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Abstract

Monotonicity of solutions is an important property in the investigation of oscillatory behav-
iors of differential equations. A number of papers provide some existence criteria for eventually
positive increasing solutions. However, relatively little attention is paid to eventually positive
solutions that are also eventually decreasing solutions. For this reason, we establish several new
and sharp oscillatory criteria for impulsive functional differential equations from this viewpoint.

1 Introduction

Let T = {to,t1,...} where 0 =ty < t; < t3 < --- and let R and N be the sets of real numbers
and positive integers respectively. In this paper, we intend to establish necessary and sufficient
conditions of existence of nonoscillatory solutions of impulsive differential equation

(r(®)a’ (1) + () f(2(9(t)) = 0, t€[0,00\T, (1)
z(tf) = apz(t), k€N, (2)
:C/(tZ) = bkl'/(tk), keN (3)

under some or all of the following conditions

Al) limy_ ot = +00;

(A1)

(A2) pis a function on [0,00), and r is a positive and differentiable function on [0, c0);

(A3) g is a continuous function on [0, 00) such that g(t) <t for t > 0 and lim;— g(t) = oo;

(A4) f is a continuous function on R with wf(u) > 0 for v # 0 and inf|,>7 {|f(u)[} > 0 for any
T > 0;

(A5) ar > 0 and by > 0 for k € N;

(A6) there exists m > 0 such that A(0,t) > m for ¢ > 0; and

(AT) there exists M > 0 such that A(0,¢) < M for ¢t > 0,
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where

s<tp<t fort > s> 0.

4 [T ar if[s,t)NYT #0
s,t) =
(&:8) {1 if [s,)NY =0

”Monotonicity” of solutions is an important property for investigating oscillatory behaviors of
functional differential equations. There are many papers (e.g. [2, 5, 7, 10-12, 13, 15]) which provide
sufficient conditions to guarantee the solutions are increasing. For instance, if

* Bt
| womh= @
where
H bk, lf[S,t)ﬂT?é(b
B(s,t) = s<tp<t fort>s>0,
1 if [s,t)NT =0

by Lemma 2 in [12], then an eventually positive solution z of system (1)-(3) will satisfy z'(¢) > 0
eventually. However, the case where a solution x satisfies the condition x(¢t)z'(t) < 0 eventually
has rarely been touched upon. To fill this gap, we will establish new and sharp oscillatory criteria
from this viewpoint. Our technique is based on comparing our systems with their linearized systems
(cf. [4-9]). However, the important point is that we are able to establish necessary and sufficient
conditions.

Let A1 and A5 be intervals of R. We set

PC(A1,A2) = {p: A1 — As|p is continuous in each interval Ay N (g, tk41], k& € N U {0}

with jump discontinuities only}

and
PC'(A1,A2) = {¢ € PC(A1,A2)|p is continuously differentiable a.e. in A;}.

For any ¢1,p2 € PC(A1,As), we say that @1 < oo if and only if ¢ (t) < p2(t) a.e. on Aj.
In the subsequent discussions, we let

gy = min g(t) for any n > 0.
t2n

Note that if (A3) is assumed, then g, exists.

Definition 1.1 Let A be an interval in [0,00) and o = inf A. For any ¢ € PC(|go,0],R), a function
x defined on [g,,0] U A is said to be a solution of system (1)-(3) on A satisfying the initial value
condition x(t) = ¢(t) fort € [g5,0] if

(i) x,a’ € PC'(A,R);
(i1) x(t) satisfies (1) a.e. on A; and
(iii) x(t) satisfies (2) and (3) on A.
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Definition 1.2 Let a function ¢ = ¢(t) be defined for all sufficiently large t. We say that ¢ is
eventually positive (or negative) if there exists a number T such that o(t) > 0 (respectively ¢(t) < 0)
for every t > T. We say that p(t) is nonoscillatory if ¢(t) is eventually positive or eventually
negative. Otherwise, o(t) is called oscillatory.

A partially ordered set is called a complete lattice if all subsets admit a supremum and an
infimum. A complete lattice is recalled here because we will employ the well known Knaster-Tarski
fixed point theorem.

Theorem 1.1 (Knaster-Tarski fixed point theorem) Let X be a set and [ a function on X
such that f(X) C X. Assume that (X, <) is a complete lattice and f(x1) < f(x2) for x1,z0 € X
with x1 < xo. Then f has a fixed point in X.

Let aj > 0 and b > 0 for k € N. We define the functions

I a;p if[s,t)NT#0 [T bp if[s,t)yNT#0
A*(s,t) =< s<tp<t and B*(s,t) = s<tr<t
1 if [s,t)NY =10 1 if [s,t)NYT =0

fort > s> 0.

2 Main results

We first provide a criterion to illustrate that the nonoscillatory solution x with x(¢)2’(t) < 0 even-
tually indeed exists.

Lemma 2.1 Assume that (A1)-(A6) hold, p € PC([0,0),[0,00)) and

/TOO B]Eét,)t) dt = co for some T > 0. (5)

If the system (1)-(3) has a nonoscillatory solution x, then x(t)x'(t) < 0 eventually.
Proof. For the sake of convenience, we may assume that 7 = 0. We first assume that the solution z

is eventually positive, say that z(t) > 0 for ¢t > go. Let ¢ = inf;> 4, {2(t)} and my = inf,>z {f(v)}.
We note that

r(t)a’ () _ ber(t)'(t) _ r(te)a’(t)
)

B(0,t] beB(0,t,) B0t

for k € N. It follows that r(¢)a’(t)/B(0,t) is a continuous function on [0, 00). By equation (1), we
may see that r(t)z’(¢) is decreasing on each interval (tx—_1, tx] for k € N. For k € N, we may further
see that B(0,s) = B(0,t) and
r(t)z'(t)
t

B(0,1)

r(s)z’(s)

B(0,s)

>
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for ty—1 < s <t < ty. By continuity of r(¢)a’(t)/B(0,t), then

/ / / /

H ) | ) ) | ) ) | (0 "
B(Ov S) B(Ov tkl) B(Ov tkn) B(Ov t)

fort > ty, > -+ >tg, > s> 0 where tg,,...,tg, €7T.

There are now two cases. First assume that there exists T > 0 such that 2/'(T") < 0. In view of

(6)5
B(0,8)r(T)z'(T)

B(0,7)
Since r(t) > 0 for ¢ > 0, we may further see that 2/(t) < 0 for ¢t > T. Next, if 2/(¢t) > 0 for all t > go,

then x(t) is increasing on each interval (tx_1, ¢ for & € N. Similarly, we can verify that (t)/A(0, t)
is continuous and increasing for ¢ > 0. It follows from (A6) that

r(t)a’ (t) < <0fort>T.

x(t) > A(0,t)z(0) > ma(0) > 0 for t > 0.
>

So € > min {ma(0), minseg, o) 2(t)} > 0 and z(g(t)) > € for t > 0. In view of (A4), we see that
f(x(g(t))) > my > 0 for ¢t > 0. We now divide (1) by B(0,¢), and then integrate from 0 to t. By
continuity of r(t)z’(t)/B(0,t), we have

/Ot (M)/ds _ Tg)z'(t) r(0)2'(0)

B(0, 5) 0,t)  B(0,0)
and
Tﬁ?ii’;) = r(0)2'(0) - /O B%f)s)ﬂx(g(s)))ds
’ t p(S)
< #(0)2'(0) — my /O pe)sas -

for ¢t > 0. By (5) and (A2), we may see that 2/(¢) < 0 eventually. This is a contradiction. Therefore,
in both cases, 2/ (t) < 0 eventually.

Second, we assume that the solution x is eventually negative. Let y(t) = —xz(¢) for sufficiently
large t. Then y is an eventually positive solution of

(r(®)y' (1) +p(M)F(y(g(t) = 0, t€[0,00\T, (8)

y(ty) = ay(ts), k€N, 9)

vyt = by/(ty), keN (10)

where F(u) = —f(—u) for v € R. We may observe that F' is a continuous function on R with

ulF(u) > 0 for u # 0, and inf|,>p {|F(u)|} > 0 for any T' > 0. In view of the above discussions,
y'(t) < 0 eventually, which implies 2/(¢) > 0 eventually. The proof is complete. m

Corollary 2.1 Assume that (A1)-(A6), (4) and (5) hold and p € PC(]0,00),[0,00)). Then the
system (1)-(3) is oscillatory.

Proof. Assume that the system (1)-(3) has a nonoscillatory solution z. By Lemma 2.1, we may see
that 2/(t) < 0 eventually. By (4) and Lemma 2 in [12], we may further see that z'(¢) > 0 eventually.
This is a contradiction. The proof is complete. m
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The following two comparison theorems hold under the condition that nonoscillatory solution is
”decreasing” .

Theorem 2.1 Leto >0, ¢ € PC([gs,0],(0,00)) and ey, € (0,1) forn € N. Assume that (A1)-(A5)
hold, p € PC([0,00),[0,00)), g(t) <t fort >0, ¢'(0) exists, lim,,—,oc €, = 1 and

{t > o :p(t) =0} has measure zero. (11)
If for any n € N, the system
(r(t)a’ (1) + eap(D)z(g(t)) = 0, t €[0,00)\T, (12)
z(tf) = arx(te), k€N, (13)
() = bpa'(ty), k€N (14)

has a positive solution x., satisfying the initial condition x., (t) = ¢(t) on [go, 0] and z_ (t) <0 on
[0, 00), then the system

(r(®)2' () +p)2(9(t)) = 0, t € [0,00\T, (15)
z(tf) = arx(ty), k €N, (16)
:C/(tz) = bkl'/(tk), keN (17)

has a positive solution T on [o,00) satisfying the initial condition T(t) = ¢(t) on [¢s,0].

Proof. For the sake of convenience, we assume that ¢ = 0. For n € N, we let

msn,(t) 1
yn(t) =4 Atn >0 for t > 0.
é(t) 0>t > gy

By assumption, we see that y,(t) are positive, strictly decreasing and continuous for ¢ > 0 and
n € N. So for n € N,

ze, (0)
A(0,0)

Yn(t) < yn(0) = = 2., (0) = ¢(0) for t > 0.

It follows that {y,(¢) : n € N} is uniformly bounded. For any n € N, we divide (12) by B(0,t), and
then integrate from 0 to t. We have

r(t)ag, (t) / " p(s)ze, (9(5))
en ) 0) —e, | B0V,
By = OO0 [ g e
for ¢ > 0. We further divide the above equation by A(0,t), and then integrate from 0 to ¢. Then

e, (t) Lr(0)¢'(0)B(0,5) — en [y B(v,s)p(v)z., (9(v))dv
A0,t) ¢(0) +/0 r(s)A(0, 5)

ds

for t > 0. It follows that

o =e0+ [ (s == [ St ) oo

EJQTDE, 2013 No. 38, p. 5



for ¢t > 0 where H(t) = max{0, g(t)}. Given d > 0, there exists M; > 0 such that

T(0)¢’(0)B(0,t)’+/t B(s, t)p(s)y.. (9(s))

A0 ACH(s), r(?) ds < M; for 0 <t <d. (19)

FOI' 0 S m S 72 S da by (19)3

v| ds

lyn(2) — yulm)] < /

r(0)¢(0)B(0,5) _ [* Bv,s)p(v)y, (g(v))
( 3 !

r(s)A(0, s) A(H (v),s)r(s)
" (1r(0)¢(0)B(0. 5) B, (90)] , Y
= /< +(5)A(0, 5) +/o A(H (v), 3)r(s) d)d

< Mi(na —m).

So {yn(t) : n € N} is equi-continuous on [0,d]. By the Arzela-Ascoli Theorem, there exists a non-
negative, decreasing and continuous function g4 defined on [0, d] such that {y,} converges uniformly
to y4. Then

o B O O0)BO.S) [ B, p0)ialg(v)
yd(”nli“éoy"(”“b(o”/o( r(5) A0, ) ’/o A, 5 ) d“) s

for 0 <t < d. Since d is arbitrary, there exists a nonnegative, decreasing and continuous function
y(t) defined on [0, c0) such that

o F(rOFOBOs) 7 B @it , Y,
y<”‘¢<0)+/o( A0S A e d)d

for t > 0. Let

= - ] o) if 0>t > go

() = { A0, )5(t) ift>0 (20)
for t > 0. Clearly, z(t) > 0 for ¢t > 0. Assume that there exists ' > 0 such that Z(T) = 0 and
Z(t) > 0 for 0 <t < T. Since y is decreasing and A(0,t) is positive, by (20), we may see that
Z(t) = 0 for t > T, which implies Z'(¢t) = 0 for ¢t > T. We note that

() = A0,y (t) (21)
_ 0y 0)B(0,t)  B(0,1) /t p(s) A0, 9()y(9(5)) ,
r(t) r(t) Jo B(0,s)
and
(r(t)@ (1)) = —p(t) A0, g(£)F(g(t)) = —p()Z(g(t)) (22)

for t > 0. Since g is continuous and g(T') < T', there exists 7" > T such that T' > g(t) for T < ¢t < T".
So Z(g(t)) > 0 for T <t <T'. By (22),

0= (r(7 () = —pt)T(g(t))

for T < t < T’, which implies p(t) = 0 for T < ¢t < T'. It is a contradiction in view of (11).
So #(t) > 0 for t > 0. In addition, by (20) and (21), we may see that Z(t}) = ayZ(t;) and
7' () = by’ (tg) for k € N. So 7 is a positive solution of system (15)-(17) on [0, 0o) satisfying the
initial condition Z(t) = ¢(t) on [go, 0]. The proof is complete. m
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Corollary 2.2 Assume that the hypotheses of Theorem 2.1 hold. If the system (12)-(14) has a
negative solution x., satisfying the initial condition x., (t) = ¢(t) on [gs,0] and x_ (t) > 0 on
[0,00), then the system (15)-(17) has a negative solution T on [o,00) satisfying the initial condition
Z(t) = ¢(t) on [gs5,0].

Theorem 2.2 Let 0 > 0, ¢ € PC'([95,0],(0,00)), and F be a continuous function on [0,00) with
f(u) < F(u) for uw > 0. Assume that (A1)-(A6) hold, p € PC([0,00),[0,00)), ar > aj, by < by for
kEeN, r'(t) <0 fort>0 and

fg}v) < # for0<u<w. (23)
If the system
(r(t)y' (1)) + PO F(y(g(1))) < 0, te[0,00\T, (24)
y(ty) = apy(ts). k€N,
y'(ty) = by'(t), keN

has a positive solution y on [o,00) satisfying the initial condition y(t) = ¢(t) on [gs,0] such that
y'(t) <0 fort > o, then the system (1)-(3) has a positive solution x on [o,00) satisfying the initial
condition x(t) = ¢(t) on [gs, o).

Proof. For the sake of convenience, we assume that o = 0. Let 5(t) = y'(¢)/y(¢t) for t > 0. Clearly,
B € PC'(]0,00), (—00,0)). We note that 8(t) = y'(¢t)/y(t) is continuous on the intervals (tx_1, tx]
where k € N. Given t > 0. There exists k* € N such that t;-_; <t < t;~. We may observe

that
s = [ 8 s (yy(fol))) ’
[ = (25 ) =m (H25),
Then
/otﬁ(s)ds - 1“(‘;(83)+1n(a?i’iii>)+"'“n<%>
- @%)) yf(t)> - yJ&))
= v (F00)-

Since y(0) = ¢(0), we may then see that

y(t) = A*(0,t)p(0) exp (/0 ﬁ(s)ds) for t > 0. (25)
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Since A*(0,t) is a step function on [0, 00), we can further see that by (25)

y'(t) _ B'(t) + B(t) for a.e. t > 0. (26)

Let h(t) = min{0, g(¢)} and H(t) = max{0,g(t)} for ¢ > 0. We assert that
H(t)
9(t)) = A*(0, H(0)o(h(t)) exp ( / ﬁ(s)d8> (21)
for t > 0. Indeed, let £ > 0. If g(t) > 0, then h(t) = 0 and H(t) = g(t). It follows that

N " H(t) " g(t) »
A*(O,H@))qs(h(t))exp(/o 5(s>ds>A*<o,g<t»¢<0>exp (/ 6(8)d8>y(g(t))-

If 0 > g(t) > go, then h(t) = g(t) and H(t) = 0. It follows that

~ ~ H®) ~ ~
A*(0, H(t))(h(t)) exp </0 5(8)d8> = o(9(t)) = y(g(t)).

Our assertion is now proven.
We note that (r(t)y'(¢)) = 7' (t)y'(t) + r(t)y” (t) for a.e. t > 0. We divide (24) by y(t). By (25),
(26) and (27), it is easy to see that

p()F (470, H®)oh(®) exp (Jy'" B(s)ds ) )
() A% (0,0)6(0) exp (f 8(s)ds)

for a.e. t > 0. We divide (28) by B*(0,t)/A*(0,t), and then integrate both sides. Since A*(0,¢)3(t)/B*(0,t)
is continuous for ¢ > 0, we have

(28)

B*(0,1) _ " B*(s,t) 2 r'(s)5(s) .
50 < Grga0 - [ Fen (#e+ H8 ) a

- / Bo(s, 1) PIF (470, H(s)o(h(s)) exp (Jy" Bo)av) )
o A*(s,1) r(s)A* (0, 5)p(0) exp (f,; B(v)dv)

ds (29)

for t > 0. Let
X ={6 € PC(]0,00),[0,00)) : B(t) <(t) <0}.

Clearly, X is a complete lattice. For any § € X, we define an operator

o = S [ 568 258

t B(s, 1) P)S (A0, H(s)eh(s)) exp (" o(v)dv) )
- /0 Als, 1) r(s)A(0, 5)6(0) exp ([ 8(v)dv)

ds
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for ¢ > 0. Let 01,02 € X with 0; < J2. Since af < ap and by > by, for & € N, we may see that
A*(s,t) < A(s,t) and B*(s,t) > B(s,t) for t > s > 0. So we observe that

¢(h(t)) < ¢(h(t))
ACH(2),0)6(0) exp ( [y Ba(s)ds) — ACH(8),)6(0) exp ( [}y, 01(s)ds)
§ S(h(1)) 50

A (H (), 0)6(0) exp ( [y, B(s)ds)

and

IN

H(t) H(t)
A*(0, H(t))p(h(t)) exp ( /O 6(s)ds> A(0, H(t))p(h(t)) exp < /O 51(s)ds>

IN

A0 H(0)o(h(1)) exp ( / o 62<s>ds> (31)
for t > 0. In view of (23) and (31),
(A0, =@ e (J;" 5a()ds)) 1 (A H@SA@) exp (J, 1(5)ds))
A, B exp ([10 Ba(s)ds) T A© HE)e(h(®) exp (f; 61(s)ds)

7 (ar©, B@)OR®) exp (" B(s)ds))
440, H(e)o(h(t) exp (f;" (s)ds )
F (4%, H®)o(h(t) exp ([ Bs)ds))
A0, H®)o(h(t)) exp (" B(s)ds)

IN

(32

IN

for ¢ > 0. By (30) and (32),
(A0 H@)S0@) e (7" 82(5)ds)) 7 (A0 HOIbE) e (fy" 61(5)ds))
A(0,0)0(0) exp ( [ 82(s)ds) } A(0,0)6(0) exp ( [ 81(s)ds)
F (470, H(t)o(h(t)) exp [ B(s)ds) )
A%(0,0)0(0) exp (fy B(s)ds)

<

for t > 0. By »'(t) < 0 for ¢t > 0, we may see that

r'(t)d2(t) _ o
R ATy

from which and from (29) and (32) we see that 5(t) < T(61)(t) < T(62)(t) < 0 for t > 0. So
T(X) C X and T is increasing on X. By the Knaster-Tarski fixed point Theorem, there exists
a € X such that T(a) = a. Let

o(t) = { A(0,)p(0) exp (fot a(s)ds) ift >0

55(25) + rl(t B(t)

for t > 0,

o(t) if 0>t > go
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for t > go. Clearly, z(t) > 0 for ¢t > 0. We assert that 2/(t) = «a(t)z(t) and 2”(t) =
(o/(t) + 2(t)) x(t) for t € (tj—1,t;] where k € N. Indeed, we note that A’(0,t) = B'(0,t) =0
on the intervals (t;_i,¢;] where k& € N. Then 2/(t) = «a(t)z(t) for t € (tx_1,tx] where
k € N. Because T(a) = a, we see that o/(t) exists for ¢t € (t;_1,tx] where k € N. Then
2"(t) = (o/(t)z(t) + a*(t)) x(t) for ¢ € (ty—1,tx] where k € N. We have thus verified our
assertion. Similarly, we can see that

H(t)
A0, H(1))$(h(t)) exp ( / a<s>d8> — 2(9(t)) (33)
for t > 0. We note that

H(at)  POf (A(O, H(t))p(h(t)) exp ( i a(s)ds))

o/ (t) =T(a) (t) = —a®(t) — - " (34)
r(t) () A0, 1)(0) exp ( IK a(s)ds)
for t € [0,00)\Y. By (33) and (34), we see that
0 _ iy 4 a2 — T TO _p0f o)

a(t)
for t € [0,00)\T. So
(r(t)a’ (£)) + p() f (x(g(1))) = O
for t € [0,00)\Y. We further note that z(¢;) = arz(ts) and

b
2 (6) = at))a(t)) = alte)ara(te) = b’ ()
for k € N. So x(t) is a positive solution of the system (1)-(3) on [0,00). The proof is complete. m

We can give two examples to illustrate the condition (23). In the first example, the function f
is concave on [0, 00). Indeed, we note that

U1 ul (731
>(1-—— 0)+ — =—
Flun) = (1= 22) 10+ 2 ua) = 2w
for 0 < uy < ug. So f satisfies the condition (23). In particular, f(u) = u. In the second example, f
is concave on [0, d] and decreasing on [d, c0). Similarly, we may verify that f satisfies the condition
(23).

Corollary 2.3 Let o > 0, ¢ € PC'([gs,0],(0,00)) and F be a continuous function on [0,00) with
f(u) > F(u) for u < 0. Assume that (A1)-(A6) hold, p € PC([0,0),[0,00)), '(t) <0 fort >0
and

flv)  fw)

> foru<v<O.
U

If the system
(r(0y' (1) + ) F(y(9(t))) > 0, t€[0,00\T,
y(ty) = apy(ty), k€N,
y’(tg) = by (tr), keN
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has a negative solution y on [o,00) satisfying the initial condition y(t) = ¢(t) on g, 0] such that
y'(t) > 0 fort > o, then the system (1)-(3) has a negative solution x on [o,00) satisfying the initial
condition z(t) = ¢(t) on [go,0].

Theorem 2.3 Let di > 0 and da > 0. Assume that (A1)-(A7) hold, p € PC([0,0),[0,00)),
dy > Mdy/m and f is increasing on (—da, —d1) U (d1,ds). Then

/OO %/ B(s,t)p(s)dsdt < oo (35)

for some T > 0 if, and only if, the system (1)-(3) has a nonoscillatory solution x such that |x(t)| > d;
and z(t)z'(t) < 0 eventually. Furthermore, if {t >d:p(t) =0} has measure zero for any d > 0,
then a'(t) < 0 eventually.

Proof. In view of (A6) and (A7), we may see that

M
< A(s,t) < — fort > s > 0.
m

SE

Let § = max{f(u): di <u < ds}. Clearly, 6 > 0. Assume that (35) holds. There exists T € T such
that T' > 7 and .
>* 1 m Md,
— B(s,t dsdt < — (da — . 36
|t [ B omeasa < 57 (4 - 20 (36)

X ={y € PC([T,),[0,00)) : d1 < y(t) < dg for t > T}.

Let

Clearly, X is a complete lattice and X is nonempty because of the fact that d; € X. We define an
operator S in X by

s@)(r) = 200D / h A(; / " B(v, s)p(v) £ (w(y)(g(v)))duds

m t,s)r(s) Jr

for t > T and y € X, where

t)y ift>T
w(y)(t)Z{ ZE) ifT>ZtZgT

Given y1,y2 € X with y; < y2. Then
dy < w(y1)(g(t)) < w(y2)(9(t)) < da
for t > T. By the monotonicity of f, we may see that
fw(y)(g(t)) < f (wly2)(g(t)) <6 fort > T.

It follows that S(y1)(t) < S(y2)(t) for t > T'. In view of (36),

dy < S(y)(t) < ]\ijl + %5[00 7“(%) /TS B(v, s)p(v)dvds < da
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for y € X. So S(X) C X and S is increasing in X. By the Knaster-Tarski fixed point Theorem,
there exists € X such that S(z) = x. Clearly, 2(¢t) > dy > 0 for t > T. Let T} > T such that
gr, > T. We note that z(g(t)) = w(x)(g(t)),
1t
70 = g [ Bls.Op(e) () g()as <0 (37)

and
(r(t)' (1)) = p(t) f (x(g(t)))

for t > Ty. Furthermore, x(t;) = ayx(ty) and 2’(t;) = bya’(tx) for ¢, > T1. So x is an eventually
positive solution of system (1)-(3) with 2/(¢) < 0 eventually. If {¢ > d : p(t) = 0} has measure zero
for any d > 0, then by (37), 2’(t) < 0 eventually.

To see the converse, we first assume that system (1)-(3) has an eventually positive solution x
with x(t) > dy and 2/(t) < 0 eventually. Without loss of generality, we assume that z(¢) > d; and
a'(t) <0 for t > go. We divide (1) by B(0,t), and then integrate from 0 to ¢t. We have

r(t)z'(t) = 7(0)2' (0) — /t ZMCZS for t > 0.

B(Ov ) 0 B(Oa S)
Then
2/ (t) < L /tB(s t)p(s)f(z(g(s)))ds for t > 0. (38)
- () Jo 7 B
We further divide (38) by A(0,t), and then integrate from 0 to t. We have
2(t) —t;S v, $)p(v) f(z(g(v)))dvds for
0 <20 [ G | B pw)se(ao))duds or £ 0 (39)

In view of (38), z(t) is decreasing on each interval (tx_1, tx] for £ € N. By continuity of =(t)/A(0, t),

we note that z(t) < x(0)A(0,t) < Mxz(0) for t > 0. By (A4) and continuity of f, there exists 6 > 0
such that f(u) > 0 for Mx(0) > u > dy. By (39), it follows that

z(t) < (0) s [t

~7 ), @/0 B(v, s)p(v)dvds

for t > 0. Since z(t) > 0 for ¢ > 0, we may further see that (35) holds. Second, we assume that
system (1)-(3) has an eventually negative solution x(t) with x(¢t) < —d; and 2/(¢) > 0 eventually.

Then the system (8)-(10) has an eventually positive solution y(t) with y(t) > dy and y'(t) < 0
eventually. By the above discussion, we may verify that (35) holds. The proof is complete. m

Lemma 2.2 Assume that (A1)-(A7) hold, and that p € PC([0,0),[0,00)) and

/OO %/ B(s,t)p(s)dsdt = oo (40)

for some T > 0. If the system (1)-(3) has a nonoscillatory solution x(t) with x(t)x’(t) < 0 eventually,
then z(t) converges to 0 as t — oo.
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Proof. Without loss of generality, we may assume that x(t) > 0 and /() < 0 for ¢ > go. Since

)
2t) ) alte) (20 ) 0
- - "E\A0,0) T A0,

A0, 8))  arA(0,tx)  A(0, tr)
for t > 0 and k € N, we may see that x(t)/A(0,t) is positive, strictly decreasing and continuous for
t > 0. There exist M > 0 and i > 0 such that m = lim_cc 2(£)/A(0,t) and z(t)/A(0,t) < M for
t > 0. Let my = infy>mm {f(w)}. Assume that m > 0. In view of (A4), we may see that m, > 0.
Let T” > 7 such that gr» > 0. We can observe that z(¢t) > A(0,t)m > mm for t > gr~, which
implies that f(z(g(t))) > my for ¢ > T”. We now divide (1) by B(0,t), and then integrate from 7"

<0

to t. We have () (1) () (1) . (&)
r(t)z'(t r(T")x' (T - p(s
< — d 41
500 < B0 ™ B ()
for ¢t > T". We divide (41) by x(t). Then
! o t > t
00 [ e [,
B(0,t)=(t) = =(t) Jr~ B(0,s) MA(0,t) Jor B(0,s)
for t > T", form which it follows that
/ = ¢
T o __ =y / B(s, )p(s)ds for t > T". (42)
z(t) = MA,t)r(t) Jov
We integrate (42) from T" to t. We have
A0, T")x(t) my (41 [F
1 < —= — B dvd 4
nm(T”)A(O,t) - MM \/7"// T(S) /// (U,S)p(v) vas ( 3)

for ¢ > T". Since (40) holds, we may see from (43) that

. A0, T")x(t) B
i (1“ x<T~>A<o,t>) =

)

from which it follows that m = lim;_. z(t)/A(0,¢) = 0. It is a contradiction. Then lim; o z(t) =0
because A(0,t) has an upper bound. The proof is complete. ®

Corollary 2.4 Let d > 0. Assume that (A1)-(A7), (5) and (40) hold, p € PC([0,0),[0,00)) and
r'(t) <0 fort > 0. Assume that f is concave on interval [0,d) and f'(0) exists. Then the system

(r()a' (1)) +p() f'(0)x(g(t)) = 0, t € [0,00)\T, (44)
z(tf) = arx(ty), k €N, (45)
:L'I(t;) = bkl'l(tk), keN (46)

has an eventually positive solution if, and only if, the system (1)-(3) has an eventually positive
solution.

Proof. Assume that the system (44)-(46) has an eventually positive solution. Let

flu) fo<u<d
F(“):{ fld) ifu>d
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Clearly, F(u) < f'(0)u for u > 0. See Figure 1. We note that F satisfies (23) (see the two examples
described before Corollary 2.3). By Theorem 2.2, the system

(r(t)a' (1)) + p(t)F(x(g(t))) = 0, t€[0,00\T,
:I:(t;:) = apx(ty), k € N,
.Tl(tz) = bkxl(tk), keN

has an eventually positive solution . By Lemmas 2.1 and 2.2, z(¢) < 0 eventually and lim;_, z(t) =
0. Tt follows that 0 < z(t) < d eventually. Then F(x(g(t))) = f(z(g(t))) eventually. So x is an
eventually positive solution of system (1)-(3). Conversely, assume that the system (1)-(3) has an
eventually positive solution . By Lemmas 2.1 and 2.2, 2(¢) < 0 eventually and lim;_,, z(t) = 0.
For sufficiently small € > 0, there exists 0 < d. < d such that f(u) > (f'(0) —&)u for 0 < u < d..
See Figure 2. Since 0 < z(t) < d. eventually, we can see that = is an eventually positive solution of

(r(®)a’ (8))" + () (f'(0) =€) 2(9(t)) < 0, t€[0,00)\T,

x(tZ) = apx(ty), k €N,
:L'I(t:) = bk:c'(tk), keN

for sufficiently small € > 0. By Theorem 2.2, the system

(r(t)2' (1)) +p(t) (f'(0) — &) a(g(t) = 0, t€[0,00)\T,
z(ty) = apx(ty), k €N,
:L'I(t:) = bk:c'(tk), keN

has an eventually positive solution for sufficiently small ¢ > 0. By Theorem 2.1, the system (44)-(46)
has an eventually positive solution. The proof is complete. m

foyu
/F(u)

N\

f(w

0 d u

Figure 1 Figure 2

Corollary 2.5 Let d > 0. Assume that (A1)-(A7), (5) and (40) hold, p € PC([0,00),[0,00)) and
r'(t) <0 fort > 0. Assume that f is convex on the interval (—d, 0] and f'(0) exists. Then the system
(44)-(46) has an eventually negative solution if, and only if, the system (1)-(3) has an eventually
negative solution.
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Remark 2.1 By Corollaries 2.4 and 2.5, we may obtain oscillatory criteria from those for the
corresponding linear systems. In particular, since in [3], the oscillation of linear impulsive delay
differential equation with constant coefficients may be determined by its characteristic equation, we
may then give the following corollary.

Corollary 2.6 Let§ >0,p>0,7>0,1>ar >0 and by > 1 for k € N. Assume that (A4) and

(A6) hold and
b1 — T
E — =00,

keN H bi

0<i<k

and that " exists and is continuous in interval (—6,0), f'(0) > 0 and f”(0) # 0. Then all solutions
of system

2"(t) +pflx(t—7)) = 0, te[0,00\T, (47)
z(tf) = arx(ty), k €N, (48)
:C/(tz) = bkx’(tk), keN (49)

are oscillatory.

Proof. Assume that the system (47)-(49) has a nonoscillatory solution z. We may assume that x is
eventually positive. The case that x is eventually negative is similar so we ignore it. We note that

o tk+1*tk
dt = t
/o IRl KD D

keN O<<k

[e3) t o0 t
/ / B(s, t)pdsdt > / / pdsdt = oo
o Jo o Jo

By Lemmas 2.1 and 2.2, we may assume that z(¢) > 0 and z'(¢) < 0 for ¢ > go. Furthermore,
lim; 00 2(t) = 0. In view of f”(0) # 0, we can see that there exists § > § > 0 such that f(u) >0
for 6 > u >0, or f’(u) <0ford > wu > 0. In the former case, f is convex on [0,6]. So f(u) > f'(0)u
for § > u > 0. Since 0 < z(t) < J eventually, we may see that x(t) is an eventually positive solution
of

and

') +pf 0zt —7) < 0, te]0,00)\T,

(t;: = aix(ty), k € N,
T (t; = bkxl(tk), k e N.

By Theorem 2.2, we may further see that the equation
2"(t) +pf'(0)x(t — 7)) =0 (50)
has an eventually positive solution, which implies that its characteristic equation

X +pf'(0)e ™ =0
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has a real root. But this is impossible because A2 + pf’(0)e~™* > 0 for A € R.. In the later case, f

is concave on [0, 6]. By Corollary 2.4, we can see that

@)+ pf Ot —7) = 0, 1€ 0,000\,
z(tf) = apx(te), k €N,
.T/(ﬁ;:) = bkxl(tk), keN

has an eventually positive solution. By Theorem 2.2, we can further see that the equation (50)
has an eventually positive solution. By the above discussion, this is also impossible. The proof is

complete. m

3 Examples

We illustrate our results by two examples.

Example 1. Let r and p be continuous functions on [0, co) with r(¢) > 0 and p(t) > 0 for ¢t > 0,

and
f(u) = sgn(u) (1 + el — 26_2|“‘) for u € R.

Consider the impulsive delay differential equation

(r(O)2' (1)) +p(t) f((9(1))) = 0,¢€[0,00)\T,
z(ty) = arz(ty), k €N,
x'(t:) = bkl'/(tk), ke N,

where ap = 2 for k even, and ar = 0.5 for k odd. Clearly, 0.5 < A(s,t) < 2fort > s > 0. By
elementary analysis, we may see that f(u) is concave on [0,In8), is convex on (—1n8, 0], is strictly
decreasing on (—oo, —In4]U[In4,00), f'(0) = 3 and inf |, >7 {|f(u)[} > 0 for any T' > 0. See Figure

3.
y N
y=3u
f(w)
- y= o /&_“"
L )4 Ul
y=_
Figure 3

We have the following conclusions:

(i) Assume that ap = by for k € N, and that r(¢) = exp(—t) and p(t) =t for t > 0. It is easy to

check that (4) and (5) hold. By Corollary 2.1, the system (51)-(53) is oscillatory.

(i) Assume that YT = N, b, = 1/e, r(t) = e~ %% and p(t) = e for t > 0 and k € N. We note

that
eSS < B(s,t) < el fort>1and t > s> 0.

(54)
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Then

> B(0,1) (/1 0.5¢ /OO —0.5¢ )
————dt <2 e tdt + e e "t | < o0,
/0 A, )r@t) —  \Jo 1
> pt) /°° e
dt > dt =
/o BO.H" " )y et T
[e'e] 1 t [e'e] 1 t
— | B(s,t)p(s)dsdt > — sTile2s dsdt =
/0 r(t)/o (s,t)p(s)ds _/0 e—o.st/o e e“°ds 00

By Corollaries 2.4 and 2.5, the system (51)-(53) is oscillatory if, and only if,

and

(70! (1) +3e*a(g() = 0, t€[0,00\N,
() = apx(te), k€N,
J() = (), kEN

is oscillatory.
(iii). Assume that r(t) = e~ p(t) = e72' and by, = 1/e, for t > 0 and k € N. By (54), we see

that
oo 1 t oo 1 t
/ —/ B(s,t)p(s)dsdtg/ T/ ef e 28 dsdt < oo.
o r(t) Jo o € 'Jo

By Theorem 2.3, the system (51)-(53) has a nonoscillatory solution.

Example 2. Let p,7 > 0, t, = 2 a5, = 1 —1/(2k)? and b, = 2 for k € N. Consider the
impulsive delay differential equation

W) +p+pit—1)—1)7° = 0,te[0,00)\7T, (55)
z(tf) = arx(ty), k €N, (56)
x'(t;) = bpr'(tg), k € N. (57)

We note that ap < 1 for kK € N. Then A(0,t) > lims_. A(0,s) for ¢ > 0. Since

. 1.2 1.2 562
“xf“(lﬂ—)(lﬁ)(lﬁ)
2 Sina 1 1
() () () o I
2 keEN

It follows that A(0,t) > 2/m for t > 0. Let f(u) = 1+ (u —1)3 for u € R. Tt is easy to check that
condition (A4) is satisfied, f” is continuously differentiable on R, f/(0) =3 > 0, f”(0) =6 # 0 and

Ter1 —tk
— 1 =00
P >

0<i<k

we can see that

By Corollary 2.6, all solutions of system (55)-(57) are oscillatory.
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