
Electronic Journal of Qualitative Theory of Differential Equations

2013, No. 38, 1-18; http://www.math.u-szeged.hu/ejqtde/

Necessary and Sufficient Conditions for Nonoscillatory

Solutions of Impulsive Delay Differential Equations∗†

Shao Yuan Huang‡ and Sui Sun Cheng

Abstract

Monotonicity of solutions is an important property in the investigation of oscillatory behav-

iors of differential equations. A number of papers provide some existence criteria for eventually

positive increasing solutions. However, relatively little attention is paid to eventually positive

solutions that are also eventually decreasing solutions. For this reason, we establish several new

and sharp oscillatory criteria for impulsive functional differential equations from this viewpoint.

1 Introduction

Let Υ = {t0, t1, ...} where 0 = t0 < t1 < t2 < · · · and let R and N be the sets of real numbers
and positive integers respectively. In this paper, we intend to establish necessary and sufficient
conditions of existence of nonoscillatory solutions of impulsive differential equation

(r(t)x′(t))
′
+ p(t)f(x(g(t))) = 0, t ∈ [0,∞)\Υ, (1)

x(t+k ) = akx(tk), k ∈ N, (2)

x′(t+k ) = bkx′(tk), k ∈ N (3)

under some or all of the following conditions

(A1) limk→∞ tk = +∞;

(A2) p is a function on [0,∞), and r is a positive and differentiable function on [0,∞);

(A3) g is a continuous function on [0,∞) such that g(t) ≤ t for t ≥ 0 and limt→∞ g(t) = ∞;

(A4) f is a continuous function on R with uf(u) > 0 for u 6= 0 and inf |u|≥T {|f(u)|} > 0 for any
T > 0;

(A5) ak > 0 and bk > 0 for k ∈ N;

(A6) there exists m > 0 such that A(0, t) ≥ m for t ≥ 0; and

(A7) there exists M > 0 such that A(0, t) ≤ M for t ≥ 0,
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where

A(s, t) =

{ ∏
s≤tk<t

ak if [s, t) ∩ Υ 6= ∅

1 if [s, t) ∩ Υ = ∅
for t ≥ s ≥ 0.

”Monotonicity” of solutions is an important property for investigating oscillatory behaviors of
functional differential equations. There are many papers (e.g. [2, 5, 7, 10–12, 13, 15]) which provide
sufficient conditions to guarantee the solutions are increasing. For instance, if

∫ ∞

0

B(0, t)

A(0, t)r(t)
dt = ∞ (4)

where

B(s, t) =

{ ∏
s≤tk<t

bk if [s, t) ∩ Υ 6= ∅

1 if [s, t) ∩ Υ = ∅
for t ≥ s ≥ 0,

by Lemma 2 in [12], then an eventually positive solution x of system (1)-(3) will satisfy x′(t) ≥ 0
eventually. However, the case where a solution x satisfies the condition x(t)x′(t) < 0 eventually
has rarely been touched upon. To fill this gap, we will establish new and sharp oscillatory criteria
from this viewpoint. Our technique is based on comparing our systems with their linearized systems
(cf. [4–9]). However, the important point is that we are able to establish necessary and sufficient
conditions.

Let Λ1 and Λ2 be intervals of R. We set

PC(Λ1, Λ2) = {ϕ : Λ1 → Λ2|ϕ is continuous in each interval Λ1 ∩ (tk, tk+1], k ∈ N ∪ {0}

with jump discontinuities only}

and
PC′(Λ1, Λ2) = {ϕ ∈ PC(Λ1, Λ2)|ϕ is continuously differentiable a.e. in Λ1} .

For any ϕ1, ϕ2 ∈ PC(Λ1, Λ2), we say that ϕ1 ≤ ϕ2 if and only if ϕ1(t) ≤ ϕ2(t) a.e. on Λ1.
In the subsequent discussions, we let

gη = min
t≥η

g(t) for any η ≥ 0.

Note that if (A3) is assumed, then gη exists.

Definition 1.1 Let Λ be an interval in [0,∞) and σ = inf Λ. For any φ ∈ PC([gσ, σ],R), a function
x defined on [gσ, σ] ∪ Λ is said to be a solution of system (1)-(3) on Λ satisfying the initial value
condition x(t) = φ(t) for t ∈ [gσ, σ] if

(i) x, x′ ∈ PC′(Λ,R);

(ii) x(t) satisfies (1) a.e. on Λ; and

(iii) x(t) satisfies (2) and (3) on Λ.
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Definition 1.2 Let a function ϕ = ϕ(t) be defined for all sufficiently large t. We say that ϕ is
eventually positive (or negative) if there exists a number T such that ϕ(t) > 0 (respectively ϕ(t) < 0)
for every t ≥ T. We say that ϕ(t) is nonoscillatory if ϕ(t) is eventually positive or eventually
negative. Otherwise, ϕ(t) is called oscillatory.

A partially ordered set is called a complete lattice if all subsets admit a supremum and an
infimum. A complete lattice is recalled here because we will employ the well known Knaster-Tarski
fixed point theorem.

Theorem 1.1 (Knaster-Tarski fixed point theorem) Let X be a set and f a function on X
such that f(X) ⊆ X. Assume that (X,≤) is a complete lattice and f(x1) ≤ f(x2) for x1, x2 ∈ X
with x1 ≤ x2. Then f has a fixed point in X.

Let a∗
k > 0 and b∗k > 0 for k ∈ N. We define the functions

A∗(s, t) =

{ ∏
s≤tk<t

a∗
k if [s, t) ∩ Υ 6= ∅

1 if [s, t) ∩ Υ = ∅
and B∗(s, t) =

{ ∏
s≤tk<t

b∗k if [s, t) ∩ Υ 6= ∅

1 if [s, t) ∩ Υ = ∅

for t ≥ s ≥ 0.

2 Main results

We first provide a criterion to illustrate that the nonoscillatory solution x with x(t)x′(t) < 0 even-
tually indeed exists.

Lemma 2.1 Assume that (A1)–(A6) hold, p ∈ PC([0,∞), [0,∞)) and

∫ ∞

τ

p(t)

B(0, t)
dt = ∞ for some τ ≥ 0. (5)

If the system (1)-(3) has a nonoscillatory solution x, then x(t)x′(t) < 0 eventually.

Proof. For the sake of convenience, we may assume that τ = 0. We first assume that the solution x
is eventually positive, say that x(t) > 0 for t ≥ g0. Let c = inft≥g0

{x(t)} and mf = infu≥c {f(u)}.
We note that

r(t+k )x′(t+k )

B(0, t+k )
=

bkr(tk)x′(tk)

bkB(0, tk)
=

r(tk)x′(tk)

B(0, tk)

for k ∈ N. It follows that r(t)x′(t)/B(0, t) is a continuous function on [0,∞). By equation (1), we
may see that r(t)x′(t) is decreasing on each interval (tk−1, tk] for k ∈ N. For k ∈ N, we may further
see that B(0, s) = B(0, t) and

r(s)x′(s)

B(0, s)
≥

r(t)x′(t)

B(0, t)
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for tk−1 < s ≤ t ≤ tk. By continuity of r(t)x′(t)/B(0, t), then

r(s)x′(s)

B(0, s)
≥

r(tk1
)x′(tk1

)

B(0, tk1
)

≥ · · · ≥
r(tkn

)x′(tkn
)

B(0, tkn
)

≥
r(t)x′(t)

B(0, t)
(6)

for t ≥ tkn
≥ · · · ≥ tk1

≥ s > 0 where tk1
, . . . , tkn

∈ Υ.
There are now two cases. First assume that there exists T > 0 such that x′(T ) < 0. In view of

(6),

r(t)x′(t) ≤
B(0, t)r(T )x′(T )

B(0, T )
< 0 for t ≥ T .

Since r(t) > 0 for t ≥ 0, we may further see that x′(t) < 0 for t ≥ T . Next, if x′(t) ≥ 0 for all t ≥ g0,
then x(t) is increasing on each interval (tk−1, tk] for k ∈ N. Similarly, we can verify that x(t)/A(0, t)
is continuous and increasing for t ≥ 0. It follows from (A6) that

x(t) ≥ A(0, t)x(0) ≥ mx(0) > 0 for t ≥ 0.

So c ≥ min
{
mx(0), mint∈[g0,0] x(t)

}
> 0 and x(g(t)) ≥ c for t ≥ 0. In view of (A4), we see that

f(x(g(t))) ≥ mf > 0 for t ≥ 0. We now divide (1) by B(0, t), and then integrate from 0 to t. By
continuity of r(t)x′(t)/B(0, t), we have

∫ t

0

(
r(s)x′(s)

B(0, s)

)′

ds =
r(t)x′(t)

B(0, t)
−

r(0)x′(0)

B(0, 0)

and

r(t)x′(t)

B(0, t)
= r(0)x′(0) −

∫ t

0

p(s)

B(0, s)
f(x(g(s)))ds

≤ r(0)x′(0) − mf

∫ t

0

p(s)

B(0, s)
ds (7)

for t ≥ 0. By (5) and (A2), we may see that x′(t) < 0 eventually. This is a contradiction. Therefore,
in both cases, x′(t) < 0 eventually.

Second, we assume that the solution x is eventually negative. Let y(t) = −x(t) for sufficiently
large t. Then y is an eventually positive solution of

(r(t)y′(t))
′
+ p(t)F (y(g(t))) = 0, t ∈ [0,∞)\Υ, (8)

y(t+k ) = aky(tk), k ∈ N, (9)

y′(t+k ) = bky′(tk), k ∈ N (10)

where F (u) = −f(−u) for u ∈ R. We may observe that F is a continuous function on R with
uF (u) > 0 for u 6= 0, and inf |u|≥T {|F (u)|} > 0 for any T > 0. In view of the above discussions,
y′(t) < 0 eventually, which implies x′(t) > 0 eventually. The proof is complete.

Corollary 2.1 Assume that (A1)–(A6), (4) and (5) hold and p ∈ PC([0,∞), [0,∞)). Then the
system (1)-(3) is oscillatory.

Proof. Assume that the system (1)-(3) has a nonoscillatory solution x. By Lemma 2.1, we may see
that x′(t) < 0 eventually. By (4) and Lemma 2 in [12], we may further see that x′(t) ≥ 0 eventually.
This is a contradiction. The proof is complete.
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The following two comparison theorems hold under the condition that nonoscillatory solution is
”decreasing”.

Theorem 2.1 Let σ ≥ 0, φ ∈ PC([gσ, σ], (0,∞)) and εn ∈ (0, 1) for n ∈ N. Assume that (A1)–(A5)
hold, p ∈ PC([0,∞), [0,∞)), g(t) < t for t ≥ 0, φ′(σ) exists, limn→∞ εn = 1 and

{t ≥ σ : p(t) = 0} has measure zero. (11)

If for any n ∈ N, the system

(r(t)x′(t))
′
+ εnp(t)x(g(t)) = 0, t ∈ [0,∞)\Υ, (12)

x(t+k ) = akx(tk), k ∈ N, (13)

x′(t+k ) = bkx′(tk), k ∈ N (14)

has a positive solution xεn
satisfying the initial condition xεn

(t) = φ(t) on [gσ, σ] and x′
εn

(t) < 0 on
[σ,∞), then the system

(r(t)x′(t))
′
+ p(t)x(g(t)) = 0, t ∈ [0,∞)\Υ, (15)

x(t+k ) = akx(tk), k ∈ N, (16)

x′(t+k ) = bkx′(tk), k ∈ N (17)

has a positive solution x̃ on [σ,∞) satisfying the initial condition x̃(t) = φ(t) on [gσ, σ].

Proof. For the sake of convenience, we assume that σ = 0. For n ∈ N, we let

yn(t) =

{
xεn

(t)
A(0,t) if t > 0

φ(t) if 0 ≥ t ≥ g0

for t ≥ 0.

By assumption, we see that yn(t) are positive, strictly decreasing and continuous for t > 0 and
n ∈ N. So for n ∈ N,

yn(t) < yn(0) =
xεn

(0)

A(0, 0)
= xεn

(0) = φ(0) for t > 0.

It follows that {yn(t) : n ∈ N} is uniformly bounded. For any n ∈ N, we divide (12) by B(0, t), and
then integrate from 0 to t. We have

r(t)x′
εn

(t)

B(0, t)
= r(0)x′

εn
(0) − εn

∫ t

0

p(s)xεn
(g(s))

B(0, s)
ds

for t ≥ 0. We further divide the above equation by A(0, t), and then integrate from 0 to t. Then

xεn
(t)

A(0, t)
= φ(0) +

∫ t

0

r(0)φ′(0)B(0, s) − εn

∫ s

0 B(v, s)p(v)xεn
(g(v))dv

r(s)A(0, s)
ds

for t ≥ 0. It follows that

yn(t) = φ(0) +

∫ t

0

(
r(0)φ′(0)B(0, s)

r(s)A(0, s)
− εn

∫ s

0

B(v, s)p(v)y
n
(g(v))

A(H(v), s)r(s)
dv

)
ds (18)
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for t ≥ 0 where H(t) = max{0, g(t)}. Given d > 0, there exists M1 > 0 such that

∣∣∣∣
r(0)φ′(0)B(0, t)

r(t)A(0, t)

∣∣∣∣+
∫ t

0

∣∣∣∣
B(s, t)p(s)y

n
(g(s))

A(H(s), t)r(t)

∣∣∣∣ ds ≤ M1 for 0 ≤ t ≤ d. (19)

For 0 ≤ η1 ≤ η2 ≤ d, by (19),

|yn(η2) − yn(η1)| ≤

∫ η2

η1

∣∣∣∣
r(0)φ′(0)B(0, s)

r(s)A(0, s)
− εn

∫ s

0

B(v, s)p(v)y
n
(g(v))

A(H(v), s)r(s)
dv

∣∣∣∣ ds

≤

∫ η2

η1

(∣∣∣∣
r(0)φ′(0)B(0, s)

r(s)A(0, s)

∣∣∣∣+
∫ s

0

∣∣∣∣
B(v, s)p(v)y

n
(g(v))

A(H(v), s)r(s)

∣∣∣∣ dv

)
ds

≤ M1(η2 − η1).

So {yn(t) : n ∈ N} is equi-continuous on [0, d]. By the Arzela-Ascoli Theorem, there exists a non-
negative, decreasing and continuous function ỹd defined on [0, d] such that {yn} converges uniformly
to ỹd. Then

ỹd(t) = lim
n→∞

yn(t) = φ(0) +

∫ t

0

(
r(0)φ′(0)B(0, s)

r(s)A(0, s)
−

∫ s

0

B(v, s)p(v)ỹd(g(v))

A(H(v), s)r(s)
dv

)
ds

for 0 ≤ t ≤ d. Since d is arbitrary, there exists a nonnegative, decreasing and continuous function
ỹ(t) defined on [0,∞) such that

ỹ(t) = φ(0) +

∫ t

0

(
r(0)ỹ′(0)B(0, s)

r(s)A(0, s)
−

∫ s

0

B(v, s)p(v)ỹ(g(v))

A(H(v), s)r(s)
dv

)
ds

for t ≥ 0. Let

x̃(t) =

{
φ(t) if 0 ≥ t ≥ g0

A(0, t)ỹ(t) if t > 0
(20)

for t ≥ 0. Clearly, x̃(t) ≥ 0 for t > 0. Assume that there exists T > 0 such that x̃(T ) = 0 and
x̃(t) > 0 for 0 < t < T . Since ỹ is decreasing and A(0, t) is positive, by (20), we may see that
x̃(t) = 0 for t ≥ T , which implies x̃′(t) = 0 for t > T . We note that

x̃′(t) = A(0, t)ỹ′(t) (21)

=
r(0)ỹ′(0)B(0, t)

r(t)
−

B(0, t)

r(t)

∫ t

0

p(s)A(0, g(s))ỹ(g(s))

B(0, s)
ds

and
(r(t)x̃′(t))

′
= −p(t)A(0, g(t))ỹ(g(t)) = −p(t)x̃(g(t)) (22)

for t ≥ 0. Since g is continuous and g(T ) < T , there exists T ′ > T such that T > g(t) for T < t < T ′.
So x̃(g(t)) > 0 for T < t < T ′. By (22),

0 = (r(t)x̃′(t))
′
= −p(t)x̃(g(t))

for T < t < T ′, which implies p(t) = 0 for T < t < T ′. It is a contradiction in view of (11).
So x̃(t) > 0 for t > 0. In addition, by (20) and (21), we may see that x̃(t+k ) = akx̃(tk) and
x̃′(t+k ) = bkx̃′(tk) for k ∈ N. So x̃ is a positive solution of system (15)-(17) on [0,∞) satisfying the
initial condition x̃(t) = φ(t) on [g0, 0]. The proof is complete.
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Corollary 2.2 Assume that the hypotheses of Theorem 2.1 hold. If the system (12)-(14) has a
negative solution xεn

satisfying the initial condition xεn
(t) = φ(t) on [gσ, σ] and x′

εn
(t) > 0 on

[σ,∞), then the system (15)-(17) has a negative solution x̃ on [σ,∞) satisfying the initial condition
x̃(t) = φ(t) on [gσ, σ].

Theorem 2.2 Let σ ≥ 0, φ ∈ PC′([gσ, σ], (0,∞)), and F be a continuous function on [0,∞) with
f(u) ≤ F (u) for u ≥ 0. Assume that (A1)–(A6) hold, p ∈ PC([0,∞), [0,∞)), ak ≥ a∗

k, bk ≤ b∗k for
k ∈ N, r′(t) ≤ 0 for t ≥ 0 and

f(v)

v
≤

f(u)

u
for 0 < u ≤ v. (23)

If the system

(r(t)y′(t))
′
+ p(t)F (y(g(t))) ≤ 0, t ∈ [0,∞)\Υ, (24)

y(t+k ) = a∗
ky(tk), k ∈ N,

y′(t+k ) = b∗ky′(tk), k ∈ N

has a positive solution y on [σ,∞) satisfying the initial condition y(t) = φ(t) on [gσ, σ] such that
y′(t) < 0 for t ≥ σ, then the system (1)-(3) has a positive solution x on [σ,∞) satisfying the initial
condition x(t) = φ(t) on [gσ, σ].

Proof. For the sake of convenience, we assume that σ = 0. Let β(t) = y′(t)/y(t) for t > 0. Clearly,
β ∈ PC′([0,∞), (−∞, 0)). We note that β(t) = y′(t)/y(t) is continuous on the intervals (tk−1, tk]
where k ∈ N. Given t > 0. There exists k∗ ∈ N such that tk∗−1 < t ≤ tk∗ . We may observe
that

∫ t1

0

β(s)ds =

∫ t1

0

y′(s)

y(s)
ds = ln

(
y(t1)

y(0)

)
,

∫ t2

t
+

1

β(s)ds = ln

(
y(t2)

y(t+1 )

)
= ln

(
y(t2)

a∗
1y(t1)

)
,

...
∫ t

t
+

k∗
−1

β(s)ds = ln

(
y(t)

y(t+k∗−1)

)
= ln

(
y(t)

a∗
k∗−1y(tk∗−1)

)
.

Then
∫ t

0

β(s)ds = ln

(
y(t1)

y(0)

)
+ ln

(
y(t2)

a∗
1y(t1)

)
+ · · · + ln(

y(t)

a∗
k∗−1y(tk∗−1)

)

= ln

(
y(t1)

y(0)

y(t2)

a∗
1y(t1)

· · ·
y(t)

a∗
k∗−1y(tk∗−1)

)

= ln

(
y(t)

A∗(0, t)y(0)

)
.

Since y(0) = φ(0), we may then see that

y(t) = A∗(0, t)φ(0) exp

(∫ t

0

β(s)ds

)
for t ≥ 0. (25)

EJQTDE, 2013 No. 38, p. 7



Since A∗(0, t) is a step function on [0,∞), we can further see that by (25)

y′′(t)

y(t)
= β′(t) + β2(t) for a.e. t ≥ 0. (26)

Let h(t) = min{0, g(t)} and H(t) = max{0, g(t)} for t ≥ 0. We assert that

y(g(t)) = A∗(0, H(t))φ(h(t)) exp

(∫ H(t)

0

β(s)ds

)
(27)

for t ≥ 0. Indeed, let t̃ ≥ 0. If g(t̃) > 0, then h(t̃) = 0 and H(t̃) = g(t̃). It follows that

A∗(0, H(t̃))φ(h(t̃)) exp

(∫ H(et)

0

β(s)ds

)
= A∗(0, g(t̃))φ(0) exp

(∫ g(et)

0

β(s)ds

)
= y(g(t̃)).

If 0 ≥ g(t̃) ≥ g0, then h(t̃) = g(t̃) and H(t̃) = 0. It follows that

A∗(0, H(t̃))φ(h(t̃)) exp

(∫ H(et)

0

β(s)ds

)
= φ(g(t̃)) = y(g(t̃)).

Our assertion is now proven.
We note that (r(t)y′(t))′ = r′(t)y′(t) + r(t)y′′(t) for a.e. t ≥ 0. We divide (24) by y(t). By (25),

(26) and (27), it is easy to see that

β′(t) ≤ −β2(t) −
r′(t)

r(t)
β(t) −

p(t)F
(
A∗(0, H(t))φ(h(t)) exp

(∫H(t)

0 β(s)ds
))

r(t)A∗(0, t)φ(0) exp
(∫ t

0
β(s)ds

) (28)

for a.e. t ≥ 0. We divide (28) by B∗(0, t)/A∗(0, t), and then integrate both sides. Since A∗(0, t)β(t)/B∗(0, t)
is continuous for t ≥ 0, we have

β(t) ≤
B∗(0, t)

A∗(0, t)
β(0) −

∫ t

0

B∗(s, t)

A∗(s, t)

(
β2(s) +

r′(s)β(s)

r(s)

)
ds

−

∫ t

0

B∗(s, t)

A∗(s, t)

p(s)F
(
A∗(0, H(s))φ(h(s)) exp

(∫H(s)

0 β(v)dv
))

r(s)A∗(0, s)φ(0) exp
(∫ s

0
β(v)dv

) ds (29)

for t ≥ 0. Let
X = {δ ∈ PC([0,∞), [0,∞)) : β(t) ≤ δ(t) ≤ 0} .

Clearly, X is a complete lattice. For any δ ∈ X , we define an operator

T (δ)(t) =
B(0, t)

A(0, t)
δ(0) −

∫ t

0

B(s, t)

A(s, t)

(
δ2(s) +

r′(s)δ(s)

r(s)

)
ds

−

∫ t

0

B(s, t)

A(s, t)

p(s)f
(
A(0, H(s))φ(h(s)) exp

(∫H(s)

0
δ(v)dv

))

r(s)A(0, s)φ(0) exp
(∫ s

0 δ(v)dv
) ds
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for t ≥ 0. Let δ1, δ2 ∈ X with δ1 ≤ δ2. Since a∗
k ≤ ak and b∗k ≥ bk for k ∈ N, we may see that

A∗(s, t) ≤ A(s, t) and B∗(s, t) ≥ B(s, t) for t ≥ s ≥ 0. So we observe that

φ(h(t))

A(H(t), t)φ(0) exp
(∫ t

H(t)
δ2(s)ds

) ≤
φ(h(t))

A(H(t), t)φ(0) exp
(∫ t

H(t)
δ1(s)ds

)

≤
φ(h(t))

A∗(H(t), t)φ(0) exp
(∫ t

H(t)
β(s)ds

) (30)

and

A∗(0, H(t))φ(h(t)) exp

(∫ H(t)

0

β(s)ds

)
≤ A(0, H(t))φ(h(t)) exp

(∫ H(t)

0

δ1(s)ds

)

≤ A(0, H(t))φ(h(t)) exp

(∫ H(t)

0

δ2(s)ds

)
(31)

for t ≥ 0. In view of (23) and (31),

f
(
A(0, H(t))φ(h(t)) exp

(∫ H(t)

0 δ2(s)ds
))

A(0, H(t))φ(h(t)) exp
(∫H(t)

0
δ2(s)ds

) ≤
f
(
A(0, H(t))φ(h(t)) exp

(∫H(t)

0 δ1(s)ds
))

A(0, H(t))φ(h(t)) exp
(∫ H(t)

0
δ1(s)ds

)

≤
f
(
A∗(0, H(t))φ(h(t)) exp

(∫ H(t)

0 β(s)ds
))

A∗(0, H(t))φ(h(t)) exp
(∫ H(t)

0 β(s)ds
)

≤
F
(
A∗(0, H(t))φ(h(t)) exp

(∫H(t)

0
β(s)ds

))

A∗(0, H(t))φ(h(t)) exp
(∫H(t)

0 β(s)ds
) (32)

for t ≥ 0. By (30) and (32),

f
(
A(0, H(t))φ(h(t)) exp

(∫ H(t)

0 δ2(s)ds
))

A(0, t)φ(0) exp
(∫ t

0 δ2(s)ds
) ≤

f
(
A(0, H(t))φ(h(t)) exp

(∫H(t)

0 δ1(s)ds
))

A(0, t)φ(0) exp
(∫ t

0 δ1(s)ds
)

≤
F
(
A∗(0, H(t))φ(h(t)) exp

(∫H(t)

0
β(s)ds

))

A∗(0, t)φ(0) exp
(∫ t

0 β(s)ds
)

for t ≥ 0. By r′(t) ≤ 0 for t ≥ 0, we may see that

δ2
2(t) +

r′(t)δ2(t)

r(t)
≤ δ2

1(t) +
r′(t)δ1(t)

r(t)
≤ β2(t) +

r′(t)β(t)

r(t)
for t ≥ 0,

from which and from (29) and (32) we see that β(t) ≤ T (δ1)(t) ≤ T (δ2)(t) ≤ 0 for t ≥ 0. So
T (X) ⊆ X and T is increasing on X . By the Knaster-Tarski fixed point Theorem, there exists
α ∈ X such that T (α) = α. Let

x(t) =

{
A(0, t)φ(0) exp

(∫ t

0
α(s)ds

)
if t > 0

φ(t) if 0 ≥ t ≥ g0
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for t ≥ g0. Clearly, x(t) > 0 for t > 0. We assert that x′(t) = α(t)x(t) and x′′(t) =(
α′(t) + α2(t)

)
x(t) for t ∈ (tk−1, tk] where k ∈ N. Indeed, we note that A′(0, t) = B′(0, t) = 0

on the intervals (tk−1, tk] where k ∈ N. Then x′(t) = α(t)x(t) for t ∈ (tk−1, tk] where
k ∈ N. Because T (α) = α, we see that α′(t) exists for t ∈ (tk−1, tk] where k ∈ N. Then
x′′(t) =

(
α′(t)x(t) + α2(t)

)
x(t) for t ∈ (tk−1, tk] where k ∈ N. We have thus verified our

assertion. Similarly, we can see that

A(0, H(t))φ(h(t)) exp

(∫ H(t)

0

α(s)ds

)
= x(g(t)) (33)

for t > 0. We note that

α′(t) = T (α)′(t) = −α2(t) −
r′(t)α(t)

r(t)
−

p(t)f
(
A(0, H(t))φ(h(t)) exp

(∫H(t)

0
α(s)ds

))

r(t)A(0, t)φ(0) exp
(∫ t

0 α(s)ds
) (34)

for t ∈ [0,∞)\Υ. By (33) and (34), we see that

x′′(t)

x(t)
= α′(t) + α2(t) = −

r′(t)

r(t)

x′(t)

x(t)
−

p(t)f (x(g(t)))

x(t)

for t ∈ [0,∞)\Υ. So
(r(t)x′(t))

′
+ p(t)f (x(g(t))) = 0

for t ∈ [0,∞)\Υ. We further note that x(t+k ) = akx(tk) and

x′(t+k ) = α(t+k )x(t+k ) =
bk

ak

α(tk)akx(tk) = bkx′(tk)

for k ∈ N. So x(t) is a positive solution of the system (1)-(3) on [0,∞). The proof is complete.

We can give two examples to illustrate the condition (23). In the first example, the function f
is concave on [0,∞). Indeed, we note that

f(u1) ≥

(
1 −

u1

u2

)
f(0) +

u1

u2
f(u2) =

u1

u2
f(u2)

for 0 < u1 < u2. So f satisfies the condition (23). In particular, f(u) = u. In the second example, f
is concave on [0, d] and decreasing on [d,∞). Similarly, we may verify that f satisfies the condition
(23).

Corollary 2.3 Let σ ≥ 0, φ ∈ PC′([gσ, σ], (0,∞)) and F be a continuous function on [0,∞) with
f(u) ≥ F (u) for u ≤ 0. Assume that (A1)–(A6) hold, p ∈ PC([0,∞), [0,∞)), r′(t) ≤ 0 for t ≥ 0
and

f(v)

v
≥

f(u)

u
for u ≤ v < 0.

If the system

(r(t)y′(t))
′
+ p(t)F (y(g(t))) ≥ 0, t ∈ [0,∞)\Υ,

y(t+k ) = a∗
ky(tk), k ∈ N,

y′(t+k ) = b∗ky′(tk), k ∈ N
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has a negative solution y on [σ,∞) satisfying the initial condition y(t) = φ(t) on [gσ, σ] such that
y′(t) > 0 for t ≥ σ, then the system (1)-(3) has a negative solution x on [σ,∞) satisfying the initial
condition x(t) = φ(t) on [gσ, σ].

Theorem 2.3 Let d1 > 0 and d2 > 0. Assume that (A1)–(A7) hold, p ∈ PC([0,∞), [0,∞)),
d2 > Md1/m and f is increasing on (−d2,−d1) ∪ (d1, d2). Then

∫ ∞

τ

1

r(t)

∫ t

τ

B(s, t)p(s)dsdt < ∞ (35)

for some τ ≥ 0 if, and only if, the system (1)-(3) has a nonoscillatory solution x such that |x(t)| ≥ d1

and x(t)x′(t) ≤ 0 eventually. Furthermore, if
{
t ≥ d : p(t) = 0

}
has measure zero for any d ≥ 0,

then x′(t) < 0 eventually.

Proof. In view of (A6) and (A7), we may see that

m

M
≤ A(s, t) ≤

M

m
for t ≥ s ≥ 0.

Let δ = max{f(u) : d1 ≤ u ≤ d2}. Clearly, δ > 0. Assume that (35) holds. There exists T ∈ Υ such
that T > τ and ∫ ∞

T

1

r(t)

∫ t

T

B(s, t)p(s)dsdt ≤
m

Mδ

(
d2 −

Md1

m

)
. (36)

Let
X = {y ∈ PC([T,∞), [0,∞)) : d1 ≤ y(t) ≤ d2 for t ≥ T } .

Clearly, X is a complete lattice and X is nonempty because of the fact that d1 ∈ X. We define an
operator S in X by

S(y)(t) =
A(0, t)d1

m
+

∫ ∞

t

1

A(t, s)r(s)

∫ s

T

B(v, s)p(v)f(w(y)(g(v)))dvds

for t ≥ T and y ∈ X, where

w(y)(t) =

{
y(t) if t > T
d1 if T ≥ t ≥ gT

.

Given y1, y2 ∈ X with y1 ≤ y2. Then

d1 ≤ w(y1)(g(t)) ≤ w(y2)(g(t)) ≤ d2

for t ≥ T . By the monotonicity of f , we may see that

f (w(y1)(g(t))) ≤ f (w(y2)(g(t))) ≤ δ for t ≥ T .

It follows that S(y1)(t) ≤ S(y2)(t) for t ≥ T . In view of (36),

d1 ≤ S(y)(t) ≤
Md1

m
+

M

m
δ

∫ ∞

t

1

r(s)

∫ s

T

B(v, s)p(v)dvds ≤ d2

EJQTDE, 2013 No. 38, p. 11



for y ∈ X . So S(X) ⊆ X and S is increasing in X . By the Knaster-Tarski fixed point Theorem,
there exists x ∈ X such that S(x) = x. Clearly, x(t) ≥ d1 > 0 for t ≥ T. Let T1 > T such that
gT1

> T . We note that x(g(t)) = w(x)(g(t)),

x′(t) = −
1

r(t)

∫ t

T

B(s, t)p(s)f(w(x)(g(s)))ds ≤ 0 (37)

and
(r(t)x′(t))

′
= p(t)f(x(g(t)))

for t ≥ T1. Furthermore, x(t+k ) = akx(tk) and x′(t+k ) = bkx′(tk) for tk ≥ T1. So x is an eventually
positive solution of system (1)-(3) with x′(t) ≤ 0 eventually. If

{
t ≥ d : p(t) = 0

}
has measure zero

for any d ≥ 0, then by (37), x′(t) < 0 eventually.
To see the converse, we first assume that system (1)-(3) has an eventually positive solution x

with x(t) ≥ d1 and x′(t) ≤ 0 eventually. Without loss of generality, we assume that x(t) ≥ d1 and
x′(t) ≤ 0 for t ≥ g0. We divide (1) by B(0, t), and then integrate from 0 to t. We have

r(t)x′(t)

B(0, t)
= r(0)x′(0) −

∫ t

0

p(s)f(x(g(s)))

B(0, s)
ds for t ≥ 0.

Then

x′(t) ≤ −
1

r(t)

∫ t

0

B(s, t)p(s)f(x(g(s)))ds for t ≥ 0. (38)

We further divide (38) by A(0, t), and then integrate from 0 to t. We have

x(t)

A(0, t)
≤ x(0) −

∫ t

0

1

A(0, s)r(s)

∫ s

0

B(v, s)p(v)f(x(g(v)))dvds for t ≥ 0. (39)

In view of (38), x(t) is decreasing on each interval (tk−1, tk] for k ∈ N. By continuity of x(t)/A(0, t),

we note that x(t) ≤ x(0)A(0, t) ≤ Mx(0) for t ≥ 0. By (A4) and continuity of f , there exists δ̃ > 0

such that f(u) ≥ δ̃ for Mx(0) ≥ u ≥ d1. By (39), it follows that

x(t)

A(0, t)
≤ x(0) −

δ̃

M

∫ t

0

1

r(s)

∫ s

0

B(v, s)p(v)dvds

for t ≥ 0. Since x(t) > 0 for t ≥ 0, we may further see that (35) holds. Second, we assume that
system (1)-(3) has an eventually negative solution x(t) with x(t) ≤ −d1 and x′(t) ≥ 0 eventually.
Then the system (8)-(10) has an eventually positive solution y(t) with y(t) ≥ d1 and y′(t) ≤ 0
eventually. By the above discussion, we may verify that (35) holds. The proof is complete.

Lemma 2.2 Assume that (A1)–(A7) hold, and that p ∈ PC([0,∞), [0,∞)) and

∫ ∞

τ

1

r(t)

∫ t

τ

B(s, t)p(s)dsdt = ∞ (40)

for some τ ≥ 0. If the system (1)-(3) has a nonoscillatory solution x(t) with x(t)x′(t) < 0 eventually,
then x(t) converges to 0 as t → ∞.
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Proof. Without loss of generality, we may assume that x(t) > 0 and x′(t) < 0 for t ≥ g0. Since

x(t+k )

A(0, t+k )
=

akx(tk)

akA(0, tk)
=

x(tk)

A(0, tk)
and

(
x(t)

A(0, t)

)′

=
x′(t)

A(0, t)
< 0

for t ≥ 0 and k ∈ N, we may see that x(t)/A(0, t) is positive, strictly decreasing and continuous for

t ≥ 0. There exist M̃ > 0 and m̃ ≥ 0 such that m̃ = limt→∞ x(t)/A(0, t) and x(t)/A(0, t) ≤ M̃ for
t ≥ 0. Let m̃f = infu≥m em {f(u)}. Assume that m̃ > 0. In view of (A4), we may see that m̃f > 0.
Let T ′′ > τ such that gT ′′ > 0. We can observe that x(t) ≥ A(0, t)m̃ ≥ mm̃ for t ≥ gT ′′ , which
implies that f(x(g(t))) ≥ m̃f for t ≥ T ′′. We now divide (1) by B(0, t), and then integrate from T ′′

to t. We have
r(t)x′(t)

B(0, t)
≤

r(T ′′)x′(T ′′)

B(0, T ′′)
− m̃f

∫ t

T ′′

p(s)

B(0, s)
ds (41)

for t ≥ T ′′. We divide (41) by x(t). Then

r(t)x′(t)

B(0, t)x(t)
≤

−m̃f

x(t)

∫ t

T ′′

p(s)

B(0, s)
ds ≤

−m̃f

M̃A(0, t)

∫ t

T ′′

p(s)

B(0, s)
ds

for t ≥ T ′′, form which it follows that

x′(t)

x(t)
≤

−m̃f

M̃A(0, t)r(t)

∫ t

T ′′

B(s, t)p(s)ds for t ≥ T ′′. (42)

We integrate (42) from T ′′ to t. We have

ln
A(0, T ′′)x(t)

x(T ′′)A(0, t)
≤ −

m̃f

M̃M

∫ t

T ′′

1

r(s)

∫ s

T ′′

B(v, s)p(v)dvds (43)

for t ≥ T ′′. Since (40) holds, we may see from (43) that

lim
t→∞

(
ln

A(0, T ′′)x(t)

x(T ′′)A(0, t)

)
= −∞,

from which it follows that m̃ = limt→∞ x(t)/A(0, t) = 0. It is a contradiction. Then limt→∞ x(t) = 0
because A(0, t) has an upper bound. The proof is complete.

Corollary 2.4 Let d > 0. Assume that (A1)–(A7), (5) and (40) hold, p ∈ PC([0,∞), [0,∞)) and
r′(t) ≤ 0 for t ≥ 0. Assume that f is concave on interval [0, d) and f ′(0) exists. Then the system

(r(t)x′(t))
′
+ p(t)f ′(0)x(g(t)) = 0, t ∈ [0,∞)\Υ, (44)

x(t+k ) = akx(tk), k ∈ N, (45)

x′(t+k ) = bkx′(tk), k ∈ N (46)

has an eventually positive solution if, and only if, the system (1)-(3) has an eventually positive
solution.

Proof. Assume that the system (44)-(46) has an eventually positive solution. Let

F (u) =

{
f(u) if 0 ≤ u < d
f(d) if u ≥ d

.
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Clearly, F (u) ≤ f ′(0)u for u ≥ 0. See Figure 1. We note that F satisfies (23) (see the two examples
described before Corollary 2.3). By Theorem 2.2, the system

(r(t)x′(t))
′
+ p(t)F (x(g(t))) = 0, t ∈ [0,∞)\Υ,

x(t+k ) = akx(tk), k ∈ N,

x′(t+k ) = bkx′(tk), k ∈ N

has an eventually positive solution x. By Lemmas 2.1 and 2.2, x(t) < 0 eventually and limt→∞ x(t) =
0. It follows that 0 < x(t) < d eventually. Then F (x(g(t))) = f(x(g(t))) eventually. So x is an
eventually positive solution of system (1)-(3). Conversely, assume that the system (1)-(3) has an
eventually positive solution x. By Lemmas 2.1 and 2.2, x(t) < 0 eventually and limt→∞ x(t) = 0.
For sufficiently small ε > 0, there exists 0 < dε < d such that f(u) > (f ′(0) − ε)u for 0 < u ≤ dε.
See Figure 2. Since 0 < x(t) ≤ dε eventually, we can see that x is an eventually positive solution of

(r(t)x′(t))
′
+ p(t) (f ′(0) − ε)x(g(t)) ≤ 0, t ∈ [0,∞)\Υ,

x(t+k ) = akx(tk), k ∈ N,

x′(t+k ) = bkx′(tk), k ∈ N

for sufficiently small ε > 0. By Theorem 2.2, the system

(r(t)x′(t))
′
+ p(t) (f ′(0) − ε)x(g(t)) = 0, t ∈ [0,∞)\Υ,

x(t+k ) = akx(tk), k ∈ N,

x′(t+k ) = bkx′(tk), k ∈ N

has an eventually positive solution for sufficiently small ε > 0. By Theorem 2.1, the system (44)-(46)
has an eventually positive solution. The proof is complete.

Figure 1 Figure 2

Corollary 2.5 Let d > 0. Assume that (A1)–(A7), (5) and (40) hold, p ∈ PC([0,∞), [0,∞)) and
r′(t) ≤ 0 for t ≥ 0. Assume that f is convex on the interval (−d, 0] and f ′(0) exists. Then the system
(44)-(46) has an eventually negative solution if, and only if, the system (1)-(3) has an eventually
negative solution.
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Remark 2.1 By Corollaries 2.4 and 2.5, we may obtain oscillatory criteria from those for the
corresponding linear systems. In particular, since in [3], the oscillation of linear impulsive delay
differential equation with constant coefficients may be determined by its characteristic equation, we
may then give the following corollary.

Corollary 2.6 Let θ > 0, p > 0, τ > 0, 1 ≥ ak > 0 and bk ≥ 1 for k ∈ N. Assume that (A4) and
(A6) hold and ∑

k∈N

tk+1 − tk∏

0<i≤k

bi

= ∞,

and that f ′′ exists and is continuous in interval (−θ, θ), f ′(0) > 0 and f ′′(0) 6= 0. Then all solutions
of system

x′′(t) + pf(x(t − τ)) = 0, t ∈ [0,∞)\Υ, (47)

x(t+k ) = akx(tk), k ∈ N, (48)

x′(t+k ) = bkx′(tk), k ∈ N (49)

are oscillatory.

Proof. Assume that the system (47)-(49) has a nonoscillatory solution x. We may assume that x is
eventually positive. The case that x is eventually negative is similar so we ignore it. We note that

∫ ∞

0

p

B(0, t)
dt = p


t1 +

∑

k∈N

tk+1 − tk∏
0<i≤k

bi


 = ∞

and ∫ ∞

0

∫ t

0

B(s, t)pdsdt ≥

∫ ∞

0

∫ t

0

pdsdt = ∞.

By Lemmas 2.1 and 2.2, we may assume that x(t) > 0 and x′(t) < 0 for t ≥ g0. Furthermore,
limt→∞ x(t) = 0. In view of f ′′(0) 6= 0, we can see that there exists θ > δ > 0 such that f ′′(u) ≥ 0
for δ ≥ u ≥ 0, or f ′′(u) ≤ 0 for δ ≥ u ≥ 0. In the former case, f is convex on [0, δ]. So f(u) ≥ f ′(0)u
for δ ≥ u ≥ 0. Since 0 ≤ x(t) ≤ δ eventually, we may see that x(t) is an eventually positive solution
of

x′′(t) + pf ′(0)x(t − τ) ≤ 0, t ∈ [0,∞)\Υ,

x(t+k ) = akx(tk), k ∈ N,

x′(t+k ) = bkx′(tk), k ∈ N.

By Theorem 2.2, we may further see that the equation

x′′(t) + pf ′(0)x(t − τ)) = 0 (50)

has an eventually positive solution, which implies that its characteristic equation

λ2 + pf ′(0)e−τλ = 0
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has a real root. But this is impossible because λ2 + pf ′(0)e−τλ > 0 for λ ∈ R. In the later case, f
is concave on [0, δ]. By Corollary 2.4, we can see that

x′′(t) + pf ′(0)x(t − τ) = 0, t ∈ [0,∞)\Υ,

x(t+k ) = akx(tk), k ∈ N,

x′(t+k ) = bkx′(tk), k ∈ N

has an eventually positive solution. By Theorem 2.2, we can further see that the equation (50)
has an eventually positive solution. By the above discussion, this is also impossible. The proof is
complete.

3 Examples

We illustrate our results by two examples.

Example 1. Let r and p be continuous functions on [0,∞) with r(t) > 0 and p(t) ≥ 0 for t ≥ 0,
and

f(u) = sgn(u)
(
1 + e−|u| − 2e−2|u|

)
for u ∈ R.

Consider the impulsive delay differential equation

(r(t)x′(t))
′
+ p(t)f(x(g(t))) = 0, t ∈ [0,∞)\Υ, (51)

x(t+k ) = akx(tk), k ∈ N, (52)

x′(t+k ) = bkx′(tk), k ∈ N, (53)

where ak = 2 for k even, and ak = 0.5 for k odd. Clearly, 0.5 ≤ A(s, t) ≤ 2 for t ≥ s ≥ 0. By
elementary analysis, we may see that f(u) is concave on [0, ln 8), is convex on (− ln 8, 0], is strictly
decreasing on (−∞,− ln 4]∪ [ln 4,∞), f ′(0) = 3 and inf |u|≥T {|f(u)|} > 0 for any T > 0. See Figure
3.

Figure 3

We have the following conclusions:
(i) Assume that ak = bk for k ∈ N, and that r(t) = exp(−t) and p(t) = t for t ≥ 0. It is easy to

check that (4) and (5) hold. By Corollary 2.1, the system (51)-(53) is oscillatory.
(ii) Assume that Υ = N, bk = 1/e, r(t) = e−0.5t and p(t) = e2t for t ≥ 0 and k ∈ N. We note

that
es−t−1 ≤ B(s, t) ≤ es−t+1 for t ≥ 1 and t ≥ s ≥ 0. (54)
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Then ∫ ∞

0

B(0, t)

A(0, t)r(t)
dt ≤ 2

(∫ 1

0

e0.5tdt + e

∫ ∞

1

e−0.5tdt

)
< ∞,

∫ ∞

0

p(t)

B(0, t)
dt ≥

∫ ∞

1

e2t

e−t+1
dt = ∞,

and ∫ ∞

0

1

r(t)

∫ t

0

B(s, t)p(s)dsdt ≥

∫ ∞

0

1

e−0.5t

∫ t

0

es−t−1e2sdsdt = ∞.

By Corollaries 2.4 and 2.5, the system (51)-(53) is oscillatory if, and only if,

(
e−0.5tx′(t)

)′
+ 3e2tx(g(t)) = 0, t ∈ [0,∞)\N,

x(t+k ) = akx(tk), k ∈ N,

x′(t+k ) = bkx′(tk), k ∈ N

is oscillatory.
(iii). Assume that r(t) = e−0.5t, p(t) = e−2t and bk = 1/e, for t ≥ 0 and k ∈ N. By (54), we see

that ∫ ∞

0

1

r(t)

∫ t

0

B(s, t)p(s)dsdt ≤

∫ ∞

0

1

e−t

∫ t

0

es−t+1e−2sdsdt < ∞.

By Theorem 2.3, the system (51)-(53) has a nonoscillatory solution.

Example 2. Let p, τ > 0, tk = 2k, ak = 1 − 1/(2k)2 and bk = 2 for k ∈ N. Consider the
impulsive delay differential equation

x′′(t) + p + p (x(t − τ) − 1)3 = 0, t ∈ [0,∞)\Υ, (55)

x(t+k ) = akx(tk), k ∈ N, (56)

x′(t+k ) = bkx′(tk), k ∈ N. (57)

We note that ak < 1 for k ∈ N. Then A(0, t) ≥ lims→∞ A(0, s) for t ≥ 0. Since

sin x = x

(
1 −

x2

π2

)(
1 −

x2

22π2

)(
1 −

x2

32π2

)
· · · ,

we can see that

2

π
=

sin π
2

π
2

=

(
1 −

1

22

)(
1 −

1

2222

)(
1 −

1

3222

)
· · · =

∏

k∈N

ai.

It follows that A(0, t) ≥ 2/π for t ≥ 0. Let f(u) = 1 + (u − 1)3 for u ∈ R. It is easy to check that
condition (A4) is satisfied, f ′′ is continuously differentiable on R, f ′(0) = 3 > 0, f ′′(0) = 6 6= 0 and

∑

k∈N

tk+1 − tk∏

0<i≤k

bi

=
∑

k∈N

1 = ∞.

By Corollary 2.6, all solutions of system (55)-(57) are oscillatory.
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