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1. Introduction and main results

In this paper, we investigate the existence of infinitely many solutions for the following

damped vibration system















d(P (t)u̇(t))

dt
+ (q(t)P (t) + B)u̇(t) +

(

1

2
q(t)B − A(t)

)

u(t) + ∇F (t, u(t)) = 0, a.e.t ∈ [0, T ],

u(0) − u(T ) = P (0)u̇(0) − P (T )u̇(T ) = 0

(1.1)

where T > 0, q ∈ L1(0, T ; R) satisfying
∫ T

0
q(t)dt = 0, P (t) and A(t) are symmetric and

continuous N × N matrix-value functions on [0, T ], B is a skew-symmetric N × N constant

matrix and F : [0, T ] × R
N → R satisfies the following assumptions:
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(A) F (t, x) is measurable in t for every x ∈ R
N and continuously differentiable in x for a.e.

t ∈ [0, T ], and there exist a ∈ C(R+, R+) and b ∈ L1(0, T ; R+) such that

|F (t, x)| ≤ a(|x|)b(t), |∇F (t, x)| ≤ a(|x|)b(t)

for all x ∈ R
N and a.e. t ∈ [0, T ].

When P (t) ≡ IN×N , where IN×N is the N × N unit matrix , system (1.1) reduces to the

following system














ü(t) + (q(t)IN×N + B)u̇(t) + (1
2
q(t)B − A(t))u(t) + ∇F (t, u(t)) = 0, a.e. t ∈ [0, T ],

u(0) − u(T ) = u̇(0) − u̇(T ) = 0.

(1.2)

Recently, system (1.2) has been investigated in [1]. By using Theorem 5.29 in [2], Li-Wu-Wu

obtained system (1.2) has a nontrivial solution under (AR)-condition

(AR) there exist constants µ > 2 and r ≥ 0 such that

(∇F (t, x), x) ≥ µF (t, x) > 0, ∀ |x| ≥ r, a.e.t ∈ [0, T ]

and some reasonable conditions (see [1], Theorem 3.3). Moreover, by using symmetric Moun-

tain Pass Theorem in [2] and a critical point theorem in [3], they obtained two existence results

of infinitely many solutions under symmetric condition F (t,−x) = F (t, x), (AR)-condition and

some reasonable conditions (see Theorem 3.1 and Theorem 3.2 in [1]).

When q(t) ≡ 0 and A(t) ≡ 0, system (1.1) reduces to the following system














d(P (t)u̇(t))

dt
+ Bu̇(t) + ∇F (t, u(t)) = 0, a.e.t ∈ [0, T ],

u(0) − u(T ) = P (0)u̇(0) − P (T )u̇(T ) = 0.

(1.3)

In [10], Han-Wang investigated system (1.3). By using symmetric Mountain Pass Theorem,

they obtained system (1.3) has infinitely many solutions under symmetric condition F (t,−x) =

F (t, x), (AR)-condition and some reasonable conditions (see Theorem 3.3 in [10]). Moreover,

they also investigated the sub-quadratic case. By using a critical point theorem in [8], they

obtained system (1.3) has infinitely many solutions under symmetric condition F (t,−x) =

F (t, x), the sub-quadratic condition:
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(SQ) there exist 0 ≤ α < 1 and g(t), h(t) ∈ L1(0, T ; R+) such that

|∇F (t, u)| ≤ g(t)|u|α + h(t)

and some reasonable conditions (see [10], Theorem 3.1). For some related results, one can also

see [11]-[18] and the references therein.

In this paper, we will investigate system (1.1) which is the extension of system (1.2) and

system (1.3) and under more general super-quadratic conditions than those in [1], we obtain

that system (1.1) has infinitely many solutions. Moreover, we also obtain a new result under

sub-quadratic conditions. Next, we state our results.

(I) For super-quadratic case

Theorem 1.1. Assume the following conditions hold:

(P) there exists a constant m > 1
2

such that the matrix P (t) satisfies

(P (t)x, x) > m(x, x), for all (t, x) ∈ R × {R
N/{0}}

(H1) lim sup|x|→0
F (t,x)
|x|2

≤ 0 uniformly for a.e. t ∈ [0, T ];

(H2) lim|x|→∞
F (t,x)
|x|2

= +∞ uniformly for a.e. t ∈ [0, T ];

(H3) there exist constants L ≥ 0, ζ > 0, η > 0 and ν ∈ [0, 2) such that

(

2 +
1

ζ + η|x|ν
)

F (t, x) ≤ (∇F (t, x), x) , for x ∈ R
N , |x| > L, a.e. t ∈ [0, T ];

(H4) F (t, x) is even in x and F (t, 0) ≡ 0.

Then system (1.1) has an unbounded sequence of solutions.

When the condition F (t, 0) ≡ 0 is deleted, we have the following result:

Theorem 1.2. Assume that (P) and (H1)-(H3) hold and F (t, x) is even in x. Then system

(1.1) has an infinite sequence of distinct solutions.

By Theorem 1.1 and Theorem 1.2, we can obtain the following corollaries.

Corollary 1.1. Assume that (P), (H1), (H4) and (AR)-condtion hold. Then system (1.1) has

an unbounded sequence of solutions.

Corollary 1.2. Assume that (P), (H1) and (AR)-condtion hold and F (t, x) is even in x. Then

system (1.1) has an infinite sequence of distinct solutions.
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Corollary 1.3. Assume that (P), (H1), (H2), (H4) and the following condition holds:

(H3)′ there exist ϑ > 2 and µ > ϑ − 2 such that

lim sup
|x|→∞

F (t, x)

|x|ϑ < ∞ uniformly for a.e. t ∈ [0, T ],

lim inf
|x|→∞

(∇F (t, x), x) − 2F (t, x)

|x|µ > 0 uniformly for a.e. t ∈ [0, T ].

Then system (1.1) has an unbounded sequence of solutions.

Corollary 1.4. Assume that (P), (H1), (H2) and (H3)′ hold and F (t, x) is even in x. Then

system (1.1) has an infinite sequence of distinct solutions.

Remark 1.1. It is remarkable that in [4], the following condition which is similar to (H3) has

been presented:

(Ŝ2) there exist p > 2, c1, c2, c3 > 0 and ν ∈ (0, 2) such that, for all |z| ≥ r1,

|∇H(t, z)||z| ≤ c1(∇H(t, z), z), |∇H(t, z)| ≤ c2|z|p−1,

H(t, z) ≤
(

1

2
− 1

c3|z|ν
)

(∇H(t, z), z),

which was used to consider the existence of homoclinic solutions for the first order Hamiltonian

system ż = J∇H(t, z). In [5], the author and Tang investigated the existence of periodic and

subharmonic solutions for the second order Hamiltonian system

ü(t) + Au(t) + ∇F (t, u(t)) = 0, a.e. t ∈ R (1.4)

and presented that the conditions like

|∇H(t, z)||z| ≤ c1(∇H(t, z), z) and |∇H(t, z)| ≤ c2|z|p−1

in (Ŝ2) are not necessary when one considered the existence of periodic solutions for system

(1.4). Obviously, when P (t) ≡ IN×N , Corollary 1.1 and Corollary 1.2 reduce to Theorem 3.1-

Theorem 3.2 in [1]. There exist examples satisfying our Theorem 1.1 and Theorem 1.2 but not

satisfying Theorem 3.1 and Theorem 3.2 in [1]. For example, let

F (t, x) ≡ F (x) = |x|2 ln(1 + |x|2).

(II) For sub-quadratic case
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Theorem 1.3. Assume that (P ) and the following conditions hold:

(F1) lim|x|→∞
F (t,x)
|x|2

= 0 uniformly for a.e. t ∈ [0, T ];

(F2) lim|x|→0
F (t,x)
|x|2

= +∞ uniformly for a.e. t ∈ [0, T ];

(F3) there exists a function h ∈ L1([0, T ]; R) such that

eQ(t)[2F (t, x) − (∇F (t, x), x)] ≥ h(t) for x ∈ R
N , a.e. t ∈ [0, T ],

and

lim
|x|→∞

eQ(t)[2F (t, x) − (∇F (t, x), x)] = +∞, for a.e. t ∈ [0, T ],

where Q(t) =
∫ t

0
q(s)ds;

(F4) F (t, x) is even in x and F (t, 0) ≡ 0.

Then system (1.1) has infinitely many nontrivial solutions.

Remark 1.2. Theorem 1.3 is different from Theorem 3.1 and Theorem 3.2 in [10]. There exist

examples satisfy Theorem 1.3 but not satisfying Theorem 3.1 and Theorem 3.2 in [10]. For

example, let

F (t, x) ≡ F (x) = (1 + |x|2)1/2 ln(1 + |x|2) + |x|3/2.

2. Preliminaries

In this section, we will present the variational structure of system (1.1), which is the slight

modification of those in [1]. Let

H1
T = {u : [0, T ] → R

N | u is absolutely continuous, u(0) = u(T ) and u̇ ∈ L2([0, T ])}.

Let

Q(t) =

∫ t

0

q(s)ds.

Define

〈u, v〉 =

∫ T

0

eQ(t)(u(t), v(t))dt +

∫ T

0

eQ(t)(P (t)u̇(t), v̇(t))dt

and

‖u‖ =

[
∫ T

0

eQ(t)|u(t)|2dt +

∫ T

0

eQ(t)(P (t)u̇(t), u̇(t))dt

]1/2
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for each u, v ∈ H1
T . Then (H1

T , 〈·, ·〉) is a Hilbert space. It follows from assumption (A) and

Theorem 1.4 in [6] that the functional ϕ on H1
T given by

ϕ(u) =

∫ T

0

eQ(t)

[

1

2
(P (t)u̇(t), u̇(t)) +

1

2
(Bu(t), u̇(t)) +

1

2
(A(t)u(t), u(t)) − F (t, u(t))

]

dt

is continuously differentiable and

〈ϕ′(u), v〉 =

∫ T

0

eQ(t)[(P (t)u̇(t), v̇(t)) − 1

2
q(t)(Bu(t), v(t)) − (Bu̇(t), v(t))

+(A(t)u(t), v(t)) − (∇F (t, u(t)), v(t))]dt (2.1)

for u, v ∈ H1
T . It is well known that

‖u‖H1

T
=

[
∫ T

0

|u(t)|2dt +

∫ T

0

|u̇(t)|2dt

]1/2

is also a norm on H1
T . Obviously, if the condition (P ) holds, ‖u‖H1

T
and ‖u‖ are equivalent.

Moreover, there exists C0 > 0 such that

‖u‖∞ ≤ C0‖u‖H1

T

(see Proposition 1.1 in [6]). Hence, there exists C∗ > 0 such that

‖u‖∞ ≤ C∗‖u‖. (2.2)

Lemma 2.1. If u0 ∈ H1
T satisfies ϕ′(u0) = 0, then u0 is a solution of system (1.1).

Proof. The proof is a slight modification of Lemma 2.2 in [1]. It follows from ϕ′(u0) = 0 and

(2.1) that

∫ T

0

eQ(t)

[

(P (t)u̇0, v̇) − 1

2
q(t)(Bu0, v) − (Bu̇0, v) + (A(t)u0, v) − (∇F (t, u0), v)

]

dt = 0

for all v ∈ H1
T , that is

∫ T

0

eQ(t)(P (t)u̇0, v̇)dt = −
∫ T

0

eQ(t)

[

−1

2
q(t)(Bu0, v) − (Bu̇0, v)

+(A(t)u0, v) − (∇F (t, u0), v)] dt

for all v ∈ H1
T . By the Fundamental Lemma and Remarks in page 6-7 of [6], we have

eQ(t)P (t)u̇0(t) =

∫ t

0

eQ(s)

[

−1

2
q(s)Bu0(s) − Bu̇0(s) + A(t)u0(s) −∇F (t, u0(s))

]

ds

+P (0)u̇(0) (2.3)

EJQTDE, 2013 No. 15, p. 6



for a.e. t ∈ [0, T ] and

∫ T

0

eQ(t)

[

−1

2
q(t)Bu0(t) − Bu̇0(t) + A(t)u0(t) −∇F (t, u0(t))

]

dt = 0. (2.4)

Then by (2.3), we obtain that eQ(t)P (t)u̇0 is completely continuous on [0, T ] and

d(P (t)u̇0(t))

dt
+(q(t)P (t)+B)u̇0(t)+

(

1

2
q(t)B − A(t)

)

u0(t)+∇F (t, u0(t)) = 0, a.e. t ∈ [0, T ].

Note that
∫ T

0
q(t)dt = 0. Then by (2.3) and (2.4), it is easy to see that P (0)u̇(0) = P (T )u̇0(T ).

Therefore, u0 is a solution of system (1.1). This completes the proof.

By the Riesz theorem, define the operator K : H1
T → (H1

T )∗ by

〈Ku, v〉 =

∫ T

0

eQ(t)(Bu̇, v)dt +

∫ T

0

eQ(t)((IN×N − A(t))u(t), v(t))dt.

for all u, v ∈ H1
T . Then K is a bounded self-adjoint linear operator (see [1]). By the definition

of K, the functional ϕ can be written as

ϕ(u) =
1

2
((I − K)u, u) −

∫ T

0

eQ(t)F (t, u)dt.

By the classical spectral theory, we have the decomposition: H1
T = H− ⊕ H0 ⊕ H+, where

H0 = ker(I − K) and H0, H− are finite dimensional. Moreover, by the spectral theory, there

is a δ > 0 such that

〈(I − K)u, u〉 ≤ −δ‖u‖2, if u ∈ H− (2.5)

〈(I − K)u, u〉 ≥ δ‖u‖2, if u ∈ H+ (2.6)

(see [1]).

3. The super-quadratic case

Similar to the proofs in [1], we will also use symmetric mountain pass theorem (see Theorem

9.12 in [2]) to prove Theorem 1.1 and use an abstract critical point theorem due to Bartsch

and Ding (see [3]) to prove Theorem 1.2.

Remark 3.1. As shown in [7], a deformation lemma can be proved with replacing the usual

(PS)-condition with (C)-condition, and it turns out that symmetric mountain pass theorem in
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[2] are true under (C)-condition. We say that ϕ satisfies (C)-condition, i.e. for every sequence

{un} ⊂ H1
T , {un} has a convergent subsequence if ϕ(un) is bounded and (1+‖un‖)‖ϕ′(un)‖ → 0

as n → ∞.

Let

‖A‖ = sup
t∈[0,T ]

max
|x|=1,x∈RN

|A(t)x|

= sup
t∈[0,T ]

max{
√

λ(t) : λ(t) is the eigenvalue of Aτ (t)A(t)}

and

‖B‖ = max
|x|=1,x∈RN

|Bx|

= max{
√

λ : λ is the eigenvalue of BτB}.

Proof of Theorem 1.1. Step 1. We claim that there exist ρ > 0 and b > 0 such that

ϕ(u) ≥ b > 0, ∀ u ∈ H+ ∩ ∂Bρ.

In fact, it follows from (H1) that there exist 0 < ε0 < δ
2

and r > 0 such that

F (t, x) ≤ ε0|x|2, for all |x| < r. (3.1)

Choosing ρ = r/C∗. Then by (2.2), for all u ∈ H+ ∩ ∂Bρ, we have ‖u‖∞ ≤ r. Hence, by (P),

(2.6) and (3.1), we obtain

ϕ(u) ≥ δ

2
‖u‖2 − ε0

∫ T

0

eQ(t)|u(t)|2dt ≥
(

δ

2
− ε0

)

‖u‖2 =

(

δ

2
− ε0

)

ρ2 := b > 0.

Step 2. For each finite dimensional space Ẽ ⊂ E, we claim that there exists R > 0 such

that ϕ(u) ≤ 0 on Ẽ/BR. In fact, since Ẽ is dimensional, all norms on Ẽ are equivalent. Hence,

there exist d1, d2 > 0 such that

d1‖u‖2 ≤
∫ T

0

eQ(t)|u(t)|2dt ≤ d2‖u‖2 (3.2)

It follows from (H2) that there exist constants

β >
1

2d1

max

{(

1 +
‖B‖
2m

)

,
‖B‖ + 2‖A‖

2

}
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and M0 > 0 such that

F (t, x) ≥ β|x|2, ∀ |x| ≥ M0, a.e. t ∈ [0, T ]. (3.3)

It follows from (3.3) and assumption (A) that there exist D1 > 0 and D2 > 0 such that

F (t, x) ≥ β|x|2 − D1 − D2b(t), ∀ x ∈ R
N , a.e. t ∈ [0, T ]. (3.4)

Then by condition (P), (3.4) and (3.2), we have

ϕ(u) =
1

2

∫ T

0

eQ(t) [(P (t)u̇(t), u̇(t)) + (Bu(t), u̇(t)) + (A(t)u(t), u(t))] dt

−
∫ T

0

eQ(t)F (t, u(t))dt

≤ 1

2

∫ T

0

eQ(t)

[

(P (t)u̇(t), u̇(t)) +
‖B‖(|u(t)|2 + |u̇(t)|2)

2
+ ‖A‖|u(t)|2

]

dt

−
∫ T

0

eQ(t)F (t, u(t))dt

≤ 1

2

∫ T

0

eQ(t)

[(

1 +
‖B‖
2m

)

(P (t)u̇(t), u̇(t)) +
‖B‖ + 2‖A‖

2
|u(t)|2

]

dt

−
∫ T

0

eQ(t)F (t, u(t))dt

≤ 1

2
max

{(

1 +
‖B‖
2m

)

,
‖B‖ + 2‖A‖

2

}

‖u‖2

−
∫ T

0

eQ(t)[β|u(t)|2 − D1 − D2b(t)]dt

≤ 1

2
max

{(

1 +
‖B‖
2m

)

,
‖B‖ + 2‖A‖

2

}

‖u‖2 − βd1‖u‖2

+D1

∫ T

0

eQ(t)dt + D2

∫ T

0

eQ(t)b(t)dt.

Note that

β >
1

2d1
max

{(

1 +
‖B‖
2m

)

,
‖B‖ + 2‖A‖

2

}

.

So ϕ(u) → −∞, as ‖u‖ → ∞.

Step 3. We prove that ϕ satisfies (C)-condition on H1
T . Assume that there exists a constant

D3 > 0 such that

|ϕ(un)| ≤ D3, (1 + ‖un‖) ‖ϕ′(un)‖ ≤ D3, for all n ∈ N, (3.5)

By (H3), we have

[(∇F (t, x), x) − 2F (t, x)](ζ + η|x|ν) ≥ F (t, x), ∀ x ∈ R
N , |x| > L, a.e. t ∈ [0, T ]. (3.6)
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Then by assumption (A) and (3.6), there exists a constant D4 > 0 such that

[(∇F (t, x), x) − 2F (t, x)](ζ + η|x|ν) ≥ F (t, x) − D4b(t), ∀ x ∈ R
N , a.e. t ∈ [0, T ]. (3.7)

It follows from assumption (A), (3.4) and (3.7) that there exist D5 > 0, D6 > 0 and D7 > 0

such that

(∇F (t, x), x) − 2F (t, x) ≥ F (t, x) − D4b(t)

ζ + η|x|ν

≥ β|x|2 − D1 − D2b(t) − D4b(t)

ζ + η|x|ν
≥ D5|x|2−ν − D6b(t) − D7, ∀ x ∈ R

N . (3.8)

Hence, it follows from (3.8) and antisymmetry of B that

3D3

≥ 2ϕ(un) − 〈ϕ′(un), un〉

=
1

2

∫ T

0

eQ(t)q(t)(Bun(t), un(t))dt +

∫ T

0

eQ(t)[(∇F (t, un(t)), un(t)) − 2F (t, un(t))]dt

=

∫ T

0

eQ(t)[(∇F (t, un(t)), un(t)) − 2F (t, un(t))]dt (3.9)

≥ D5

∫ T

0

eQ(t)|un(t)|2−νdt − D6

∫ T

0

eQ(t)b(t)dt − D7

∫ T

0

eQ(t)dt. (3.10)

This shows that
∫ T

0
eQ(t)|un(t)|2−νdt is bounded. By (3.6) and (3.3), we have

[(∇F (t, x), x) − 2F (t, x)](ζ + η|x|ν) ≥ F (t, x) ≥ β|x|2 > 0,

∀ |x| > L + M0, a.e. t ∈ [0, T ]. (3.11)

Note that

|(A(t)x, x)| ≤ ‖A‖|x|2, |Bx| ≤ ‖B‖|x|, ∀ x ∈ R
N . (3.12)

By (3.5), assumption (A) and (P ), (3.12), (3.7), (3.11), (3.9) and (2.2), we have

1

2
‖un‖2

= ϕ(un) − 1

2

∫ T

0

eQ(t)(Bun(t), u̇n(t))dt − 1

2

∫ T

0

eQ(t)(Aun(t), un(t))dt

+

∫ T

0

eQ(t)F (t, un(t))dt +
1

2

∫ T

0

eQ(t)|un(t)|2dt
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≤ D3 +
1

4

∫ T

0

eQ(t)|u̇n(t)|2dt +
‖B‖2

4

∫ T

0

eQ(t)|un(t)|2dt

+
‖A‖
2

∫ T

0

eQ(t)|un(t)|2dt +
1

2

∫ T

0

eQ(t)|un(t)|2dt + D4

∫ T

0

eQ(t)b(t)dt

+

∫ T

0

eQ(t)(ζ + η|un(t)|ν)[(∇F (t, un(t)), un(t)) − 2F (t, un(t))]dt

≤ D3 +
1

4m

∫ T

0

eQ(t)(P (t)u̇n(t), u̇n(t))dt +
2‖A‖ + ‖B‖2

4

∫ T

0

eQ(t)|un(t)|2dt

+
1

2

∫ T

0

eQ(t)|un(t)|2dt + D4

∫ T

0

eQ(t)b(t)dt

+

∫

{t∈[0,T ]:|un(t)|≤L+M0}

eQ(t)(ζ + η|un(t)|ν)[(∇F (t, un(t)), un(t)) − 2F (t, un(t))]dt

+

∫

{t∈[0,T ]:|un(t)|>L+M0}

eQ(t)(ζ + η|un(t)|ν)[(∇F (t, un(t)), un(t)) − 2F (t, un(t))]dt

≤ D3 +
1

4m
‖un‖2 +

2‖A‖ + ‖B‖2 + 2

4

∫ T

0

eQ(t)|un(t)|2dt + D8

∫ T

0

eQ(t)b(t)dt

+(ζ + η‖un‖ν
∞)

∫

{t∈[0,T ]:|un(t)|>L+M0}

eQ(t)[(∇F (t, un(t)), un(t)) − 2F (t, un(t))]dt

= D3 +
1

4m
‖un‖2 +

2‖A‖ + ‖B‖2 + 2

4

∫ T

0

eQ(t)|un(t)|2dt + D8

∫ T

0

eQ(t)b(t)dt

+(ζ + η‖un‖ν
∞)

∫ T

0

eQ(t)[(∇F (t, un(t)), un(t)) − 2F (t, un(t))]dt

−(ζ + η‖un‖ν
∞)

∫

{t∈[0,T ]:|un(t)|≤L+M0}

eQ(t)[(∇F (t, un(t)), un(t)) − 2F (t, un(t))]dt

≤ D3 +
1

4m
‖un‖2 +

2‖A‖ + ‖B‖2 + 2

4

∫ T

0

eQ(t)|un(t)|2dt + D8

∫ T

0

eQ(t)b(t)dt

+(ζ + η‖un‖ν
∞)

∫ T

0

eQ(t)[(∇F (t, un(t)), un(t)) − 2F (t, un(t))]dt

+D9(ζ + η‖un‖ν
∞)

∫ T

0

eQ(t)b(t)dt

≤ D3 +
1

4m
‖un‖2 +

2‖A‖ + ‖B‖2 + 2

4
‖un‖ν

∞

∫ T

0

eQ(t)|un(t)|2−νdt

+3D3(ζ + η‖un‖ν
∞) + D9(ζ + η‖un‖ν

∞)

∫ T

0

eQ(t)b(t)dt + D8

∫ T

0

eQ(t)b(t)dt

≤ D3 +
1

4m
‖un‖2 +

2‖A‖ + ‖B‖2 + 2

4
Cν

∗‖un‖ν

∫ T

0

eQ(t)|un(t)|2−νdt

+3D3(ζ + ηCν
∗‖un‖ν) + D9(ζ + ηCν

∗‖un‖ν)

∫ T

0

eQ(t)b(t)dt

+D8

∫ T

0

eQ(t)b(t)dt. (3.13)

Since ν < 2 and m > 1
2
, (3.13) and the boundness of

∫ T

0
eQ(t)|un(t)|2−νdt imply that ‖un‖ is

EJQTDE, 2013 No. 15, p. 11



bounded. Going if necessary to a subsequence, assume that un ⇀ u in H1
T . Then by Proposition

1.2 in [6], we have ‖un − u‖∞ → 0 and so
∫ T

0
eQ(t)|un − u|2dt → 0 as n → ∞. Similar to the

argument of Theorem 3.1 in [1], it is easy to obtain that
∫ T

0
eQ(t)(P (t)(u̇n − u̇), u̇n − u̇)dt → 0.

Hence, ‖un − u‖ → 0 as n → ∞. Thus we have proved that ϕ satisfies (C)-condition.

Step 4. We claim that system (1.1) has an unbounded sequence of solutions {un}. In

fact, (H4) implies that ϕ(0) = 0 and ϕ is even. Hence, combining step 1-step 3 with symmetric

mountain pass theorem (Theorem 9.12 in [2]), we obtain a sequence {un} such that ϕ(un) → ∞.

Then, obviously, {un} is also unbounded.

Proof of Theorem 1.2. Similar to the proofs of Theorem 3.2 in [1], by combining the proofs

of Theorem 1.1 and the abstract critical point theorem due to Bartsch and Ding (see [3]), the

proof is easy to be completed and so we omit the details.

Proofs of Corollary 1.1 and Corollary 1.2. It is easy to see that (AR)-condition implies

that (H2) and (H3). So by Theorem 1.1 and Theorem 1.2, the proofs are easy to be completed.

Proofs of Corollary 1.3 and Corollary 1.4. Similar to the argument of Remark 1.1 in [5],

we know that assumption (A), (H2) and (H3)′ imply (H3). Then by Theorem 1.1 and Theorem

1.2, the proofs are easy to be completed.

4. The sub-quadratic case

In this section, we will investigate the subquadratic case. The following abstract critical

point theorem will be used to prove Theorem 1.3.

Lemma 4.1.(see Lemma 2.4 in [8]) Let E be an infinite dimensional Banach space and let

f ∈ C1(E, R) be even, satisfy (PS), and f(0) = 0. If E = E1 ⊕ E2, where E1 is finite

dimensional, and f satisfies

(f1) f is bounded from above on E2,

(f2) for each finite dimensional subspace Ẽ ⊂ E, there are positive constants ρ = ρ(Ẽ) and

σ = σ(Ẽ) such that f ≥ 0 on Bρ ∩ Ẽ and f |∂Bρ∩Ẽ ≥ σ where Bρ = {x ∈ E; ‖x‖ ≤ ρ}, then f

possesses infinitely many nontrivial critical points.

Remark 4.1. By Remark 3.1, Lemma 4.1 also holds when condition (PS) is replaced by
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(C)-condition.

Proof of Theorem 1.3. We will consider the functional

φ(u) = −ϕ(u)

=

∫ T

0

eQ(t)

[

−1

2
(P (t)u̇(t), u̇(t)) − 1

2
(Bu(t), u̇(t)) − 1

2
(A(t)u(t), u(t)) + F (t, u(t))

]

dt.

Then it is easy to see that the critical point of φ is still the solution of system (1.1).

Step 1. We prove that φ(= −ϕ) satisfies (C)-condition on H1
T . The proof is motivated by

[20], [21] and [9] . For every {un} ⊂ H1
T , assume that there exists a constant C1 > 0 such that

|φ(un)| ≤ C1, (1 + ‖un‖) ‖φ′(un)‖ ≤ C1, for all n ∈ N. (4.1)

Then it follows from antisymmetry of B that

3C1 ≥ 2φ(un) − (φ′(un), un)

= −1

2

∫ T

0

eQ(t)q(t)(Bun(t), un(t))dt +

∫ T

0

eQ(t)[2F (t, un(t)) − (∇F (t, un(t)), un(t))]dt

=

∫ T

0

eQ(t)[2F (t, un(t)) − (∇F (t, un(t)), un(t))]dt. (4.2)

Next we prove that {un} is bounded. Assume that ‖un‖ → ∞ as n → ∞. Let zn =
un

‖un‖
. Then

‖zn‖ = 1 and so there exists a subsequence, still denoted by {zn}, such that zn ⇀ z on H1
T .

Then by Proposition 1.2 in [6], we get ‖zn − z‖∞ → 0. Hence, we have
∫ T

0
|zn(t)− z(t)|2dt → 0

and zn(t) → z(t) for a.e. t ∈ [0, T ]. It follows from (F1) and assumption (A) that there exist

constants 0 < ε1 < δ and C2 > 0 such that

F (t, x) ≤ ε1|x|2 + C2b(t), for all x ∈ R
N and a.e. t ∈ [0, T ]. (4.3)

Thus by condition (P) and (4.3), we have

φ(un) =

∫ T

0

eQ(t)

[

−1

2
(P (t)u̇n(t), u̇n(t)) −

1

2
(Bun(t), u̇n(t))

−1

2
(A(t)un(t), un(t)) + F (t, un(t))

]

dt

≤
∫ T

0

eQ(t)

[

−1

2
(P (t)u̇n(t), u̇n(t)) +

‖B‖2|un(t)|2 + |u̇n(t)|2
4

+
‖A‖|un(t)|2

2

]

dt
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+ε1

∫ T

0

eQ(t)|un(t)|2dt + C2

∫ T

0

eQ(t)b(t)dt

≤
(

1

4m
− 1

2

)
∫ T

0

eQ(t) [(P (t)u̇n(t), u̇n(t))] dt +
‖B‖2 + 2‖A‖

4

∫ T

0

eQ(t)|un(t)|2dt

+ε1

∫ T

0

eQ(t)|un(t)|2dt + C2

∫ T

0

eQ(t)b(t)dt

=

(

1

4m
− 1

2

)

‖un‖2 −
(

1

4m
− 1

2

)
∫ T

0

eQ(t)|un(t)|2dt

+
‖B‖2 + 2‖A‖

4

∫ T

0

eQ(t)|un(t)|2dt + ε1

∫ T

0

eQ(t)|un(t)|2dt + C2

∫ T

0

eQ(t)b(t)dt

=

(

1

4m
− 1

2

)

‖un‖2 +

[‖B‖2 + 2‖A‖
4

−
(

1

4m
− 1

2

)

+ ε1

]
∫ T

0

eQ(t)|un(t)|2dt

+C2

∫ T

0

eQ(t)b(t)dt.

Hence, we have

φ(un)

‖un‖2
≤

(

1

4m
− 1

2

)

+

[‖B‖2 + 2‖A‖
4

−
(

1

4m
− 1

2

)

+ ε1

]
∫ T

0

eQ(t) |un(t)|2
‖un‖2

dt

+
C2

∫ T

0
eQ(t)b(t)dt

‖un‖2
.

Let n → ∞. Then by (4.1), we get

1

2
− 1

4m
≤

[‖B‖2 + 2‖A‖
4

+

(

1

2
− 1

4m

)

+ ε1

]
∫ T

0

eQ(t)|zn(t)|2dt. (4.4)

Then it follows from m > 1
2
, ε1 > 0 and (4.4) that

∫ T

0
eQ(t)|zn(t)|2dt > 0 and so z 6= 0. Let

S = {t ∈ [0, T ] : lim|x|→∞ eQ(t)[2F (t, x) − (∇F (t, x), x)] = +∞} and S1 = {t ∈ S : z(t) 6= 0}.

Then mes S > 0 and

lim
n→∞

|un(t)| = +∞ for t ∈ S1 . (4.5)

Let fn(t) = eQ(t)[2F (t, un(t)) − (∇F (t, un(t)), un(t))]. Then (4.5) implies that

lim
n→∞

fn(t) = +∞ for t ∈ S1 . (4.6)

It follows from (4.6) and Lemma 1 in [19] that there exists a subset S2 of S1 with mes S2 > 0

such that

lim
n→∞

fn(t) = +∞ uniformly for t ∈ S2 . (4.7)
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By (F3), we have

∫ T

0

eQ(t)[2F (t, un(t)) − (∇F (t, un(t)), un(t))]dt

=

∫

S2

eQ(t)[2F (t, un(t)) − (∇F (t, un(t)), un(t))]dt

+

∫

[0,T ]/S2

eQ(t)[2F (t, un(t)) − (∇F (t, un(t)), un(t))]dt

≥
∫

S2

eQ(t)[2F (t, un(t)) − (∇F (t, un(t)), un(t))]dt +

∫

[0,T ]/S2

h(t)dt.

Let n → ∞. Then by Fatou’s lemma and (4.7), we have

∫ T

0

eQ(t)[2F (t, un(t)) − (∇F (t, un(t)), un(t))]dt → +∞

which contradicts (4.2). Hence {un} is bounded. Similar to the argument of Theorem 1.1, we

can obtain that {un} has a convergent subsequence.

Step 2. We prove that φ is bounded from above on H+. In fact, it follows from (2.6) and

(4.3) that for all u ∈ H+,

φ(u) =

∫ T

0

eQ(t)

[

−1

2
(P (t)u̇(t), u̇(t)) − 1

2
(Bu(t), u̇(t)) − 1

2
(A(t)u(t), u(t)) + F (t, u(t))

]

dt

= −1

2
〈(I − K)u, u〉 +

∫ T

0

eQ(t)F (t, u(t))dt

≤ −δ

2
‖u‖2 + ε1

∫ T

0

eQ(t)|u(t)|2dt + C2

∫ T

0

eQ(t)b(t)dt

≤ (−δ

2
+ ε1)‖u‖2 + C2

∫ T

0

eQ(t)b(t)dt.

Note ε1 < δ
2
. So φ is bounded from above on H+.

Step 3. We prove that, for each finite dimensional subspace Ẽ ⊂ H1
T , there are positive

constants ρ = ρ(Ẽ) and σ = σ(Ẽ) such that φ ≥ 0 on Bρ ∩ Ẽ and φ|∂Bρ∩Ẽ ≥ σ.

In fact, since Ẽ is finite dimensional, all norms on Ẽ are equivalent. Hence there exist

d3 = d3(Ẽ) > 0 and d4 = d4(Ẽ) > 0 such that

d3‖u‖2 ≤
∫ T

0

eQ(t)|u(t)|2dt ≤ d4‖u‖2.

It follows from (F2) that there exist C3 > ‖I−K‖
2d1

and M2 = M2(Ẽ) > 0 such that

F (t, x) ≥ C3|x|2, ∀ |x| ≤ M2, a.e. t ∈ [0, T ]. (4.8)
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Then by (4.8) and (2.2), for u ∈ Ẽ with ‖u‖ ≤ M2

C∗
, we have

φ(u) = −1

2
〈(I − K)u, u〉 +

∫ T

0

eQ(t)F (t, u(t))dt

≥ −1

2
‖I − K‖‖u‖2 + C3

∫ T

0

eQ(t)|u(t)|2dt

≥ −1

2
‖I − K‖‖u‖2 + C3d1‖u‖2

= (C3d1 − ‖I − K‖/2)‖u‖2.

Let ρ = M2

C∗
and σ = (C3d1 − ‖I − K‖/2)

(

M2

C∗

)2
. Then we complete the proof of this step.

Finally, (F4) implies that ϕ(0) = 0 and ϕ is even. Let E1 = H− ⊕H0 and E2 = H+. Then

dimE1 < +∞. Hence, combining Step 1-Step 3 with Lemma 4.1 and Remark 4.1, we obtain

that φ has infinitely many nontrivial critical points {un}. Thus we complete the proof.
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