given ψ, let (M, ‖ · ‖) be the complete metric space of

continuous functions φ : [−L,∞) → R with φ(t) = ψ(t) on [−L, 0] and φ(t) → k as t→ ∞.

Define P : M →M by φ ∈M implies that (Pφ)(t) = ψ(t) on [−L, 0] and for t ≥ 0 then

(Pφ)(t) = h(φ(t− L1)) +

∫ t

t−L2

g(φ(s))ds+ ψ(0) − h(ψ(−L1)) −

∫ 0

−L2

g(ψ(s))ds.

We may note that (Pφ)(0) = ψ(0) and that since φ(t) → k we have (Pφ)(t) → k as t→ ∞.

Moreover, P is a contraction since for φ, η ∈M we have

|(Pφ)(t) − (Pη)(t)| ≤ K1|φ(t− L1) − η(t− L1)| +

∫ t

t−L2

K2|φ(s) − η(s)|ds

≤ (K1 +K2L2)‖φ− η‖.

This completes the proof.

There are two results in Haddock et al [9] which compare loosely with the one just

given. Theirs requires sign conditions and linearity, while ours does not. Our results

specify precisely the limit of each solution, while theirs does not. We strongly control the

Lipschitz constant and the delay, while they do not.

Arino and Pituk [1] use a condition closely akin to (51) and Krasnoselskii’s fixed point

theorem to prove that solutions exponentially approach constants and that those constants

are uniformly stable. We obtain more in that we find the constants, our technique of

Theorem 2 would prove each solution stable, we could show that the constant limit is a

selective global attractor, and our techniques work equally well in the infinite delay case.

Periodicity can be considered as before. Their problem is much more abstract and their

analysis is deep. The contraction argument is quick and totally elementary.

10. Higher order equations.
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Several authors have investigated this problem for systems, but the central condition

of Cooke and Yorke that g be an arbitrary differentiable function, possibly bounded by

K|x|, seems to have been pushed aside, except in [1]. Atkinson and Haddock [2] and

Atkinson, Haddock, and Staffans [3] have looked at problems involving a system x′ =

P (t)[x(t)−x(t−h)] and have found a variety of conditions, such as P ∈ L2[0,∞) to ensure

that solutions approach constants.

In this section we offer a different kind of example which we feel is closer to the original

problem posed by Cooke and Yorke.

Minorsky designed an automatic steering device for the large ship the New Mexico

which was governed by an equation

x′′(t) + cx′(t) + g(x(t− h)) = 0.

Here, the rudder of the ship has angular position x(t) and there is friction force proportional

to the velocity. There is a direction indicating instrument which points in the actual

direction of motion and there is an instrument pointing in the desired direction. These

two are connected to a device which activates an electric motor producing a certain force

to move the rudder so as to bring the ship onto the desired course. There is a time lag

of amount h between the time the ship gets off course and the time the electric motor

activates the restoring force. The object is to give conditions ensuring that x(t) will stay

near zero so that the ship closely follows its proper course. One may find a bit about the

problem in Minorsky [17; p. 517] and in Burton [4; p. 149].

These kinds of control devices tend to over-correct the errors. The Cooke-Yorke type

equation may do a much better job. If Minorsky had applied the opposite force L-time

units later, say g(x(t − h − L)), then his ship would have eventually gone in a straight

line, but on a course parallel to his desired course, provided that g satisfies a Lipschitz

condition and that h and L are not too large.

Instead of Minorsky’s equation we look at

(54) x′′ + cx′(t) + g(x(t− h)) − g(x(t− h− L)) = 0

which we write as

(55) x′′ + cx′ = −
d

dt

∫ t−h

t−h−L

g(x(s))ds.
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Given an initial function ψ : [−h− L, 0] → R and x′(0) we can write (55) as

x′(t) + cx(t) = x′(0) + cψ(0) +

∫ −h

−h−L

g(ψ(s))ds−

∫ t−h

t−h−L

g(x(s))ds

=: Ψ −

∫ t−h

t−h−L

g(x(s))ds.(56)

and then as

(57) x(t) = ψ(0)e−ct +

∫ t

0

e−c(t−s)[Ψ −

∫ s−h

s−h−L

g(x(u))du]ds.

Following the proof of Theorem 5, we ask that there is K > 0 such that for all real

x, y we have

(58) |g(x)− g(y)| ≤ K|x− y|

and there is an α < 1 with

(59) KL ≤ αc.

Theorem 11. Let (58) and (59) hold, let ψ be a given continuous initial function

on [−h − L, 0], let x′(0) be given, and let Ψ be defined in (56). Then there is a unique

constant k satisfying

(60) ck = Ψ − g(k)L

and the unique solution x(t, 0, ψ, x′(0)) of (57) converges to k as t→ ∞.

Proof. Clearly, the mapping Q : R→ R defined by k ∈ R implies

(61) Qk := (Ψ − g(k)L)/c

is a contraction with unique fixed point. Let (M, ‖ · ‖) be the complete metric space of

continuous functions φ : [−h − L,∞) → R satisfying φ(t) → k as t → ∞, φ(t) = ψ(t) on

[−h− L, 0]. Define P : M →M by φ ∈M implies that (Pφ)(t) = ψ(t) on [−h− L, 0] and

for t > 0 then

(62) (Pφ)(t) = ψ(0)e−ct +

∫ t

0

e−c(t−s)[Ψ −

∫ s−h

s−h−L

g(φ(u))du]ds.

EJQTDE, 2004 No. 11, p. 26



We have

(Pφ)(t) = ψ(0)e−ct +

∫ t

0

e−c(t−s)Ψds

−

∫ t

0

e−c(t−s)

∫ s−h

s−h−L

[g(φ(u))− g(k) + g(k)]duds.

Now, examine part of the last term. Let T be a large positive number and let

‖φ− k‖[T,∞) = sup
t≥T−h−L

|φ(u) − k|.

Then

|H(t)| := |

∫ t

0

e−c(t−s)

∫ s−h

s−h−L

[g(φ(u)− g(k)]duds|

≤

∫ T

0

e−c(t−s)KL‖φ− k‖ds+

∫ t

T

e−c(t−s)KL‖φ− k‖[T,∞)ds.

The last term can be made as small as we please by taking T large since φ(t) → k. The

other term tends to zero; hence, this whole term, H(t), can be made as small as we please

by taking t large.

Thus, we can say that

(Pφ)(t) = ψ(0)e−ct) +
Ψ

c
[1 − e−ct]

−
g(k)L

c
[1 − e−ct] +H(t)

which tends to
Ψ

c
−
g(k)L

c
= k

as t→ ∞.

Moreover, P is a contraction since φ, η ∈M imply that

|(Pφ)(t) − (Pη)(t)| ≤

∫ t

0

e−c(t−s)LK‖φ− η‖ds ≤
LK

c
‖φ− η‖.

Remark 6. We now remind the reader of Remark 3. Given a target k, we can solve

(60) for Ψ. If we then select any initial function having the value in (56) of this number Ψ
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and manually steer the ship in the pattern of that initial function, then the solution will

converge to k. This is a type of control problem.

Next, we consider a problem having an asymptotically periodic solution.

Let a be a positive constant, g(t, x) a continuous scalar function satisfying

(63) |g(t, x)− g(t, y)| ≤ K|x− y|

for all x, y ∈ R and some K > 0. Assume that there is an L > 0 with

(64) g(t+ L, x) = g(t, x)

for all t and x, while there is an α < 1 with

(65) KL/a ≤ α.

Consider the scalar equation

(66) x′′ + ax′ + g(t, x(t))− g(t, x(t− L)) = 0.

Every constant function is a solution and the equation does have a first integral since

(67) x′′ + ax′ +
d

dt

∫ t

t−L

g(s, x(s))ds = 0.

We finish with a simple artificial model containing a periodic term, following the stan-

dard spring-mass-dashpot system found in elementary differential equations texts. Dis-

tributed and infinite delays, as well as stability, would present no more difficulties than in

earlier first order problems.

There is a unit mass which is free to move along the x-axis. It has a rod attached

to it which leads to the dashpot exerting a force of −ax′(t) on the mass. There is also a

rod attached to the mass which exerts a force −g(t, x) on the mass when the mass is in

position x(t) at time t. But exactly L time units later the last mentioned rod also exerts

a force of g(t, x(t− L)) on the mass. We have

(68) x′′ = −ax′(t) − g(t, x(t)) + g(t, x(t− L)).

EJQTDE, 2004 No. 11, p. 28



The mass is subjected to an initial velocity and initial position ψ. What will the limiting

position of the mass be?

Given a continuous initial function ψ : [−L, 0] → R and an x′(0) we can write (67) as

x′(t) + ax(t) = x′(0) + aψ(0) +

∫ 0

−L

g(s, ψ(s))ds−

∫ t

t−L

g(s, x(s))ds

=: Ψ −

∫ t

t−L

g(s, x(s))ds(69)

and then as

(70) x(t) = ψ(0)e−at +

∫ t

0

e−a(t−s)[Ψ −

∫ s

s−L

g(u, x(u))du]ds.

Theorem 11. Let (63)-(65) hold and let ψ : [−L, 0] → R be continuous with

Ψ = x′(0) + aψ(0) +

∫ 0

−L

g(s, ψ(s))ds.

Then there is an L-periodic function γ satisfying

γ(t) =

∫ t

−∞

e−a(t−s)[Ψ −

∫ s

s−L

g(u, γ(u))du]

and the unique solution x(t, 0, ψ) of (70) converges to γ(t) as t→ ∞.

Sketch of proof. For that given initial function we can find a periodic solution to which

the solution x(t, 0, ψ) converges as t→ ∞. Instead of integrating as we did just now, write

(xeat)′ = eat[Ψ −

∫ t

t−L

g(s, x(s))ds].

Formally integrate from −∞ to t and obtain

(71) x(t) =

∫ t

−∞

e−a(t−s)[Ψ −

∫ s

s−L

g(u, x(u))du]ds.

If we use this last equation to define a mapping Q from the space of continuous L periodic

functions with the supremum norm into itself, then we can show that Q is a contraction

with a unique fixed point γ.

Next, we define M as the set of continuous functions ψ : [−L,∞) → R which agree

with ψ on the initial interval and which satisfy φ(t) → γ(t) as t→ ∞. We then use (70) to
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define a mapping P of M into itself and show that it is a contraction under the supremum

metric. We then show that (Pφ)(t) → γ(t) using the classical proof that the convolution

of an L1−function with a function tending to zero does, itself, tend to zero.
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