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1. Introduction

Consider the second order nonlinear neutral delay differential equation

(E) [y(t) + p(t)y(t− τ)]
′′

+ q(t)f(y(g(t))) = 0, t ∈ [t0,∞),
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where

τ ≥ 0, q ∈ C([t0,∞), R+), p ∈ C1([t0,∞), R+), 0 ≤ p(t) < 1,

g ∈ C2([t0,∞), R+), g(t) ≤ t, g
′

(t) > 0, lim
t→∞

g(t) = ∞,

}

(1)

(F1) f ∈ C(R), f ′ ∈ C(R\{0}), u f(u) > 0, f ′(u) ≥ 0, for u 6= 0 .

Our attention is restricted to those solutions of (E) that satisfies sup{|y(t)| :

t ≥ T} > 0. We make a standing hypothesis that (E) does possess such

solutions. By a solution of (E) we mean a function y(t) : [t0,∞) → R, such

that y(t)+ p(t)y(t− τ) ∈ C2(t ≥ t0) and satisfies (E) on [t0,∞). For further

question concerning existence and uniqueness of solutions of neutral delay

differential equations see Hale [18].

A solution of Eq. (E) is said to be oscillatory if it is defined on some ray

[T,∞) and has an infinite sequence of zeros tending to infinity; otherwise it

called nonoscillatory. An equation itself is called oscillatory if all its solutions

are oscillatory.

In the last decades, there has been an increasing interest in obtaining

sufficient conditions for the oscillation and/or nonoscillation of solutions

of second order linear and nonlinear neutral delay differential equations.

( See for example [5]-[17],[23], [24], [26] and the references quoted therein ).

Most of these papers considered the equation (E) under the assumption

that f ′(u) ≥ k > 0 for u6= 0, which is not applicable for f(u) = |u|λ sgnu -

classical Emden-Fowler case. Very recently, the results of Atkinson [3] and

Belhorec [4] for Emden-Fowler differential equations have been extended to

the equation (E) by Wong [26] under the assumption that the nonlinear

function f(u) satisfies the sublinear condition

0 <

∫ ε

0+

du

f(u)
,

∫ −ε

0−

du

f(u)
<∞ for all ε > 0

as well as the superlinear condtion

0 <

∫ +∞

ε

du

f(u)
,

∫ −∞

−ε

du

f(u)
<∞ for all ε > 0.

The special case where f(u) = |u|γ sgnu, u ∈ R, (0 < γ 6= 1) is of particular

interest. In this case, the differential equation (E) becomes

(EF ) [y(t) + p(t)y(t− τ)]
′′

+ q(t) yγ(g(t)) sgn y(g(t)) = 0, t ≥ t0 .
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The equation (EF) is sublinear for γ ∈ (0, 1) and it is superlinear for γ > 1.

Established oscillation criteria have been motivated by classical aver-

aging criterion of Kamenev, for the linear differential equation x′′(t) +

q(t)x(t) = 0. More recently, Philos [25] introduced the concept of gen-

eral means and obtained further extensions of the Kamenev type oscillation

criterion for the linear differential equation. The subject of extending oscil-

lation criteria for the linear differential equation to that of the Emden-Fowler

equation and the more general equation x′′(t) + q(t)f(x(t)) = 0 has been of

considerable interest in the past 30 years.

The object of this paper is to prove oscillation criteria of Kamenev’s and

Philos’s type for the equation (E).

For other oscillation results of various functional differential equation we

refer the reader to the monographs [1, 2, 7, 17, 21].

2. Main Results

In this section we will establish some new oscillation criteria for oscillation

of the superlinear equation (E) subject to the nonlinear condition

(F2) f ′(u) Λ(u) ≥ λ > 1, u 6= 0,

where

Λ(u) =































∞
∫

u

ds

f(s)
, u > 0

−∞
∫

u

ds

f(s)
, u < 0

Considering the special case where f(u) = |u|γ sgnu, it is easy to see that

(F1) holds when γ > 1.

It will be convenient to make the following notations in the remainder of

this paper. Let Φ(t, t0) denotes the class of positive and locally integrable

functions, but not integrable, which contains all the bounded functions for

t ≥ t0. For arbitrary functions % ∈ C1[[t0,∞), R+] and φ ∈ Φ(t, t0), we

define

Q(t) = q(t)f [(1 − p(g(t))], α(t, T ) =

t
∫

T

φ(s)ds,
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ν(t, T ) =
1

φ(t)

t
∫

T

%(s)φ2(s)

g′(s)
ds, ν1(t, T ) =

1

φ(t)

t
∫

T

φ2(s)

g′(s)
ds,

A%, φ(t, T ) =
1

α(t, T )

t
∫

T

φ(s)

s
∫

T

%(u)Q(u) du ds,

Bφ(t, T ) =
1

α(t, T )

t
∫

T

φ(s)

s
∫

T

Q(u) du ds.

2.1. Kamenev’s Type Oscillation Criteria

Theorem 2.1 Assume that (1) holds and let the function f(u) satisfies the

assumptions (F1) and (F2). Suppose that there exist φ ∈ Φ(t, t0) and % ∈
C1[[t0,∞), R+] such that

(C1) %
′

(t) ≥ 0,

(

%
′

(t)

g′(t)

)′

≤ 0, for t ≥ t0,

(C2)

∞
∫

t0

αµ(s, T )

ν(s, T )
ds = ∞, 0 < µ < 1.

The superlinear equation (E) is oscilatory if

(C3) lim
t→∞

A%, φ(t, T ) = ∞, T ≥ t0 .

Proof. Let y(t) be a nonoscillatory solution of Eq.(E). Without loss of

generality, we assume that y(t) 6= 0 for t > t0. Further, we suppose that

there exists a t1 ≥ t0 such that y(t) > 0, y(t − τ) > 0 and y(g(t)) > 0 for

t > t1, since the substitution u = −y transforms Eq. (E) into an equation

of the same form subject to the assumption of Theorem. Let

x(t) = y(t) + p(t)y(t− τ) (2)

By (1) we see that x(t) ≥ y(t) > 0 for t > t1, and from (E) it follows that

x
′′

(t) = −q(t)f(y(g(t))) < 0, for t > t1. (3)
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Therefore x
′

(t) is decreasing function. Now, as x(t) > 0 and x
′′

(t) < 0 for

t≥ t1, in view of Kiguradze Lemma [21], we have immediately that x
′

(t) > 0,

for t > t1. Consequently,

x(t) > 0, x′(t) > 0, x′′(t) < 0, for t > t1, (4)

and there exists positive constant K1 and T ≥ t1 such that

x(g(t)) ≥ K1 for t ≥ T . (5)

Now using (4) in (2), we have

y(t) = x(t) − p(t)y(t− τ) = x(t) − p(t)[x(t− τ) − p(t− τ)y(t− 2τ)]

≥ x(t) − p(t)x(t− τ) ≥ (1 − p(t))x(t).

Thus

y(g(t)) ≥ (1 − p(g(t))x(g(t)) for t ≥ t1 . (6)

Using (F2), we get

f(y(g(t)) ≥ f [1 − p(g(t))] · f [x(g(t))] for t ≥ t1 . (7)

Then, from (6) it follows that

x
′′

(t) +Q(t) f [x(g(t))] ≤ 0, t ≥ t1. (8)

Define the function

w(t) = %(t)
x

′

(t)

f [x(g(t))]
, for t > t1. (9)

Then w(t) > 0. Differentiating (9) and using (8), we have

w
′

(t) ≤ −%(t)Q(t) + %
′

(t)
x

′

(t)

f [x(g(t))]

− %(t)g
′

(t)
f ′[x(g(t))]

f2[x(g(t))]
x

′

(t)x
′

(g(t)), t ≥ t1 (10)

Since f is nondecreasing function, g(t) ≤ t, taking into account (4), we have

x(t) ≥ x(g(t)), x′(t) ≤ x′(g(t)), f(x(t)) ≥ f [x(g(t))], for t ≥ t1 .
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Also, since Λ is nonincreasing function, from (5), we conclude that there

exists positive constant K such that

Λ[x(g(t))] ≤ K for t ≥ T ,

which together with (F2), implies that

f ′[x(g(t))] ≥ λ

K
= Ω for t ≥ T . (11)

Then from (10), we get

w
′

(t) ≤ −%(t)Q(t) +
%
′

(t)

%(t)
w(t) − Ω %(t) g′(t)

(

x
′

(t)

f [x(g(t))]

)2

, t ≥ T. (12)

Integrate (12) from T to t, so that we have

w(t) = %(t)
x

′

(t)

f [x(g(t))]
≤ C −

t
∫

T

%(s)Q(s)ds+

t
∫

T

%
′

(s)

%(s)
w(s) ds

−Ω

t
∫

T

%(s) g′(s)

(

x
′

(s)

f [x(g(s))]

)2

ds (13)

where C = %(T )x
′

(T )/ f [x(g(T ))].

Using the fact that %′(t)/g′(t) is positive, nonincreasing function, by

Bonnet Theorem, there exists a ζ ∈ [T, t], so that

t
∫

T

%′(s)
x′(s)

f [x(g(s))]
ds ≤

t
∫

T

%
′

(s)

g′(s)

x
′

(g(s))g
′

(s)

f [x(g(s))]
ds

=
%
′

(T )

g
′

(T )

ζ
∫

T

x
′

(g(s))g
′

(s)

f [x(g(s))]
ds

=
%
′

(T )

g′(T )

x(g(ζ))
∫

x(g(T ))

du

f(u)
≤ %

′

(T )

g′(T )
Λ[x(g(T ))] = M .

Thus, for t ≥ T , we find from (13), that

w(t) + Ω

t
∫

T

g′(s)

%(s)
w2(s) ds ≤ L−

t
∫

T

%(s)Q(s)ds (14)
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where L = C +M . We multiply (14) by φ(t) and integrate from T to t, we

get

t
∫

T

φ(s)w(s)ds+ Ω

t
∫

T

φ(s)

s
∫

T

g′(u)

%(u)
w2(u)duds ≤ α(t, T )[L1 −A%,φ(t, T )].

Using the condition (C3), there exists a t3 ≥ T such that L1−A%,φ(t, T ) ≤ 0

for t≥ t3. Then, for every t ≥ t3

G(t) = Ω

t
∫

T

φ(s)

s
∫

T

g′(u)

%(u)
w2(u)duds ≤ −

t
∫

T

φ(s)w(s)ds .

Since G is nonnegative, we have

G2(t) ≤





t
∫

T

φ(s)w(s)ds





2

, t ≥ t3. (15)

By Schwarz inequality, we obtain







t
∫

T

φ(s)w(s)ds







2

≤





1

φ(t)

t
∫

T

%(s)φ2(s)

g′(s)
ds







φ(t)

t
∫

T

g′(s)

%(s)
w2(s)ds





= ν(t, T )
G′(t)

Ω
, t ≥ t3. (16)

Now,

G(t) = Ω

t
∫

T

φ(s)

s
∫

T

g′(u)

%(u)
w2(u)duds

≥ Ω





t3
∫

T

g′(u)

%(u)
w2(u)du





t
∫

T

φ(s) ds = ΩQ · α(t, T ) . (17)

From (15), (16) and (17), for all t ≥ t3 and some µ, 0 < µ < 1, we get

Ωµ+1Qµ α
µ(t, T )

ν(t, T )
≤ Gµ−2(t)G

′

(t) . (18)
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Integrating (18) from t3 to t, we obtain

Ωµ+1Qµ

t
∫

t3

αµ(s, T )

ν(s, T )
ds ≤

[

1

1 − µ

1

G1−µ(t3)

]

<∞

and this contradicts the assumption (C2). Therefore, the equation (E) is

oscillatory.

Since the differentiable function %(t) ≡ 1 satisfied the condition (C1), we

have the following Corollary.

Corollary 2.1 Let the following condition holds

∞
∫

t0

αµ(s, T )

ν1(s, T )
ds = ∞, 0 < µ < 1 .

The superlinear equation (E) is oscillatory if

lim
t→∞

Bφ(t, t0) = ∞ .

Example 2.1 Consider the following delay differential equation

(E1)

(

y(t) +
1

2
y
(

t− π

2

)

)′

+
2 + cos t

t
√
t

yλ
( t

2

)

sgn y
( t

2

)

= 0, t ≥ π

2
.

where λ > 1. Here g(t) =
t

2
and Q(t) =

2 + cos t

2λ t
√
t
. We choose %(t) = t

2 and

φ(t) = 1
t . Then

α(t,
π

2
) = ln

2t

π
, ν(t,

π

2
) = t ln

2t

π
.

Now, we see that

t
∫

π/2

αµ(s, π/2)

ν(s, π/2)
ds =

t
∫

π/2

1

s

(

ln
2s

π

)µ−1

ds =
1

µ

(

ln
2t

π

)µ

,

so that for µ > 0

lim
t→∞

t
∫

π/2

αµ(s, π/2)

ν(s, π/2)
ds = ∞ .
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Further,

A%,φ(t, π/2) =
1

α(t, T )

t
∫

T

φ(s)

s
∫

T

%(u)Q(u) du ds

=
1

ln 2t
π

t
∫

π/2

1

s

s
∫

π/2

u

2

2 + cos u

2λu
√
u
du ds ≥ 1

2λ+1 ln 2t
π

t
∫

π/2

1

s

s
∫

π/2

1√
u
du ds

=
1

2λ ln 2t
π

[

2
√
t− 2

√

π

2
−
√

π

2
ln

2t

π

]

,

so that

lim sup
t→∞

A%,φ(t, π/2) = ∞ .

Consequently, all conditions of Theorem 2.1 are satisfied, and hence the

equation (E1) is oscillatory.

Theorem 2.2 Let the function % satisfies the condition (C1). If there exists

a positive constant Ω and T ≥ t0 such that

(C4) lim sup
t→∞

t
∫

T

(

%(s)Q(s) − 1

4Ω

% ′ 2(s)

%(s)g′(s)

)

ds = ∞

then the superlinear equation (E) is oscillatory.

Proof. Let y(t) be a nonoscillatory solution of Eq. (E). Without loss

of generality, we assume that y(t) 6=0 for t > t0. Further, we suppose that

there exists a t1 ≥ t0 such that y(t)>0, y(t − τ) > 0 and y(g(t)) > 0 for

t > t1. Next consider the function w(t) defined with (9). Then, as in the

proof of Theorem 2.1 we have that there exists a constant Ω > 0 and T ≥ t1,

such that (12) is satisfied. From (12) we get

w
′

(t) + %(t)Q(t) ≤ %
′

(t)

%(t)
w(t) − Ω

g′(t)

%(t)
w2(t), t > T (19)

or

w
′

(t) + %(t)Q(t) − 1

4Ω

% ′ 2(t)

%(t)g′(t)
≤ −Ω

g′(t)

%′(t)

(

w(t) − 1

2Ω

%′(t)

g′(t)

)2

< 0
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Thus, integrating the former inequality from T to t, we are lead to

t
∫

T

(

%(s)Q(s) − 1

4Ω

% ′ 2(s)

%(s)g′(s)

)

ds < w(T ) − w(t) < w(T ) <∞

and this contradicts (C4). Then every solution of Eq. (E) oscillates.

By choosing %(t) ≡ 1, we get the following Corollary.

Corollary 2.2 The superlinear equation (E) is oscillatory if

lim sup
t→∞

t
∫

T

Q(s)ds = ∞ .

2.2. Philos’s Type Oscillation Criteria

Next, we present some new oscillation results for Eq. (E), by using in-

tegral averages condition of Philos-type. Following Philos [25], we introduce

a class of functions <. Let

D0 = {(t, s) : t>s ≥ t0} and D = {(t, s) : t ≥ s ≥ t0}.

The function H ∈ C(D,R) is said to belongs to the class < if

(I) H(t, t) = 0 for t ≥ t0; H(t, s) > 0 for (t, s) ∈ D0;

(II) H has a continuous and nonpositive partial derivative on D0 with

respect to the second variable such that

−∂H(t, s)

∂s
= h(t, s)

√

H(t, s) forall (t, s) ∈ D0.

Theorem 2.3 The superlinear equation (E) is oscillatory if there exist the

functions % ∈ C1[[t0,∞), R+], H ∈ < and the constant Ω > 0, such that

(C5) lim sup
t→∞

1

H(t, t0)

t
∫

t0

[

H(t, s)%(s)Q(s) − η(s)G2(t, s)

4Ω

]

ds = ∞.

where

G(t, s) =
% ′(s)

% (s)

√

H(t, s) − h(t, s) , η(t) =
% (t)

g ′(t)
.
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Proof. Let y(t) be a nonoscillatory solution of Eq. (E). Without loss

of generality, we assume that y(t) 6=0 for t > t0. Further,we suppose that

there exists a t1 ≥ t0 such that y(t) > 0, y(t − τ) > 0 and y(g(t)) > 0 for

t > t1. Consider the function w(t) defined with (9). Then, as in the proof

of Theorem 2.1, we obtain (12). Consequently, we get

t
∫

T

H(t, s)%(s)Q(s) ds ≤ −
t
∫

T

H(t, s)w
′

(s)ds+

t
∫

T

H(t, s)
%′(s)

%(s)
w(s) ds

−Ω

t
∫

T

H(t, s)
g′(s)

%(s)
w2(s) ds, t ≥ T ,

which for all t ≥ T , implies

t
∫

T

H(t, s)%(s)Q(s)ds ≤ H(t, T )w(T ) − Ω

t
∫

T

H(t, s)

η(s)
w2(s) ds

+

t
∫

T

(

H(t, s)
%′(s)

%(s)
+
∂H

∂s
(t, s)

)

w(s) ds

Hence,

t
∫

T

H(t, s)%(s)Q(s)ds ≤ H(t, T )w(T )

−
t
∫

T

[
√

Ω
H(t, s)

η(s)
w(s) −

√

η(s)G(t, s)

2
√

Ω

]2

ds (20)

+
1

4Ω

t
∫

T

η(s)G2(t, s) ds , t ≥ T .

Thereby, including (II), we conclude that

t
∫

t0

H(t, s)%(s)Q(s) ds =

T
∫

t0

H(t, s)%(s)Q(s) ds+

t
∫

T

H(t, s)%(s)Q(s) ds

≤ H(t, t0)

T
∫

t0

%(s)Q(s) ds+H(t, t0)w(T ) +
1

4Ω

t
∫

t0

η(s)G2(t, s) ds .
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Accordingly, we obtain

lim sup
t→∞

1

H(t, t0)

t
∫

t0

[

H(t, s)%(s)Q(s) − η(s)G2(t, s)

4Ω

]

ds

≤
T
∫

t0

%(s)Q(s) ds+ w(T ) <∞ .

Thus, we come to a contradiction with assumption (C5).

From Theorem 2.3 we get the following Corollaries.

Corollary 2.3 The superlinear equation (E) is oscillatory if there exists

the function H ∈ < and the constant Ω > 0, such that

lim sup
t→∞

1

H(t, t0)

t
∫

t0

[

H(t, s)Q(s) − h2(t, s)

4Ω g ′(s)

]

ds = ∞.

Corollary 2.4 The superlinear equation (E) is oscillatory if there exist the

functions % ∈ C1[[t0,∞), R+], H ∈ <, such that

lim sup
t→∞

1

H(t, t0)

t
∫

t0

H(t, s)%(s)Q(s) ds = ∞ ,

lim sup
t→∞

1

H(t, t0)

t
∫

t0

η(s)G2(t, s) ds <∞ .

Corollary 2.5 The superlinear equation (E) is oscillatory if there exists

the function H ∈ <, such that

lim sup
t→∞

1

H(t, t0)

t
∫

t0

H(t, s)Q(s) ds = ∞ ,

lim sup
t→∞

1

H(t, t0)

t
∫

t0

h2(t, s)

g ′(s)
ds <∞ .

EJQTDE, 2004 No. 10, p. 12



Example 2.2 Consider the following delay differential equation

(E2)

(

y(t) +
1

t2
y
(

t− π

2

)

)′

+
(t− 1)6

t4 (t− 2)3
y3
(

t− 1
)

= 0, t ≥ 2.

Then, functions p(t) =
1

t2
, q(t) =

(t− 1)6

t4 (t− 2)3
, g(t) = t− 1 satisfy conditions

(1), so as the function f(u) = u3 satisfies conditions (F1). Moreover, Q(t) =
1

t
, η(t) =

1

t
. By taking %(t) =

1

t
and H(t, s) = ln2 t

s
for t ≥ s ≥ 2, we

obtain

lim sup
t→∞

1

H(t, 2)

t
∫

2

H(t, s)%(s)Q(s) ds = lim sup
t→∞

1

ln2 t
2

t
∫

2

ln2 t

s
· ds
s2

= ∞

lim inf
t→∞

1

H(t, 2)

t
∫

2

η(s)G2(t, s) ds = lim inf
t→∞

1

ln2 t
2

t
∫

2

1

s3

(

2 + ln
t

s

)2

=
1

8
.

Conditions od Corollary 2.4 are satisfied and hence the equation (E2) is

oscillatory.

The following two oscillation criteria (Theorem 2.4 and 2.5) treat the

cases when it is not possible to verify easily condition (C5).

Theorem 2.4 Let H belongs to the class < and assume that

(III) 0 < inf
s≥t0

[

lim inf
t→∞

H(t, s)

H(t, t0)

]

≤ ∞.

Let the functions % ∈ C1[[t0,∞), R+] be such that

(C6) lim sup
t→∞

1

H(t, t0)

t
∫

t0

G2(t, s) η(s) ds <∞,

where G(t, s) and η(t) are defined as in Theorem 2.3. The superlinear equa-

tion (E) is oscillatory if there exist a continuous function ψ on [t0,∞), such

that for every T ≥ t0 and for every Ω > 0

(C7) lim sup
t→∞

t
∫

t0

ψ2
+(s)

η(s)
ds = ∞,
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and

(C8) lim sup
t→∞

1

H(t, T )

t
∫

T

(

H(t, s)%(s)Q(s) −G2(t, s)
η(s)

4Ω

)

ds ≥ ψ(T ).

where ψ+(t) = max{ψ(t), 0}.

Proof. We suppose that there exists a solution y(t) of the equation (E),

such that y(t) > 0 on [T0,+∞) for some T0 ≥ t0. Defining the function

w(t) by (9) in the same way as in the proof of Theorem 2.3, we obtain the

inequality (20). By (20), we have for t > T ≥ T0

1

H(t, T )

t
∫

T

[

H(t, s)%(s)Q(s) − η(s)G2(t, s)

4Ω

]

ds

≤ w(T ) − 1

H(t, T )

t
∫

T

[
√

Ω
H(t, s)

η(s)
w(s) −

√

η(s)G(t, s)

2
√

Ω

]2

ds

≤ w(T ) − Ω

H(t, T )

t
∫

T

H(t, s)
w2(s)

η(s)
ds (21)

− 1

H(t, T )

t
∫

T

√

H(t, s)G(t, s)w(s) ds

Hence, for T≥ T0 we get

lim sup
t→∞

1

H(t, T )

t
∫

T

[

H(t, s)%(s)Q(s) − η(s)G2(t, s)

4Ω

]

ds

≤ w(T ) − lim inf
t→∞

1

H(t, T )

t
∫

T

[
√

Ω
H(t, s)

η(s)
w(s) −

√

η(s)G(t, s)

2
√

Ω

]2

ds

By the condition (C7) and the previous inequality, we see that

ψ(T ) ≤ w(T ) for every T ≥ t0, (22)

Define the functions α(t) and β(t) as follows
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α(t) =
1

H(t, T0)

t
∫

T0

H(t, s)
w2(s)

η(s)
ds,

β(t) =
1

H(t, T0)

t
∫

T0

√

H(t, s)G(t, s)w(s) ds .

Then, (21) implies that

lim inf
t→∞

[α(t) + β(t) ]

≤ w(T0) − lim sup
t→∞

1

H(t, T0)

t
∫

T0

[

H(t, s)%(s)Q(s) − η(s)G2(t, s)

4Ω

]

ds

which together with the condition (C7) gives that

lim inf
t→∞

[α(t) + β(t) ] ≤ w(T0) − ψ(T0) <∞ . (23)

In order to show that

∞
∫

T0

w2(s)

η(s)
ds <∞, (24)

we suppose on the contrary, that (24) fails, i.e. there exists a T1 > T0 such

that

t
∫

T0

w2(s)

η(s)
ds ≥ µ

ζ
for all t ≥ T1 , (25)

where µ is an arbitrary positive number and ζ is a positive constant satisfying

inf
s≥to

[

lim
t→∞

inf
H(t, s)

H(t, t0)

]

> ζ > 0. (26)

Using integration by parts and (25), we have for all t ≥ T1

α(t) =
1

H(t, T0)

t
∫

T0

H(t, s) d





s
∫

T0

w2(u)

η(u)
du




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= − 1

H(t, T0)

t
∫

T0

∂H

∂s
(t, s)





s
∫

T0

w2(u)

η(u)
du



 ds

≥ − 1

H(t, T1)

t
∫

T0

∂H

∂s
(t, s)





s
∫

T0

w2(u)

η(u)
du



 ds

≥ − µ

ζ H(t, T0)

t
∫

T0

∂H

∂s
(t, s) ds =

µH(t, T1)

ζ H(t, T0)
≥ µH(t, T1)

ζ H(t, t0)

By (26), there is a T2 ≥ T1 such that H(t, T1)/H(t, t0) ≥ ζ for all t ≥ T2,

and accordingly α(t) ≥ µ for all t ≥ T2. Since µ is an arbitrary constant,

we conclude that

lim
t→∞

α(t) = ∞. (27)

Next, consider a sequence {tn}∞n=1 ∈ [T0,∞) with limn→∞ tn = ∞ and

lim
n→∞

[α(tn) + β(tn)] = lim inf
t→∞

[α(t) + β(t)].

In view of (23), there exists a constant µ2 such that

α(tn) + β(tn) ≤ µ2, (28)

for all sufficiently large n. It follows from (27) that

lim
n→∞

α(tn) = ∞, (29)

and (28) implies

lim
n→∞

β(tn) = −∞. (30)

Then, by (28) and (30), for n large enough we derive

1 +
β(tn)

α(tn)
≤ µ2

α(tn)
<

1

2
.

Thus

β(tn)

α(tn)
≤ −1

2
for all large n .
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which together with (30) implies that

lim
n→∞

β2(tn)

α(tn)
= ∞ . (31)

On the other hand by Schwarz inequality, we have

β2(tn) =





1

H(tn, T0)

tn
∫

T0

√

H(tn, s)G(tn, s)w(s)ds





2

≤







1

H(tn, T0)

tn
∫

T0

G2(tn, s) η(s) ds







×







1

H(tn, T0)

tn
∫

T0

H(tn, s)
w2(s)

η(s)
ds







≤ α(tn)







1

H(tn, T0)

tn
∫

T0

G2(tn, s) η(s) ds







.

Then, by (26), for large enough n we get

β2(tn)

α(tn)
≤ 1

ζH(tn, t0)

tn
∫

T0

G2(tn, s) η(s) ds.

Because of (31), we have

lim
n→∞

1

H(tn, t0)

tn
∫

t0

G2(tn, s) η(s) ds = ∞ , (32)

which gives

lim
t→∞

sup
1

H(t, t0)

t
∫

t0

G2(tn, s) η(s) ds = ∞ . (33)

But the latter contradicts the assumption (C5). Thus, (24) holds. Finally,

by (22), we obtain

∞
∫

T0

ψ2
+(s)

η(s)
ds ≤

∞
∫

T0

w2(s)

η(s)
ds <∞ (34)

EJQTDE, 2004 No. 10, p. 17



which contradicts the assumption (C7). This completes the proof.

Theorem 2.5 Let H belongs to the class < satisfying the condition (III)

and % ∈ C1[[t0,∞), R+] be such that

(C9) lim sup
t→∞

1

H(t, t0)

t
∫

t0

H(t, s)%(s)Q(s) ds <∞,

The superlinear equation (E) is oscillatory if there exist a continuous func-

tion ψ on [t0,∞), such that for every T ≥ t0 and for every Ω > 0, (C7)

and

(C10) lim inf
t→∞

1

H(t, T )

t
∫

T

(

H(t, s)%(s)Q(s) −G2(t, s)
η(s)

4Ω

)

ds ≥ ψ(T )

are satisfied.

Proof. For the nonoscillatory solution y(t) of the equation (E), such

that y(t) > 0 on [T0,∞) for some T0 ≥ t0, as in the proof of Theorem 2.4,

(21) is satisfied. We conclude by (21) that for T ≥ T0

lim sup
t→∞

[α(t) + β(t) ]

≤ w(T ) − lim inf
t→∞

1

H(t, T )

t
∫

T

[

H(t, s)%(s)Q(s) − η(s)G2(t, s)

4Ω

]

ds

where α(t) and β(t) are defined as in the proof of Theorem 2.4. Together

with the condition (C9) we conclude that inequality (22) holds and

lim sup
t→∞

[α(t) + β(t) ] ≤ w(T ) − ψ(T ) <∞ . (35)

From the condition (C10) it follows that

ψ(T ) ≤ lim inf
t→∞

1

H(t, T )

t
∫

T

(

H(t, s)%(s)Q(s) −G2(t, s)
η(s)

4Ω

)

ds

≤ lim inf
t→∞

1

H(t, T )

t
∫

T

H(t, s)%(s)Q(s) ds

− 1

4Ω
lim inf
t→∞

1

H(t, T )

t
∫

T

G2(t, s) η(s) ds ,

EJQTDE, 2004 No. 10, p. 18



so that (C9) implies that

lim inf
t→∞

1

H(t, T0)

t
∫

T0

G2(t, s) η(s) ds <∞ . (36)

By (36), there exists a sequence {tn}∞n=1 in [T0,∞) with limn→∞ tn = ∞
and

lim
n→∞

1

H(t, tn)

tn
∫

T

G2(t, s) η(s) ds = lim inf
t→∞

1

H(t, T0)

t
∫

T0

G2(t, s) η(s) ds . (37)

Suppose now that (24) fails to hold. As in Theorem 2.4. we conlude that

(27) holds. By (35), there exists a natural number N such that (28) is

verified for all n ≥ N . Proceeding as in the proof of Theorem 2.4. we obtain

(32), which contradicts (37). Therefore, (24) holds. Using (22), we conclude

by (24) and using the procedure of the proof of , we conclude that (34)

is satisfied, which contradicts the assumption (C7). Hence, the superlinear

equation (E) is oscillatory.

Remark. With the appropriate choice of functions H and h, it is possible

to derive a number of oscillation criteria for Eq. (E). Defining, for example,

for some integer n >1, the function H(t,s) by

H(t, s) = (t− s)n, (t, s) ∈ D. (38)

we can easily check that H∈ < as well as that it satisfies the condition (III).

Therefore, as a consequence of Theorems 2.3.-2.5. we can obtain a number

of oscillation criteria.

Of course, we are not limited only to choice of functions H defined by

(38), which has become standard and goes back to the well known Kamenev-

type conditions.With a different choice of these functions it is possible to

derive from Theorems 2.3.-2.5. other sets of oscillation criteria. In fact,

another possibilities are to choose the function H as follows:

1) H(t, s) =





t
∫

s

du

θ(u)





γ

, t ≥ s ≥ t0,
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where γ > 1 and θ : [t0,∞) → R+ is a continuous function satisfying

condition

lim
t→∞

t
∫

t0

du

θ(u)
= ∞;

for example, taking θ(u) = uβ, β ≥ 1 we get

1a) H(t, s) =























[t1−β − s1−β]γ

(1 − β)γ
, β < 1

(

ln
t

s

)γ

, β = 1

;

2) H(t, s) = [A(t) −A(s)]γ , for t ≥ s ≥ t0, γ > 1

3) H(t, s) =

(

log
A(t)

A(s)

)γ

, for t ≥ s ≥ t0, γ > 1

where a ∈ C([t0,∞); (0,∞)) and A′(t) =
1

a(t)
, t ≥ t0; for example, taking

a(t) = e−t, we get

2a) H(t, s) = (et − es)γ , t ≥ s ≥ t0, γ > 1

4) H(t, s) =

(

ln
A1(s)

A1(t)

)γ

A1(s), for t ≥ s ≥ t0, γ > 1,

5) H(t, s) =

(

1

A1(t)
− 1

A1(s)

)γ

A2
1(s), for t ≥ s ≥ t0, γ > 1,

where a ∈ C([t0,∞); (0,∞)) and A1(t) =

∞
∫

t

ds

a(s)
<∞. It is a simple matter

to check that in all these cases (1)– (5), assumptions (I), (II) and (III) are

verified.
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