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Abstract

We apply fixed point theorems to obtain sufficient conditions for
existence of infinitely many solutions of a nonlinear fourth order bound-
ary value problem

u(4)(t) = a(t)f(u(t)), 0 < t < 1,

u(0) = u(1) = u′(0) = u′(1) = 0,

where a(t) is Lp-integrable and f satisfies certain growth conditions.
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1 Introduction

In this paper we are interested in (2, 2) conjugate nonlinear boundary-value
problem

u(4)(t) = a(t)f(u(t)), 0 < t < 1, (1)

u(0) = u(1) = u′(0) = u′(1) = 0, (2)

which describes deformations of elastic beams with fixed end points.
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The paper is organized in the following fashion. In the introduction we
briefly discuss the background of the problem and give an overview of related
results. In section 2 we introduce the assumptions on the inhomogeneous
term of (1), discuss the properties of the Green’s function of the homogeneous
(1), (2), and state the theorems that we use to obtain our main results
presented in sections 3 and 4.

Recently Yao [18] applied Krasnosel’skĭı’s fixed point theorem [15] to
study the eigenvalue problem

u(4)(t) = λf(u(t)), 0 < t < 1,

u(0) = u(1) = u′(0) = u′(1) = 0,

The author obtained intervals of eigenvalues for which at least one or two
solutions are guaranteed. For other related results we refer the reader to
[5, 7, 17, 19].

Fixed point theorems have been applied to various boundary value prob-
lems to show the existence of multiple positive solutions. An overview of
numerous such results can be found in Guo and Lakshmikantham [4] and
Agarwal, O’Reagan and Wong [1].

The study of sufficient conditions for the existence of infinitely many
positive solutions was originated by Eloe, Henderson and Kosmatov in [3].
The authors of [3] considered (k, n − k) conjugate type BVP

(−1)n−ku(n)(t) = a(t)f(u(t)), 0 < t < 1,

u(i)(0) = 0, i = 0, . . . , k − 1,

u(j)(1) = 0, j = 0, . . . , n − k − 1.

Their approach was based on applications of cone-theoretic theorems due to
Krasnosel’skĭı and Leggett-Williams [16]. For applications of the latter see
Davis and Henderson [2] and Henderson and Thompson [6] and the references
therein. Later, in [13, 14], the author obtained infinitely many solutions for
the second order BVP

−u′′(t) = a(t)f(u(t)), 0 < t < 1,

αu(0) − βu′(0) = 0,

γu(1) + δu′(1) = 0,

where α, β, γ, δ ≥ 0, αγ + αδ + βγ > 0. In addition, we point out that
[13, 14] only dealt with a very special choice of a singular (L1) integrable
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function a(t). The study of infinitely many solutions was further developed
by Kaufmann and Kosmatov [9, 10] to extend the results [13, 14] to the
general case of a(t) ∈ Lp[0, 1] for p ≥ 1. In [9], a(t) was taken to possess
countably many singularities (or to be an infinite series of singular functions)
and, in [10], a(t) was selected in the form of a finite product of singular
functions. It is also relevant to our discussion to mention [8, 11, 12] devoted
to BVP’s on time scales and three-point BVP’s.

In this note, we extend the results of Yao [18] (with λ = 1). We also
generalize and refine the results of [3] (with n = 4, k = 2) by obtaining
sharper sufficient conditions for existence of infinitely many solutions of (1),
(2).

2 Auxiliaries and fixed point theorems

The Green’s function of
u(4) = 0

satisfying (2) is

G(t, s) =
1

6

{

t2(1 − s)2((s − t) + 2(1 − t)s), 0 ≤ t ≤ s ≤ 1,

s2(1 − t)2((t − s) + 2(1 − s)t), 0 ≤ s ≤ t ≤ 1.
(3)

Definition 2.1 Let B be a Banach space and let K ⊂ B be closed and
nonempty. Then K is said to be a cone if

1. αu + βv ∈ K for all u, v ∈ K and for all α, β ≥ 0, and

2. u,−u ∈ K implies u ≡ 0.

We let B = C[0, 1] with the norm ‖u‖ = maxt∈[0,1] |u(t)|. In the sequel of
our note we take τ ∈ [0, 1

2
) and define our cone Kτ ⊂ B by

Kτ = {u(t) ∈ B |u(t) ≥ 0 on [0, 1], min
t∈[τ,1−τ ]

u(t) ≥ cτ‖u‖}, (4)

where cτ = 2
3
τ 4. We define an operator T : B → B by

Tu(t) =

∫ 1

0

G(t, s)a(s)f(u(s))ds.

The required properties of T are stated in the next lemma.
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Lemma 2.2 The operator T is completely continuous and T : Kτ → Kτ .

Proof: By Arzela-Ascoli theorem, T is completely continuous.
Now we show that it is cone-preserving. To this end, if s ∈ [t, 1], then

min
t∈[τ,1−τ ]

G(t, s) =
1

6
(1 − s)2 min

t∈[τ,1−τ ]
t2((s − t) + 2(1 − t)s)

≥
1

6
τ 2(1 − s)22(1 − τ)τ

≥
1

6
cτ3(1 − s)2

≥ cτ

1

6
(1 − s)2((s − t′) + 2(1 − t′)s)

≥ cτG(t′, s)

for all t′ ∈ [0, s]. The case of s ∈ [0, t] is treated similarly to see that

min
t∈[τ,1−τ ]

G(t, s) ≥ cτG(t′, s)

for all s, t′ ∈ [0, 1].
With the estimate above we have

min
t∈[τ,1−τ ]

Tu(t) = min
t∈[τ,1−τ ]

∫ 1

0

G(t, s)a(s)f(u(s)) ds

≥

∫ 1

0

min
t∈[τ,1−τ ]

G(t, s)a(s)f(u(s)) ds

≥ cτ

∫ 1

0

G(t′, s)a(s)f(u(s)) ds

= cτTu(t′)

for all t′ ∈ [0, 1]. Hence mint∈[τ,1−τ ] Tu(t) ≥ cτ‖T‖ and the proof is finished.

Fixed points of T are solutions of (1), (2). The existence of a fixed point
of T follows from theorems due to Krasnosel’skĭı and Leggett-Williams. Now
we state the former.

Theorem 2.3 Let B be a Banach space and let K ⊂ B be a cone in B.
Assume that Ω1, Ω2 are open with 0 ∈ Ω1, Ω1 ⊂ Ω2, and let

T : K ∩ (Ω2 \ Ω1) → K

be a completely continuous operator such that either
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(i) ‖Tu‖ ≤ ‖u‖, u ∈ K ∩ ∂Ω1, and ‖Tu‖ ≥ ‖u‖, u ∈ K ∩ ∂Ω2 , or

(ii) ‖Tu‖ ≥ ‖u‖, u ∈ K ∩ ∂Ω1, and ‖Tu‖ ≤ ‖u‖, u ∈ K ∩ ∂Ω2.

Then T has a fixed point in K ∩ (Ω2 \ Ω1).

To introduce Leggett-Williams fixed point theorem we need more defini-
tions.

Definition 2.4 The map α is said to be a nonnegative continuous concave
functional on a cone K of a (real) Banach space B provided that α : K →
[0,∞) is continuous and

α(tu + (1 − t)v) ≥ tα(u) + (1 − t)α(v)

for all u, v ∈ K and 0 ≤ t ≤ 1.

Definition 2.5 Let 0 < a < b be given and α be a nonnegative continuous
concave functional on a cone K. Define convex sets

Br = {u ∈ K | ‖u‖ < r}

and
P (α, a, b) = {u ∈ K | a ≤ α(u), ‖u‖ ≤ b}.

The following fixed point theorem due to Leggett and Williams enables
one to obtain triple fixed points of an operator on a cone.

Theorem 2.6 Let T : Bc → Bc be a completely continuous operator and let
α be a nonnegative continuous concave functional on a cone K such that
α(u) ≤ ‖u‖ for all u ∈ Bc. Suppose there exist 0 < a < b < d ≤ c such that

(C1) {u ∈ P (α, b, d)|α(u) > b} 6= ∅ and α(Tu) > b for u ∈ P (α, b, d),

(C2) ‖Tu‖ < a for ‖u‖ ≤ a, and

(C3) α(Tu) > b for u ∈ P (α, a, b) with ‖Tu‖ > d.

Then T has at least three fixed points u1, u2, and u3 such that ‖u1‖ < a,
b < α(u2), and ‖u3‖ > a with α(u3) > b

To obtain some of the norm inequalities in Theorems 2.3 and 2.6 we
employ Hölder’s inequality.
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Theorem 2.7 (Hölder) Let f ∈ Lp[a, b] with p > 1, g ∈ Lq[a, b] with q > 1,
and 1

p
+ 1

q
= 1. Then fg ∈ L1[a, b] and

‖fg‖1 ≤ ‖f‖p‖g‖q

Let f ∈ L1[a, b] and g ∈ L∞[a, b]. Then fg ∈ L1[a, b] and

‖fg‖1 ≤ ‖f‖1‖g‖∞.

The following assumptions on the inhomogeneous term of (2) will stand
throughout this paper:

(A1) f is nonnegative and continuous;

(A2) lim
t→t0

a(t) = ∞, where 0 < t0 < 1;

(A3) a(t) is nonnegative and there exists m > 0 such that a(t) ≥ m a.e. on
[0, 1];

(A4) a(t) ∈ Lp[0, 1] for some 1 ≤ p ≤ ∞.

Any fixed points of T are now positive.
We will need to employ some estimates on (3) that are given below.
One can readily see that

max
t,s∈[0,1]

G(t, s) =
1

192
. (5)

The function
∫ 1−τ

τ

G(t, s) ds =
1

6

∫ t

τ

s2(1 − t)2((t − s) + 2(1 − s)t) ds

+
1

6

∫ 1−τ

t

t2(1 − s)2((s − t) + 2(1 − t)s) ds

=
1

6
(
1

4
t4 −

1

2
t3 +

1

4
t2 + t2τ 3 − tτ 3 +

1

4
τ 4)

attains its maximum on the interval [0, 1] at t = 1
2

and

max
t∈[0,1]

∫ 1−τ

τ

G(t, s) ds =
1

24
(τ 4 − τ 3 +

1

16
) (6)

EJQTDE, 2004 No. 12, p. 6



and its minimum on the interval [τ, 1 − τ ] at t = τ, 1 − τ so that

min
t∈[τ,1−τ ]

∫ 1−τ

τ

G(t, s) ds =
1

24
τ 2(1 − 2τ)(1 − 2τ 2). (7)

Using the fact that (7) attains its minimum on the interval [τ ′, τ ′′] ⊂ (0, 1
2
)

at one of the end-points and defining

l(τ ′, τ ′′) =
1

24
min

{

τ ′2(1 − 2τ ′)(1 − 2τ ′2), τ ′′2(1 − 2τ ′′)(1 − 2τ ′′2)
}

(8)

we get that

min
t∈[τ,1−τ ]

∫ 1−τ

τ

G(t, s) ds =
1

24
τ 2(1 − 2τ)(1 − 2τ 2)

> l(τ ′, τ ′′) (9)

for all τ ∈ [τ ′, τ ′′].
It follows from (6) that

max
t∈[0,1]

‖G(t, ·)‖1 =
1

384
. (10)

One can also easily see from (5) that

max
t∈[0,1]

‖G(t, ·)‖q = max
t∈[0,1]

(
∫ 1

0

Gq(t, s) ds

)

1

q

<
1

192
. (11)

Remark: Other estimates on (3) (used in construction of cones) can be found
in [3, 18].

3 Positive solutions and Krasnosel’skĭı’s fixed

point theorem

We consider the following three case for a ∈ Lp[0, 1]: p > 1, p = 1, and
p = ∞. Case p > 1 is treated in the following theorem.

Theorem 3.1 Let {τk}
∞

k=1 be such that τ1 < 1
2

and τk ↓ τ ∗ > 0. Let {Ak}
∞

k=1

and {Bk}
∞

k=1 be such that

Ak+1 < ckBk < Bk < CBk < Ak, k ∈ N,
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where

C = max

{

384

m(1 + 16(τ 4
1 − τ 3

1 ))
, 1

}

.

Assume that f satisfies

(H1) f(z) ≤ M1Ak for all z ∈ [0, Ak], k ∈ N, where M1 ≤ 192\‖a‖p.

(H2) f(z) ≥ CBk for all z ∈ [cτk
Bk, Bk], where cτk

= 2
3
τ 4
k .

Then the boundary value problem (1), (2) has infinitely many solutions
{uk}

∞

k=1. Furthermore, Bk ≤ ‖uk‖ ≤ Ak for each k ∈ N.

Proof: For a fixed k, define Ω1,k = {u ∈ B : ‖u‖ < Ak}. The cone Kτk

is given by (4) with τ = τk. Then

u(s) ≤ Ak = ‖u‖

for all s ∈ [0, 1]. By (H1),

‖Tu‖ = max
t∈[0,1]

∫ 1

0

G(t, s)a(s)f(u(s)) ds

≤ max
t∈[0,1]

∫ 1

0

G(t, s)a(s) ds M1Ak.

Since p > 1, take q = p

p−1
> 1. Then, by Theorem 2.7,

‖Tu‖ ≤ max
t∈[0,1]

‖G(t, ·)‖q‖a‖pM1Ak.

From (11) and (H1),

‖Tu‖ <
1

192
‖a‖pM1Ak

< Ak.

Since ‖u‖ = Ak for all u ∈ Kτk
∩ ∂Ω1,k, then

‖Tu‖ < ‖u‖. (12)

Remark: Note that since 1 + 16(τ1
4 − τ1

3) < 1 and ‖a‖p ≥ m, we have
that M1 < C (otherwise the theorem is vacuously true).
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Now define Ω2,k = {u ∈ B : ‖u‖ < Bk}. Let u ∈ Kτk
∩ ∂Ω2,k and let

s ∈ [τk, 1 − τk]. Then

Bk = ‖u‖ ≥ u(s) ≥ min
[τk,1−τk]

u(s) ≥ cτk
‖u‖ = ckBk.

By (H2),

‖Tu‖ = max
t∈[0,1]

∫ 1

0

G(t, s)a(s)f(u(s)) ds

≥ max
t∈[0,1]

∫ 1−τk

τk

G(t, s)a(s)f(u(s)) ds

≥ max
t∈[0,1]

∫ 1−τk

τk

G(t, s)a(s) ds CBk.

Now, by (A3) and (6),

‖Tu‖ ≥ max
t∈[0,1]

∫ 1−τk

τk

G(t, s)a(s) ds CBk

≥ max
t∈[0,1]

∫ 1−τk

τk

G(t, s) ds mCBk

=
1

24
(τ 4

k − τ 3
k +

1

16
)mCBk

=
τ 4
k − τ 3

k + 1
16

τ 4
1 − τ 3

1 + 1
16

Bk

> Bk,

since τk < τ1. Thus, if u ∈ Pτk
∩ ∂Ω2,k, then

‖Tu‖ > Bk = ‖u‖. (13)

Now 0 ∈ Ω2,k ⊂ Ω2,k ⊂ Ω1,k. By (12), (13) it follows from Theorem
2.3 that the operator T has a fixed point uk ∈ Pτk

∩ (Ω1,k \ Ω2,k) such that
Bk ≤ ‖uk‖ ≤ Ak. Since k ∈ N was arbitrary, the proof is complete.

The following theorem deals with the case p = ∞.
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Theorem 3.2 Let {τk}
∞

k=1 be such that τ1 < 1
2

and τk ↓ τ ∗ > 0. Let {Ak}
∞

k=1

and {Bk}
∞

k=1 be such that

Ak+1 < ckBk < Bk < CBk < Ak, k ∈ N,

where C and cτk
are as in Theorem 3.1.

Assume that f satisfies (H2) and

(H3) f(z) ≤ M2Ak for all z ∈ [0, Ak], k ∈ N, where M2 ≤ 384\‖a‖∞.

Then the boundary value problem (1), (2) has infinitely many solutions
{uk}

∞

k=1. Furthermore, Bk ≤ ‖uk‖ ≤ Ak for each k ∈ N.

Proof: We now use (10) and repeat the argument above.

Our last result corresponds to the case of p = 1.

Theorem 3.3 Let {τk}
∞

k=1 be such that τ1 < 1
2

and τk ↓ τ ∗ > 0. Let {Ak}
∞

k=1

and {Bk}
∞

k=1 be such that

Ak+1 < ckBk < Bk < CBk < Ak, k ∈ N,

where C and cτk
are as in Theorem 3.1.

Assume that f satisfies (H2) and

(H4) f(z) ≤ M3Ak for all z ∈ [0, Ak], k ∈ N, where M3 ≤ 192\‖a‖1.

Then the boundary value problem (1), (2) has infinitely many solutions
{uk}

∞

k=1. Furthermore, Bk ≤ ‖uk‖ ≤ Ak for each k ∈ N.

Proof: For a fixed k, define Ω1,k = {u ∈ B : ‖u‖ < Ak}. Then

u(s) ≤ Ak = ‖u‖
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for all s ∈ [0, 1]. By (H4) and (5),

‖Tu‖ = max
t∈[0,1]

∫ 1

0

G(t, s)a(s)f(u(s)) ds

≤ max
t∈[0,1]

∫ 1

0

G(t, s)a(s) ds M3Ak

≤

∫ 1

0

max
t∈[0,1]

G(t, s)a(s) ds M3Ak

≤ max
s,t∈[0,1]

G(t, s)

∫ 1

0

a(s) ds M3Ak

=
1

192
‖a‖1M3Ak

≤ Ak

and thus we obtain (12), which together with (13) completes the proof.

4 Positive solutions and Legett-Williams fixed

point theorem

In this section we only consider the case of p > 1. The existence theorems
corresponding to the cases of p = 1 and p = ∞ are similar to the next
theorem and are omitted.

For our cone we now choose

K = {u ∈ B | u(t) ≥ 0}

and our nonnegative continuous concave functionals on K are defined by

αk(u) = min
t∈[τk,1−τk]

u(t)

with αk(u) ≤ ‖u‖ for each τk ∈ (0, 1
2
). For the rest of the note cτk

is denoted
by ck.

Theorem 4.1 Let {τk}
∞

k=1 be such that τ1 < 1
2

and τk ↓ τ ∗ > 0. Let {Ak}
∞

k=1,
{Bk}

∞

k=1, and {Ck}
∞

k=1 be such that

Ck+1 < Ak < Bk <
1

ck

Bk < Ck, k ∈ N,
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where M1 is as in Theorem 3.1. Suppose that f satisfies

(H5) f(z) < M1Ak for all z ∈ [0, Ak], k ∈ N,

(H6) f(z) > LBk for all z ∈ [Bk,
1
ck

Bk], k ∈ N, where L = 1
ml(τ∗,τ1)

and

l(τ ∗, τ1) is given by (8).

(H7) f(z) < M1Ck for all z ∈ [0, Ck], k ∈ N.

Then the boundary value problem (1), (2) has three infinite families of
solutions {u1k}

∞

k=1, {u2k}
∞

k=1, and {u3k}
∞

k=1 satisfying ‖u1k‖ < Ak, Bk <

αk(u2k), and ‖u3k‖ > Ak, Bk > αk(u3k) for each k ∈ N.

Proof: As in Definition 2.5, set for each k ∈ N,

BAk
= {u ∈ K | ‖u‖ < Ak}

and
BCk

= {u ∈ K | ‖u‖ < Ck}.

We use (H5) and (H7) and repeat the argument leading to (12) to see that
T : BAk

→ BAk
and T : BCk

→ BCk
. Thus, the condition (C2) of Theorem

2.6 is satisfied.
As in Definition 2.5, set

P (αk, Bk,
1

ck

Bk) = {u ∈ K |Bk ≤ αk(u), ‖u‖ ≤
1

ck

Bk}

and
P (αk, Bk, Ck) = {u ∈ K |Bk ≤ αk(u), ‖u‖ ≤ Ck}.

Choosing u = 1
ck

Bk ∈ P (αk, Bk,
1
ck

Bk), we have αk(u) = 1
ck

Bk > Bk, that is,

{u ∈ P (αk, Bk,
1
ck

Bk)|αk(u) > Bk} 6= ∅.

By assumption (A3),

αk(Tu) = min
t∈[τk,1−τk ]

Tu(t)

= min
t∈[τk,1−τk ]

∫ 1

0

G(t, s)a(s)f(u(s)) ds

≥ min
t∈[τk,1−τk ]

∫ 1

0

G(t, s)f(u(s)) ds m

> min
t∈[τk,1−τk ]

∫ 1−τk

τk

G(t, s)f(u(s)) ds m.
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Now, by (H7), using (7)-(9) we have

αk(Tu) > min
t∈[τk,1−τk ]

∫ 1−τk

τk

G(t, s) ds LBkm

=
1

24
τk

2(1 − 2τk)(1 − 2τk
2)mLBk

> Bk,

since τ ∗ < τk < τ1. Therefore, αk(u) > Bk for all u ∈ P (αk, Bk,
1
ck

Bk) and

the assumption (C1) of Theorem 2.6 is satisfied.
If, in addition, u ∈ P (αk, Bk, Ck) with ‖Tu‖ > 1

ck
Bk, then (as in the

proof of Lemma 2.2)

αk(Tu) = min
t∈[τk,1−τk ]

Tu(t)

= min
t∈[τk,1−τk ]

∫ 1

0

G(t, s)a(s)f(u(s)) ds

≥

∫ 1

0

min
t∈[τk ,1−τk]

G(t, s)a(s)f(u(s)) ds

≥

∫ 1

0

ckG(t′, s)a(s)f(u(s)) ds

= ckTu(t′)

for all t′ ∈ [0, 1], which implies αk(Tu) ≥ ck‖Tu‖ > Bk. Thus the assumption
(C3) is checked.

Since all hypotheses of Theorem 2.6 are satisfied, the assertion follows.
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