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Abstract

This paper is concerned with the existence, uniqueness and uniform decay of the solutions
of a Klein-Gordon-Schrodinger type system with linear memory term. The existence is
proved by means of the Faedo-Galerkin method and the asymptotic behavior is obtained
by making use of the multiplier technique combined with integral inequalities.

1 Introduction
This paper aims to prove the global existence and uniform decay for the following system

i + AV +iay =g, z€QC R t>0, (1.1)
¢ — Ao+ fotg(t —T)AY(T)AT + ¢+ X ¢ = —Re(F(x)-v¢), 2 € QCR"t>0, (1.2)

satisfying the following initial and boundary conditions

¥(x,0) = o), ¢(x,0) = ¢o(x), Qﬁl(:z:,()) =¢1(x), x€Q, (1.3)
U(x,t) =d(x,t) =0, =€, t>0, (1.4)

where () is a bounded domain of R"”, n < 2 with k,a, A > 0. The variable 1 stands
for the dimensionless low frequency electron field, whereas ¢ denotes the dimensionless low
frequency density. This system in one dimension describes the nonlinear interaction between
high frequency electron waves and low frequency ion plasma waves in a homogeneous magnetic
field, adapted to model the UHH plasma heating scheme. The unusual form of the right side
of equation (1.2), as compared to the corresponding Zakharov equation, is a consequence of the
different low frequency coupling that was considered, i.e. the polarization drift instead of the
ponderomotive force.
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Systems of Klein-Gordon-Schriodinger type have been studied for many years. In [4] the authors
proved the existence of a strong global attractor in H?(IR*) x H?(IR*) attracting bounded sets
of H*(IR?) x H3(IR?) for a Klein-Gordon-Schrédinger system with Yukawa coupling. This was
extended in [8] where the existence of a strong global attractor in H*(IRY) x H*(RY),N =
1,2,3, attracting bounded sets of H*(IRY) x H¥({RY),k > 1 was proved. For a dissipa-
tive system of Zakharov type I. Flahaut [3] proved the existence of a weak global attractor
in H}((0,L)) x Hy((0,L)) (N H?((0, L)) x H((0,L))(H?*((0,L)) and obtained upper bounds
for its Hausdorff and Fractal dimensions. In [6] the authors studied the one dimensional case
of (1.1) - (1.2) and proved the global existence and uniqueness of the solutions and established
the necessary conditions for the system to manifest energy decay. Later on the authors in [10]
proved the existence of a global attractor in the space (H3(Q)NH?(Q2))*x H}()) which attracts
all bounded sets of (H(Q) N H?(Q2))? x Hi(Q) in the norm topology.

The rest of the paper is divided into four sections. In Section 2, the basic notation and assump-

tions made are stated along with the main results. In Section 3 the existence and uniqueness of
the solutions of (1.1) - (1.4) in (H}(Q) N H?*(Q)* x H}(Q) are established while in Section 4 the
uniform decay of the solutions is proved.

Notation: Let us introduce some notations that will be used throughout this work. Denote
by H#®(2) both the standard real and complex Sobolev spaces on (2). For simplicity reasons
sometimes we use H®, L* for H*(Q2), L*(?) and ||.||, (.,.) for the norm and the inner product
of L%*(2) respectively as well as the symbol - denotes the inner product in IR™. Finally, C
is a general symbol for any positive constant.

2 Assumptions and main result

Let us consider the Hilbert space L?(£2) of complex valued functions on Q endowed with the
inner product

() = [ ulaplayde,

and the corresponding norm
Jul* = (u, ).

We consider the Sobolev space H!(Q) endowed with the scalar product
(U, U)HI(Q) = (u7 U) + (V% VU)

We define the subspace of H!'(2), denoted by HJ (), as the closure of C§°(Q2) in the strong
topology of H(Q).

Assumption 2.1 Let the function ¢g:RT — R be a nonnegative and bounded C? - function
such that

lzl—/ g(r)dr >0
0
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and for some positive m;,i =0,1,2 it holds
—mog(t) < g'(t) < —mig(t), V>0,
0< g"(t) < mayg(t), Vt>0.

Assumption 2.2 We assume that F(x) is a one dimensional vector function with F(x) €
CHQ) and ||F(2)||eo = M.

We recall the following inequalities which will be used frequently later:

lull* < el v ull?, v € Hy(9), (2.1)
lulloe < cllul (1l w € HAR®), n<2, (2.2)

and
Jalla < || 7 wl™ul =0 v € HY(R") n <2 (2.3)

We define the energy of (1.1)- (1.2) as

1 / 1
B@) = 3| [0+ 6l 7 wOIF + 161+ 119 012 + ol + 5 [ oluras]

and therefore we have the following main result

Theorem 2.1 Let (g, ¢, ¢1) € (HE(Q) N H?*(Q))? x HI(Q) and Assumption 2.1 - 2.2 hold
. Then, there exists a unique solution for the system (1.1), (1.4) such that

1 € L(0,00; Hy(Q) N H*(Q)), ¥ € L™(0, 00; L*(Q)),
¢ € L*(0, 00, Hy(Q) N H*(Q)), ¢ € L>(0,00; Hy(R)),
¢" € L™(0,00; L*(Q)),

¥(z,0) = Yo(x), ¢(z,0) = ¢o(x), ¢ (2,0) = ¢1(z), = € Q.

3 Global Existence

Let us represent by w, a basisin Hj(2) N H?*(Q) formed by the eigenfunctions of —A, also
by V,, the subspace of H(2) N H?()) generated by the first m vectors and by

m

wm<t) = thm( Ws, (bm Zhlm Wy,

i=1
where (Y (1), dm(t), @, (t)) is a solution of the following Cauchy problem
i, u) + K( A, u) +ia(Pm,u) = (Gmthm,u) Y u € Vi, (3.1)

1"

(6,0) — (Ady, ) + / Gt =7) (Adm (7),0)dr + () + A (S, 0)
=  —Re(F(z) - \y¥m,v), Yv €V, (3.2)

with initial conditions
wm<x70) = ’l/}Om - 1/}07 ¢<x70) = ¢0m - (bo S H&<Q) N H2(Q>7
G (0) = b1 — &' € HY(Q).

In this section we derive a priori estimates for the solutions of the (3.1)-(3.3) system.

(3.3)
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3.1 A Priori Estimate 1

Letting u = v,,(t) and by taking the imaginary part equation of (3.1) and integrating over
we obtain

2 2
=0. 4
DI + allgm (DI = 0 (34
Applying Gronwall’s Lemma produces
[ (O] < [[¢m(0)[]e7>. (3.5)
Therefore
[|tm(t)|] < R for all t > 0. (3.6)

Next let u = —, (t), then by taking the real part of (3.1) and integrating over € (3.1)
becomes

2dt/|vwm\ dfc—i—alm/wmw dx_—Re/¢m¢m¢ de.

For the right hand side of the equation above we have

2dt/¢>m|@/}m %de = = /gb %] deR@/qu@/)m@/) do.

But from (3.1) we also obtain

am [ butiyde=sa [ |56, Pde+a [ onfvnds
Q Q Q

Therefore

54 L1 valdatra [ |9 vnPdnta [ Gulvnfds

:_§E/¢m|¢m\ dr + = /<15 || ?de.

Next, substituting v = ¢, () into (3.2) and then integrating over Q (3.2) becomes

d d
(1600419 6l 0l #1651 = 535 ([ 6 =) [ Gm(r) & butrtir)

2dt
t (3.8)
= [ t=7) [ G6ur) ¥ bmtidrir = gO)| 7 6l = [ (F @) T6)6,d
0 Q Q
Hence, by adding (3.4), (3.7) and (3.8) we have
5.7 19012 4 1D Gl G 4117 0l 4 l1mlP + [ Gl 421,
rall 7l + il o [ onlinltde =5 [ Glinlde — [ (F@)-Tvadhde o

- %(/Otg(t —7) /Q Vom(T) V qu(t)d:cdr) — /Otg/(t —7) /Q T6m(T) T bm(t)dadr

= 9017 Gl .
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Evaluating the integrals of (3.9) by using Assumption 2.2, the compact embedding HJ () —
L4(2) and Young’s inequality, we obtain

]. /
5 [ ulinlias]<

| F@) - 06 ds|<

A ,
—/ 6, [*dz + @/ |7 blda + C,

5 [16 s +—/\vwm2daz

Also, considering Cauchy-Schwarz Inequality, Young’s Inequality and Assumption 2.1 we have
the following estimate

t

g (t—1) /wm )V Om(t)dxdr

/|g = [ 19 éntr |dx) (/Q|wm<t>|2das)l/2df

<3| G gu I + 5 (/ ot — ) wm<f>||df)2

"9 6 OIF + 3lllls [ 50— 7)1 7 bulrl P

IA

Combining the results above (3.9) can be rewritten as

1l 4+ 5117 P+ 10 119 6l + ol + [ ol |+,

DO | —
Q.|Q‘

wallbnll + 55 Gl o [ onlunPde < O+ Slallis [ ot =)l onr)| i (310

d ' i ., M 2
+@(/ g(t—T)/QWm(T)v%(t)dxdT) + (= g dmllP+ 211 7 6l

Integrating the above expression over (0,¢) and considering (3.3) it follows that

! 1
16l + K17 P+ 60 4119 0l 4 ol + 5 [ omlvnlds]

DO | =

' A
-/ (a||¢m<s>||2+—||¢m<s>||2+—’““H vnIF+a [ ¢>m|¢m|2dx)ds
(3.11)

2

<o+ (" g(0) ||wm<>||2ds+/ s—f/wm ) bun(t)dadr
—||gHL1// (5 = )|V Hdrds+—/uwm ) Pds.
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Evaluating the following terms

/ot gt =) /Q Vm(7) 7 Om(t)dzdr

< [ [196upaz) " ([ 19 0ut0far) " ar -

1 allllglle= [*
< gl v onlp+ L2l [y g 6 i par

1 K
‘/¢m|¢m|2dx < 16mllllomll3 < CllSmlIN Gl 1l < 5115 bl + 2117 Gl 2+ C.

Substituting the results above in (3.11) and applying Gronwall’s Lemma we obtain the first
estimate

[l + 117 ol [P+ o5l + 11 7 Sl + [

! s e , (3.13)
+/O{me(8)|| D ()P 4+ 1| 7 Y (5] }ds§L1

where L, is a positive constant independent of m € N.

3.2 A Priori Estimate 11

Let u = A, (1) + alAi,(t) in (3.1), then by taking the real part and integrating over Q we
have

1d

§E/<;||Ame2 + Ka|| Aty ||? = Re/ P m AU, dx + aRe/ GV A da. (3.14)
Q Q

Next, let v = —Ag¢, (t) in (3.2). Therefore by integrating we have

| =

(H T 6ol + 1 Abnll2+ | wmw) ISV

N~
IS

! (3.15)

= [ 9t =860 (). A O)dr = Re [ (Fla) - 7).
Noticing that
- d - , _ .
while by 1, = —i(—At, — iy, — dmim), we have the following estimate
e [ty Abuds = Re [ ibul-Dt — i = Guial A
Q Q
_ 7 2 7
= aRe /Q Omm Aty dr + Im/ﬂqﬁmwmAwmd:c.
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Substituting the expressions above into (3.14) deduces

1d
S (H||A¢m||2 — 2Re/ qﬁm@Z)mAwmdx) + /@Q||Awm||2

(3.16)
=20 [ GO+ I [ 620, Abpda = Re [ 60080

Hence, adding (3.15) and (3.16) gives

1d
3 (180 = 2R [ ot 119 G+ [186ml + 119 00

+ K| A2+ M| 7 6,1 — / gt = 7)(Adn(7), A, ())dx—Qa/¢m¢mAwmdx (3.17)

0

+ Im / 02 Az — Re / 6 b Ada + Re / (F(z) - Ttbm) A, da.
Q Q Q

Therefore
1d
5 (A1 = 2Re [ 60,8 419 Gl + 180 + 119 0m?) + wal A,

N P = 20 / Ot AGdas + Im / 62 o AGmd — Re / 6 AN
. T “ (3.18)
#Re [ (F) ) hde = 90186001+ 5 ([ ot = 7360 (7) Aom(0)ar )
Q 0

_ /0 g (t = T)(Adm(7), Ad(t))dr

Estimating the integrals on the right hand side of (3.18) using the Sobolev embedding theorem
and Young’s Inequality gives the following results

Re / Gt ADnddz] < 1[Gl ol [l Ll At

1
< NAGnlP + Cll 7 dul P 7 Gl

_ 1
'Im/ﬂmmmmdx < 11mlEllmllol|A%nl| < F1AGmIE +Cll 7 Gnll*l 7 6l

’ - / 1 ’
'—RG/Q%@/)mAwmdx <16 mllallmllal|AEm| < A"+ Cll 7 6l *1] 7 Gl I*
Now evaluating the last term of (3.15)
[ @ 0860 == [(F)- 80.) 9 e = [ (9F@) - ) 7 6,s
Q Q Q
~ [0 X (7 % F@)) 7 6
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and taking into consideration Assumption 2.2 we evaluate the integrals on the right hand side

_/Q<F<x>.mm>w;ldx < CllAYl| 7 6l

'—/Q(VF(JC)-vwm)v%d:c <Oy enllll v Ll

]—/mex (7 x F@)) v 6.ds| < Ol g ol @ 6Ll

also we obtain

/ gt = ) (A (r), Abm()dr

< 112G (D) / 19t — D) | Adu(r)]d7

mi 2, 1 ' 2
< A0 + lgllom [ ot = PlIA0() P

Substituting the expressions above into (3.18) gives the following result

1d _ /
m( ||A¢mH2—2Re/Q¢mwmAwmdx+||wm||2+m¢m||2+uwm||2) + x| A

+ MV &l < CUIAYRIT 7 Spall + (1A% + 11 7 Gl Pl 7 ol [P+ 1| 7 Sl 1] 7 ol
2 2 : d{ [ (3.19)
11V llPll 7 +meunwmm+a(/o g<t—¢><A¢m<r>,A¢m<t>>dT)

m? 1 t
+ 71\\A¢m(t)”2 + §Hg||L1(0,oo)/0 g(t — 7)||A¢m(7)|]2dT + C.
Integrating (3.19) over (0,t¢) and considering (3.3) it follows that

1 . /
3 (HIAUIE = 2Re [ 60t Sdnds 4117 1 + 18601 4117 60

+f {mllAwm(sHF .y v¢;n<s>||2}ds <cf {||Awm<s>u2 1T Sl T b))
Y Ol T )P+ 11 7 ST eI+ | T e T G (3:20)
AL T (3] + \\A¢m<s>||2}ds + [ o= D86, (1), 86, 0)ar

1 t S
+3llolloos [ [ ot = Dlladu(olPards + c
Using Cauchy Schwarz inequality and Young’s inequality imply

t 1 1 s
[ ott=m) [ Sonmaoniar| < 5112001 + Slalliomllollimom [ 1A0n()IP

Substituting the expression above into (3.20) and applying Gronwall’s Lemma we obtain the
second estimate

1A% [* 4+ 1| 7 G2+ 1|1 A2 + 1] 7 Gl +/0 {I|Awm(8)l|2 +Iv %(S)IIQ}ds < Ly(3.21)

where Lo is a positive constant independent of m € N.
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3.3 A Priori Estimate III

Differentiating with respect to time equations (3.1) and (3.2) and substituting u = —1, (¢) in
(3.1) , taking the imaginary part and substituting v = ¢.,(t) in (3.2) produces

]_ d ! / / -/ ! -/

and

DO =
SRS

(||¢;;||2 v dnliE+ ||¢;n||2) = 9(0)(Vn(t), V(D))

t

(3.23)

i 9 (t = )T bm(7), T (£))dr + N[y, |* = —RG/Q(F(@ V)b
Now adding (3.22) and (3.23) gives
1d

3o (I I 4119 Gl + 16,0) + alldl + 9O 7 ¢l + Al

+ Re / B, + / Oty P dr = =g (0)(Vdm(t), V6,,(1)) — Re / (F(z) - V)b

t Q Q ] t Q (3.24)
- / gt = 7)(Tm(7), V(D) + = ( / gt = 7)(Tbu(r), w;(t)))
+0(0) 5 (0u (1), V(1)

But, by using (3.2) we have the following estimate
e [ (F@) - vi)onds = [ (F)- 90)80m+ [ (F@)- 90)(F (@) - 90,
Q Q Q

i /Q (F(2) - V) bm + A /Q (F(z) - V¥ fd (3.25)

- /ot g(t = T)(F(2) - T (7), A (1)) dirdr

d ’ ! /! 1"

G ([E@ i) = [(F@) - 9v)dart [(Fe)- i
Analyzing the terms on the right hand side gives
d

G (@ 9noude) = [ (F@)- v 80mds+ [ (F0) - )86,

- /(F(x) -7 VA pd — / V(F(2) - ) ¥ 6. da

@ Q
_ /Q(F(SC) Ay 7 <Z5;nd:c — /Q(VF(;C) T Um) <Z5;nd37
N /Q<V1/fm X (V x F(r))) v <Z5/mdl’ + /(F(a:) . Vq/;;n)A(bmdx_

Q

where

(3.26)
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Similarly we have

%( /Q (F(x) - wm)cbmdx) = /Q (F(x) - 7t,) bmdz + / (F(z) - tm)bdz,  (3.27)

Q
with

and

%(/ g“‘”(”@'Wm@%A%(t))dxdf) 9(0) / (F(2) - (1)) A1)

/ (t=7) / ) - V(7)) Ad(t)ddr

\
T
\]

\

) - V(1)) Ay (7)dadr.
(3.29)
Substituting (3.25), (3.26), (3.27), (3.28) and (3.29) into (3.24) produces

1d / "
5. 11PN 119 Gl 4 11612 ) + allvl -+ 9O 7 Gl + il

w1 [ dtmindss [ onliifir < 5 [ 4= 000176, 0)0r)

t ([ venaonds) + 4 ([0 Gumonds) - ane [ (50) - 90,60
X5 ([F@) Timste) + ([ ot =) Goulr). o017

~ 4 ONT0ul0). 7, (0) + 9(0) (Vom0 7,(0) + 5 (01 [ (@) 90,
~00) [ (F) @) S0mit)d + [ - / (F () - (1) Ab (t)dadr

~ [ =G0t T 00y~ [P e~ [(F) D007 b
- [(@F@ 0 9 6o~ [ (T % (7% Pe) 9 6yde ~ [ (Fa)- )6

Q

(3.30)

Evaluating some of the integrals above by taking into consideration Young’s inequality and the
following embedding H'(Q) — L9(Q), with ¢ € [1,6] and inequality (2.2) we obtain

¥, da

< Gmllsol [l 1> < ClHAG|[[20,]1,
(3.31)

'/Qqﬁ;lwmw;nd:c < bl Wl l11¥mlloe < €l 7 Syl * 4 ClOral [P A
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with

/ot g (t=7) /Q V b (7) 7 b () ddr

1 I . (3.32)
< 319001 + Rlgllioms [ o= D7 omilFar
and
: : '(0))2 1 :
19 O 0n(®). 76,0 < T 6,01 + L1 7 o (3.33)
Also
& " 1 2 "2
e [ (Pl@)- Toménds] < M9 all 16,11 117 6l + C6IP,
/ / 1 ,
[ F @) Tm)6uda] <MD ll 16,1 < 7117 P+ €l I (3.34)
1
90) [ (F() 96)860da| < Mo 7 6l 186 < {11 7 0l + ClIAGI P,

Substituting (3.31), (3.32) and (3.33), (3.34) into (3.30) and integrating over (0,t) we obtain
1 ! 1" / / ¢ / t ’
3 (150 + 1L 19 Gl 4 1160 ) + o [ in(o)Pds +.900) [ 119 (o) 1Pas

0 0

+A/O [lfm(s)][Pds < C+/O 9 (t = 1) (Tbu(T), T (t))dT + g(0)(Tbm(t), VS, (1))
+ Ol 7 Sl P+ 1160l + 117 P+ 1163l + 117 Sl + [ A [* + || A¢h00] ]

+ Belllloon [ [ ots =T onIFdrds+ [ glt = 1)F @) Tn(r) Adn(B)ar

(3.35)

Furthermore

t / / m2 ¢ /
/Og(t—T)(Wﬁm(T),V%(t)) < 4—771||gHL1(o,oo)||gHL°°(o,oo>/0 17 G (7|27 + ]| 7 ¢, ()]
with

(9(0))*

2 "2
1V OnllE v 6ull

9(O)(Vn(t), o, (1)) <

and
! 1/2 ! 1z
/O g(t = T)(F(2) - Vm(T), Ag(t))dT < M\|A¢m(t)||||g\|/1(o,oo) (/0 gt =7l v meQ)
1 t
< §I|Am(t)||2+2M2||gHL1(o,oo)||gHLoo(o,oo>/0 |7 ] |-
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Next, we are going to estimate the L?(Q) norm of 1, (0) and ¢, (0). Letting u = 1, (0)
and v = ¢, (0) in (3.1) and (3.2) produces

16 O] < &1 A (O)] + @l 1 (0)]] + 118 (0)] ][4 (0) | (3.36)

and
6m (O] < (186 (0)]] + |6 (0)]] + All by (0)]] + M| 57 ¢ (0)]]. (3.37)

From which using Sobolev embeddings it may be concluded that
14, (0)]] < C and ||6/,(0)]| < C ¥m € N.

Combining the above inequalities and employing Gronwall’s Lemma in (3.35) we obtain the third
estimate

[l + 118ll? + 117 bl I” + (16,1 + /0 [[m() + 117 b (I + [|6u(5)[[*)ds < Ls.(3.38)

From (3.13), (3.21) and (3.38) we get
{)} is bounded in L>(0,T; H;(S2)
{¢m} is bounded in L>(0,T; Hy ()
{4, } is bounded in L>(0,T; L*()), (3.39)
{¢.} is bounded in L>(0,T; HL(Q)),
{¢.} is bounded in L>=(0,T; L*(Q)).

Therefore we can extract weekly * convergent subsequences denoted again as (¢, ¢,,) such
that

Ym =", o =" 0,

The above convergences are sufficient to pass to the limit in (3.1) and (3.2) and it results thanks
to the elliptic regularity that

Y € L™®(0,00; Hy(Q) N H*(Q)).
Following similar procedure as in Theorem 2.1 of [11] we prove the uniqueness of the solutions.
Therefore the proof of Theorem 2.1 is completed.

4 Energy Decay

Due to the previous results the corresponding energy functional for the system (1.1) and (1.2) is

1 / 1
BO) = 5|0+ 6ll 7 ol + 161 + I 6l + 10l + 5 [ elvPaa].

The integral cannot affect the asymptotic value of the energy which remains positive as seeing
below using (3.12)

/ 1
B 2 3 [P+ 519 6l + 1617 + 51 7 6l + ol + |

DO | =
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and

1
B(0) < g Il + 5 ol + 1617+ 311 o1P + 1ol €

Let u = —(¢'(t) + aab(t)),v = ¢'(t) in (3.1) and (3.2) respectively and then by integrating and
adding them up we obtain

1d

5 (61wl U+ G0 + 11 6l 1P + 5 [ oloPde) +allol? + kall 7 v1F
Q

NI +a [ olufdr = [ gt =076 Whir+ 3 [ lutin = Re [ (F) i
hence
F(0) < = allvlf = N6 | = wall 7 617 + [ gt = )6, 96 ) (w6(r), 76 ()dr .
4.1
1 ! /
—a [ olvPde+ 5 [ luPde = Re [ (F@) - v

Define the modified energy as

1 / 1
e(t) =3 W17+ 61l 7 01+ 1617 + 119 9P + ol + 5 [ olulas

+ (1= [aas )iz ol + [ o=l v 000 - vonier

and taking into consideration that

[ att=niwotn).ve @i =3 [ ¢ =nllv o) - voriFar - 3ol v ol

w2 (5[ oras)iw o01R) = 35 ( [ ate=noto - stoliar)

we obtain

2
1 ! /
—a [ olvPde+ 5 [ Slopde—Re [ (F@) - o)

, , 1 ¢
e (t) =—al[p|* = Ml¢||* — rall v ¢I]* — 59l v ol - ﬂ/O g(t —Dlo(t) — o()||*dr

evaluating the integrals we have

— | ¢|Ylide) < — [ |o|*do+— | |V ¥|7dz,
2 Jq 4 Jq dey Jq

! ! M2
/<F<x>~w><z>dx < 6—1/ ¢ |2dx+—/\w\2dx,
2 2,12
2dz| < i/\¢\2dx+o‘ ¢ “/\v¢\2dx.
21 Jo 2e Q
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Therefore

$0) < —allpll = 0= EGIP — (ra - 3 - O - STy g g »
+ ol = 3901 7 ol = 22 [*gte = llo() — ot
Following [5] , for € > 0 we introduce the perturbed energy
epert(t) = €(t) + ep(t), (4.3)

where p(t) = ||[¢||* + (¢, ¢). We have the following results
Proposition 4.1 There exists C; >0 such that

|epert () — e(t)] < eCre(t)
forall e >0 and t>0.

Proof From the definition of p(¢) and (2.1) we obtain

1 ’ c*
()] < (@)1 + 5llo O1* + Sl v ol P < (2+ce(t).
From the last inequality we conclude the proof with C; = 2 4 ¢*.

Proposition 4.2 Let 16x a > 6M? +3C? and Assumptions 2.1 , 2.2 hold. Then there exists
a € >0 and Cy >0 such that

/

epert<t) < _6026<t>
forall t>0 and e € (0,6].

Proof Getting the derivative of p(t) we have

p(t) =2Re(¥', ) + (8", ¢) +|¢||” (4.4)

and replacing ¢ and ¢ by using (1.1) and (1.2) we obtain

P (t) = —20{6|* — || 7 | - ||¢||2+||¢/||2—A/¢’¢d:c
Q

. (4.5)
- [P - gwisds+ [ gt~ (@6t go0)ar
0
Adding and subtracting several terms and also postulating N = min{4a, 1}, we have
’ K 2 3 11192 1 2 1 9 ’
p )<= NE@®) + Sl v oll"+ Sllell” = Sllell” = 5l v ol = A Q¢ ¢d
(4.6)

- % /Q oy |*dz — /Q<F(x) - VY)gda + /Ot g(t = 7)(Ve(7), Vo(t)dr
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Evaluating the integrals above

A [ o< A—/ 6o+ 5 [ lofds
[ w>¢da:<—/|¢|2d + 202 [ 5 vpa,

5 [[otwpasl< B0 [ jorar+ 2 9 upa

[ att=niwotn). o < 5 [ o=l = omar+ 51 7 o0l [ als)as

and

equation (4.6) becomes

/ R M? Ae R
P <-NEO+ G+ s g+ C o X2e e (B L e
! © (4.7)
1/t 3 [t
w5 [ ot =nlot) = oNPar + G [ ate)ds = Il 7 ol0IP.
Now, differentiating (4.3) with respect to ¢ and using equations (4.2) and (4.7) gives
, R M2 M2 CQ 2 202
pere(t) < — eNE(t) + ( e R e T ‘“;—“))H AUk
3 )\262 361 2 R 1 1 1 2
R R e I (45)
1 t 3 [t 1 1
+G- [ g(t—r>||¢<t>—¢<T>||2df+<5/0 o(s)ds - £ — Sg)lI v o1

Now, let all the expressions within the brackets be simultaneously non positive or zero. To
achieve this, we introduce the auxiliary constant v > 0. Then choosing the constants to be

v 2

€ = T €; = — and setting the third expression equal to zero, we determine the value of v
v
2(p—1

as v = M Next by requiring the first two expressions to be non positive we reach to the

3p
conclusion that for 16k a > 6M? + 3C? we have

e —eNE(t).

pert

forall t>0 and € € (0,¢].

Let €& = min{é, ﬁ}, where (] is given in Proposition 4.1. Consider ¢ € (0,é)]. From
Proposition 4.1 we obtain

1
5e(t) < cpen(f) < ;e(t) < 2(t) forall t> 0.
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Therefore we get

/ ECQ
epert(t) S - TGpert (t)a

forall t>0 and e¢ € (0,&] which allows us to conclude that

epert(t) < 2e(0)exp(— %t)
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