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THE o-ORDER OF SOLUTIONS OF LINEAR
DIFFERENTIAL EQUATIONS IN THE UNIT DISC*

LI-PENG XIAO

ABSTRACT. In this paper, some results on the ¢-order of solutions
of linear differential equations with coefficients in the unit disc
are obtained. These results yield a sharp lower bound for the
sums of p-order of functions in the solution bases. The results we
obtain are a generalization of a recent result due to I. Chyzhykov,
J. Heittokangas and J. Rattya.

1. INTRODUCTION AND MAIN RESULTS

A classical result due to H. Wittich [13] states that the coefficients
of the linear differential equation

(1.1) FO LA ()Y 4 AY(2)f + Ag(2)f =0

are polynomials if and only if all solutions of (1.1) are entire functions
of finite order of growth. Later on, more detailed studies on the growth
of solutions were done by different authors; see, for instance, [4, 8, 11].
In particular, Gundersen, Steinbart and Wang listed all possible orders
of growth of entire solutions of (1.1) in terms of the degrees of the
polynomial coefficients [5].

Recently, there has been increasing interest in studying the interac-
tion between the analytic coefficients and solutions of (1.1) in the unit
disc. The result of Wittich stated above has a natural analogue in the
unit disc, as shown in [1, 6]. For instance, Heittokangas showed that
all solutions of (1.1) are finite-order analytic functions in the unit disc
if and only if the coefficients are H-functions [6].

A function f, analytic in the unit disc D := {z : |z| < 1}, is an
H-function if there exists a g € [0, 00) such that

sgg|f(z)|(1 — [2[*)? < o0.
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The space A~*°, introduced by B. Korenblum [9], coincides with the
space of all H-functions. The T-order of a meromorphic function f in

D, is defined by
— log T'(r, f)

= i
or(f) s logﬁ ’
where T'(r, f) denotes the Nevanlinna characteristic of f.
Equation (1.1) with coefficients in the weighted Bergman spaces are
studied in [7, 10, 12]. For 0 < p < oo and —1 < a < oo, the weighted
Bergman space B? consists of those functions f, analytic in D, such

that
/D FEP(L = 2P dm(z) < oo,

where dm(z) = rdrdf is the usual Euclidean area measure. Moreover,
feBifa=if{t >0: f¢€Ny,DB} The following result
combines Theorems 1 and 2 in [10].

Theorem 1.1. [10] Let the coefficients Ao(z),- -, Ar—1(2) of (1.1) be
analytic in D.

(1)Let 0 < aw < 00. Then all solutions f of (1.1) satisfy or(f) < «
if and only if A; € ﬂ0<p<ﬁBg forallj=0,--- k—1.

1
(2)IfA; € Bs,? forallj =0,---,k—1. Then all non-trivial solutions
f of (1.1) satisfy

min {M —i—a]} <or(f) < max {a;}.

1<j<k J ~ 0<j<k—1

1

(3)If A; € B&,? forallj =0, ,k—1and if g € {0.---  k— 1}
is the smallest index for which o, = maxo<j<p_1{c;}, then in every
fundamental solution base there are at least k — q linearly independent
solutions f of (1.1) such that or(f) = ay.

Later on, Theorem 1.1 is refined in [2].

Theorem 1.2. [2] Suppose that A;(z) € Ba,?, where aj > —1 for
j=0,--- k=1, and let ¢ € {0,--- ,k — 1} be the smallest index for
which oy = max,—g.. p_1{a;}. If s € {0,---,q}, then each solution
base of (1.1) contains at least k — s linearly independent solutions f

such that
. (k= s)(as — o)
jzgg}_,k{ i—s + oy ¢ < or(f) < max{0, ag},
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where ay, ;= —1.

Solutions of (1.1) in terms of the general p-order have been studied
in [3].
Definition 1.1. [3] Let ¢ : [0,1) — (0,00) be a non-decreasing un-
bounded function. The p-order of ¥ : [0,1) — (0, 00) is defined as

If f is meromorphic in D, then the w-order of f is defined as o,(f) =
o,(T(r, f)). The logarithmic order of f is defined as

A(f) = Tm log" T(r, f) .
r—1- log(—log(1 — r))
Remark 1.1. The usual order of growth of a meromorphic function
finD or(f) = olTlT(f) and \(f) = crlogl%r(f). In general, for a
function 1 : [0,1) — (0,00), the expressions or(y) = Uﬁ(@ and
AY) = Ulogﬁ(w) denote the order and the logarithmic order of 1,
respectively.

The following theorem corresponds to Theorem 1.1.

Theorem 1.3. [3] Let the coefficients Ay(2), -, Ak—1(2) of (1.1) be
analytic in D. Let ¢ : [0,1) — (0,00) be a non-decreasing function such
that A(¢) = oo and

— () -
(1.2) Tm = —Ce[l,00).

Denote a; = ag,(M%(r, AN)F=i(1—r)) forj=0,---  k—1, where

—J

1 21 ) %
M9 = (5 [ latrepan) " 0<p <o
0

1s the standard LP-mean of the restriction of an analytic function g on
the circle {z : |z| = r}.

(1) Let 0 < aw < 00. Then all solutions f of (1.1) satisfy o,(f) < «
if and only if maxo<j<p—1{a;} < a.

(2) Then all non-trivial solutions f of (1.1) satisfy

{k:(aoj— a;)

min

1<j<k T O‘J} <o,(f) < max {a;}.

~ 0<j<k-1
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(3)Ifq € {0,---,k—1} is the smallest index for which a,; = maxo<j<k—1{a;},
then in every fundamental solution base there are at least k — q linearly
independent solutions f of (1.1) such that o,(f) = ay.

The purpose of this paper is to refine Theorem 1.3. We obtain a
result analogous to Theorem 1.2 in terms of the general ¢-order. In
fact, we obtain the following theorem.

Theorem 1.4. Let the coefficients Ao(2), -+, Ax_1(2) of (1.1) be an-
alytic in D. Let ¢ : [0,1) — (0,00) be a non-decreasing function such
that \(p) = oo, and that (1.2) is satisfied for some constant C' € [1,00).

Denote o = ULP(M%O“, Aj)k%ﬂ'(l —r)) forj=0,---,k—1. Let q €
{0,k —1} be the smallest index for which oy = maxj—g,.. .—1{c;}.
Ifs € {0,---,q}, then each solution base of (1.1) contains at least k—s

linearly independent solutions f such that

g [EEN00) L h o <a,

where ay, ;= —1.

Remark 1.2. The case s = 0 of Theorem 1.4 clearly reduces to The-
orem 1.3 (2), and the assertion of Theorem 1.4 for s = q is contained
in Theorem 1.3 (3).

In order to state the following corollaries of Theorem 1.4, we denote
— (k = s)(as — ay) _
B(s) = jsrﬂnk{ s +ajp,s=0,---,q,
where aj, := —1. Moreover, we define
s :=min{s € {0,---,q} : B(s) > 0}.
Corollary 1.1. Let the coefficients Ao(2),- -, Ax_1(2) of (1.1) be an-

alytic in D. Let ¢ : [0,1) — (0,00) be a non-decreasing function such
that both A(¢) = oo and (1.2) is satisfied for some constant C' € [1,00).

Denote a; = Uso(Mkl (r, Aj)k%f(l —7r)) forj=0,--- k—1. Let q €
—J

{0, ,k — 1} be the smallest index for which oy = max,—g... j_1{;}.

Then each solution base of (1.1) admits at most s* < q solutions f sat-

isfying o, (f) < B(s*). In particular, there are at most s* < q solutions

[ satisfying o,(f) = 0.
To estimate the quantity Zle o,(f;) by using Theorem 1.4, we set

’Y(]) :maX{B(O),,ﬁ(j)}, jzoaaq
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Corollary 1.2. Let the coefficients Ao(2),- -, Ax_1(2) of (1.1) be an-
alytic in D. Let ¢ : [0,1) — (0,00) be a non-decreasing function such
that both A(¢) = oo and (1.2) is satisfied for some constant C' € [1,00).

Denote a; = O%’(Mkij (7, Aj)k%f'(l —7r)) forj=0,--- k—1. Let q €
{0, ,k — 1} be the smallest index for which oy = max,—g... j_1{;}.
Let f1,- -+, fx be a solution base of (1.1). If ¢ = 0, then Zle o,(fj) =
kag, while if ¢ > 1, then

8 et Y0 < Yol < ko

j=s*

Note that the sum in (1.4) is considered to be empty, if s* = q.
Corollary 1.2 is sharp. This is illustrated by an example in Section 5.

2. LEMMAS FOR THE PROOF OF THEOREM

The following lemma on the order reduction procedure originates
from C.

Lemma 2.1. ([5]) Let foq1, fo2. -, fom be m > 2 linearly independent
meromorphic solutions of

Y + Ak a2y 4+ Age(2)y =0, k>m,

where Agpo(2),- -, Aox—1(2) are meromorphic functions in D. For 1 <
p<m-—1, set

fomrje1\

fpyj:(p 2t ) j:177m_p

fp—l,l
Then fp1, fp2, s fom—p are linearly independent meromorphic solu-
tions of
21) g P Ay ()T e Apo(2)y = 0,
where

fiag (n—j—1)
Apj(2) = Z ( jZl ) Ap—Ln(z)M

et fr-11(2)

for 7 =0,---  k—p—1. Here, denotes the binomial coeffi-

n
Jj+1
cient, and A j—n(2) =1 for alln=0,--- ,p.
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Lemma 2.2. ([3]) Let k and j be integers satisfying k > j > 0, and let
0<d<1ande>0. Let f be a meromorphic function in D such that
9 does not vanish identically.

(1) If o,(f) < oo, where ¢ : [0,1) — (0,00) is a non-decreasing
function such that A(¢) = oo, and that (1.2) is satisfied for some C €
[1,00), then there exists a measurable set E C [0,1) with D(E) < §

(®) (1¢%)

such that
27
/0 f@(rei?)

_ (2) If M(f) < oo, then there exists a measurable set £ C [0, 1) with
D(E) <6 such that

1

k—j e (f)+e
g9 < P

, réFE.

1—r

2 | £(k) (i) | F7 1 1\ e e
/ FR0e) 1 g < log . rdE.
o | fO(re?) 1—1r 1—1r
where
_ E 1
D(E) = fm MMEORD)
r—1- 1—7r

Lemma 2.3. ([3]) Let 0 < ¢ < 00,0 < @ < 00,0 < p,e < o0 and
0 <n <1 Let ¢ : [0,1) — (0,00) be a non-decreasing unbounded
function such that (1.2) is satisfied for some C € [1,00). If f is an
analytic function in D such that
— log" (M r.f(1 ~ r))
(r)

r—1- log p(r

then there is a set ' C [0,1) with D(F) > n such that
log™ (M, 1—r)

Lo (M (PP~ 1))

:a’

>a—eg, «a<o00,

r—1=rel IOgSD( )
FP(1 — )
o log (M (r, S (L ) o, o= .
r—1-rcF log p(r)

3. PROOF OF THEOREM 1.4

Proof. We only need to prove the first inequality in (1.3) for s €
{1,--+,q— 1}. We consider two separate cases.

Case (i). s=1.

Let £ > 3,q > 2,s = 1, and B(1) > 0, since otherwise there

is nothing to prove. Let {fo1, fo2, -, fox} be a solution base of
BJQTDE, 2013 No. 13, p. 6



(1.1), and assume on the contrary to the assertion that there ex-
ist s + 1 = 2 linearly independent solutions fp; and fpo such that
max{o,(fo1), 0p(fo2)} = o < B(1). Then the meromorphic function
g = (fo—f)’ satisfies 0,(g) < 0. Moreover, Lemma 2.1 implies that g

satisfies
(3.1) g*F Y A o (2)g P o Ap(2)g = 0,
where
S on 0 )
3.2 Al i(z) = Ay + . Aon(z) ==
( ) 17]<Z) 07]+1(’Z) n;r2 ( 7 +1 ) 0, (Z) f(],l(Z)
for j =0,1,--- ,k— 2, and Apx(2) = 1. Therefore
: o1 (2)
A < |A Aon T
a3 < o+ 3 (] ) 1Anal |
where
(k—1) (k—2) /
9" V() 9" (2) 9'(2)
A < | — Aq e T 4+ |A
Asolall = |2 el | D | e |2

since g satisfies (3.1). Putting the last two inequalities together, we
obtain

A N4 gV(2) A i @)
| 01 | ;| 11(2)|‘ Z| On f01()

Here |f(2)| < |g(2)| if there exists a constant C' > 0 independent of z
such that |f(z)] < C|g(z)|. Raising both sides to the power =5 and
integrating 6 from 0 to 27, we obtain,

(])(7’6 ) 1/(]9_1)
A 1/(k 1) 9< / A 1/k n|g-\re’) do
/o Aoare) Z s g(re)
(1) (1. i0) 1/(k=1)
3.3 Ag ()| E=D do.
(3:3) +Z/ 4, re fm(rew)

To deal with the second sum in (3.3), consider

n—1), oy |1/ (E=1)
7 (re?)

0 -/ o, n=2--- .k
fo1(re?)

2
I = / | Agn(rei®)[1/ =D
0
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Let € > 0 be a small constant. Then by Lemma 2.2 (1),

(3.4)
. /27r féﬁil)(rew)
* 0 Joa(re®)
holds, since o,(fo1) < 0 < B(1) < ay. Moreover, by the Hoélder in-
equality (with the indices (k—1)/(k—n) and (k—1)/(n—1)) and the

definition of «,,, we have

1/(k-1)
)a1—26

o)™+ _ olr

<
W< l1—r — 1-—7r

Y T¢E7

2m (n—1) i0 1/(k—1)
I, = / Ay (e [for ) d
0 foi(re®)
= (n=1), _ig\ | 7T =
2T L r—y 2 n— 7 n—1
< ( / |Ao,n(rei9)|knd9) / ol 2 (ri "
0 0 fo1(re?)
_ p(r)onte oy o(r)7+e =
- 1—r 1—r
k—n n—1
¢<T>anm+am+a
3.5) = E
(35 Y
foralln=2,--- k—1. Since
k—1 — ay,
Uw<f0,1)§‘7<ﬁ<1)§( )(all a)+an7 n:27"'7k_17
n —
we have
k—n n n—1 n
1T
k—n (k—1) (a1 — ) 3k—1) \n—1
< _
J%k—1+( n—1 L s T

(3.6) =on —2¢, n=2,---,k—1
Inequalities (3.4)-(3.6) show that

a172€

o(r)
1—r

(3.7) I, < , réE,

forn=2,--- k.
To deal with the first sum in (3.3), denote

_1_
k—1

do, j=1,- k—1.
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Lemma 2.2 (1) implies that
(3.8)

2w
- |
0

gD (rei?)

1
k—1 o+¢ a1 —2¢

' < o(r) < o(r) & .
g(re?)

for € > 0 being small enough since o,(g) < o < #(1) < ayq. Moreover,
by (3.2) we have

1
k—1

g9 (rei)

27
Ji= [ Ay (re?)F 4 do
o= e |2
1
o ' (j)(reie) oy
< A re®) P | g
N/O | 0,]+1(T€ | g(rei?)
k o ("_j_l)(re“’) = () (i | FoT
1 g\ (re")
+ Agp(re® e |01 . ‘ . do
_Z /0 | * ( ) fo,l('f’ew) g(re®)
n=j+2
(3.9)
k—1
:ZKj—FLj,k‘i‘ Z Lj,n
n=j+2

forall j =1, .-,k —2. Since max{o,(g), 0,(fo1)} <o < B(1) < ay,
we deduce that K; behaves like 1,4, and hence

ré L,
EJQTDE, 2013 No. 13, p. 9
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for € > 0 being small enough. Moreover, by the Holder inequality, with

the indices k’j;il and %, and Lemma 2.2 (1), we have
i e VR
Ly = / for? Ve [ ’g<f><re”> s
3k = i i
0 Jo(ret) g(re®)
k—j—1 ;
o f(k_j_l)(rew) ﬁ k-l 27 g(j)<7“€i6) % k-1
< / 0’1—.9 do / == db
0 Joa(re?) o | g(re?)
k—j—1 _J
o ()TN (o) TN F
- 1—r 1—r
_p(r)7e
o 1—7
(3.11)
CM172€
AU )
1—r
forall j =1,---,k — 2 when € > 0 is sufficiently small. It remains to

consider L, ,. By general form of the Holder inequality with the indices

k=1 k=1 k-1
o n1r 5 and (3.6), we have

1
o (n=3=1) (0 0\ | F=T | (5) (0 i0Y | T
A re

Ly = / Ay (e | F22_ D) ‘ig e )l ag
0 foa(re®) g(re®)

21 ) T—1 21 n—j— rei n—j—

< </ |A0,n(re’9)|k1"d9) / m—<'9) do

0 0 foa(re?)

J

(/ g(re?) ;‘w)m
() ) ()
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Inequalities (3.8)-(3.12) show that

011726
(3.13) < e
1—r
forj=1,---,k—1. B
Let n € (6,1), and let F' be the set in Lemma 2.3 with D(F) > .
Then D(F \ E) > n—0 >0, and Lemma 2.3 yield

1 al—¢€
(3.14) M_1_(r, Ap1)FT > %
This, with the aid of (3.3), (3.7) and (3.13), results in o — ¢ < ay —
2e, a contradiction. It follows that (1.1) has at least k — 1 linearly
independent solutions f such that o,(f) > 5(1).
Case (ii). s > 1.
Let k >3, ¢ >2,s>1,and ((s) > 0, since otherwise there is noth-

, reF\E.

ing to prove. In particular, it follows that a; > 0. Let { fo1, fo2, -+, fox}
be a solution base of (1.1), and assume on the contrary to the assertion
that there exist s+1 linearly independent solutions fo 1, -, fo.s+1 such
that
0 = max{gso(fOJ)a T ,U¢(fo,s+1)} < 5(8) < a;.
Set
_(fogn)
(315) fp,j_ _— s j_]~727"'78+1_p-
fpfl,l
From Lemma 2.1, f,1, -, fpst+1-p are linearly independent meromor-

phic solutions of Eq.(2.1) and o,(f,,;) < o. Taking p = s and using
(3.15) and Lemma 2.1, we obtain that f;; is a nontrivial solution of an
equation of the form

P Aspsa () fP 7T 4 A () f = 0.

Moreover, as in the case s = 1, Lemma 2.1 implies

D) < e+ S S (L2 )m (o)
0,s = sO = L m,n fm,l(z) )
where
(k—s) k—s—1 (m)
|A30(z)\ ff . () n Z ‘Asm f ((z))
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Putting these inequalities together, we obtain,

s k—m-—1 (n s+m) s (k—s)
Sy () g (%)
Aos(2)] S Apn(2)| |———— —.
| Ao,s(2)] Nm:@n:s;m| n(2)] ) +> e

Raising both sides to the power %S and integrating 6 from 0 to 27, we

2
obtain

1
f(n*Ser) (7,61‘9) k—

m,1

fma(rei?)

2T
/ Ay o (re®) 755 a6
0

(3.16) = Zm: L+ Y I

Lemma 2.2 (1) implies that

2 (k—s) i6 ﬁ o+te as—¢
re s
(3.17) Jim, :/ fmvli«(’) o < e(r) < e(r) . rdE
o | fma(re®) L= -r
form =0,---,s and € > 0 being small enough. It remains ro consider
Iy form=0,--- ,sandn=s+1-—m,--- ,k—m—1.
By the Hélder inequality (with the indices £=% and £=%) and the fact

(3.18) 0,(fo1) <o <pf(s) < (k= s){a, = an) + ay,

n
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forn=s+1,---,k— 1, we have

1
2m ) (n_s)(rew) s
Iy, = Agp(re®)i=s |29 71 g
0, /0 | 0, ( )| f071(7’619)
k—n Z;
2 ' L s or | p(n—s) reie s
< </ |Ao,n(rew)|knd0) / f(),lf(y) do
0 0 fo1(re?)

n—s

1 a k7n+o,nfs+€
— Nk—s k—s
)
(3.19)
1
< 05728
< ),

for € > 0 being small enough. In the general case Lemma 2.1 gives

1

o f(n*Ser)(Tez‘@) F—s
L= [ [Apa(re®)[7 |72~ 2| df
= [ Ao |
1 1
k— 1 —n—1 i k—s —s+ ; k—s
S iy
~oS e T fm-1,1(re®) fma(re)
k—m+1 k—m+2 k_is

ng—ni—1 i
£ ret?)

fm—2,1 (reie)

2m
S Z Z /O |Am—27n2 (7062‘0)|E

ni=n+1no=ni1+1

1 1
ni—n—1 i k—s n—s+m i k—s
fr e ) [ | T e [
fm71,1<rei9) fm,l(rew)
(3.20)

k—m+1 k—m+2 k

S22 2 Kumeen),
ni=n+1no=ni1+1 N =Nm—1+1
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where

o e |

2
Kxnﬂh,~-,nm)=i/ | Aggu (ref®)| 755
0

foa(re®)
R D) [ | D) [ | et )|
- = de.
fm—21(re) fm—11(re?) fm(re?)
If n,, =k, then Agx(z) = 1, and general form of the Hélder inequal-
ity with the indices
Ny — S Ny — S Ny — S Ny — 8
N — N1 — L My — N — 17 "My —m—1"n—s+m’
together with Lemma 2.2 (1) shows that
o+¢ as—2e
(3.21) K(n,ny, - ,ng) < <P1<T_) " < SO(I)_ et ¢ F.
If n,, <k, then general form of the Holder inequality with the indices
k—s k—s k—s k—s k—s
k—npy Ny — N1 — 1 Ny — Mo — 17 "my—n—1"n—s+m’
together with Lemma 2.2 (1) and (3.18) shows that
o (r)anm+e konm o(r)o+e nmRmo1o o(r)7+e e
K(n,ng, - ,n,) < | ——— _J
1—r 1—r 1—r
1 a k—nm+0nm—s+€
— nm k—s k—s
)
(3.22)
1
< T Tcp(r)asf%,r ¢ F.
Inequalities (3.19)-(3.22) show that
as—2e
(3.23) La<POE g
1—r
form=0,---,sandn=s+1—m,--- ,k—m— 1.

Let 7 € (4,1), and let F be the set in Lemma 2.3 with D(F) > 7.
Then D(F\ E) > n—0 >0 and Lemma 2.3 yield

(3.24) M 1 (r, Ag )™ > &, reF\E.

— 1 —
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This, with the aid of (3.16), (3.17) and (3.23) results in a; — & <
as — 2¢, a contradiction. It follows that (1.1) has at least k — s linearly
independent solutions f such that o,(f) > (3(s). This completes the
proof of Theorem 1.4. O

4. PROOF OF COROLLARY 1.2

Proof. The upper bound in (1.4) follows directly from Theorem 1.4. To

conclude the lower bound in (1.4), assume that solutions fi, fo, -, fx
are given in increasing order with respect to p-order of growth; that is,
(4.1) 0o(f1) < < oulfr)-

By applying Theorem 1.4 with s =0,--- ,q, we can get
(4.2)

0o(f1) 2 5(0), 0p(fo) 2 B(1), -+, 0u(fgr1) 2 Bla), -, 0(fi) = B(a).
(4.1) and (4.2) show that

a,(f1) = B(0) = 7(0),
0p(f2) = max{3(0), 5(1)} = (1),

0p(fq) = max{3(0), 6(1),---,A(g = 1)} = v(g = 1),
0o (for1) =2 max{5(0), (1), -, 5(q)} = 7(q) = g,

o,(fr) = Bla) = aq.
Hence the assertion follows by noting that if j € {0,--- ,s* — 1}, then
7(4) < 0. This completes the proof of Corollary 1.2. O

5. EXAMPLE

The sharpness of Corollary 1.2 in the case ¢(r) = 1%7" is discussed
as follows. For 3 > 1, the functions fi2(2z) = exp{+i(1¥2)”}, and

f3(2) = (3£2)7 are linearly independent solutions of

"+ Ag(2) [+ Ar(2) ' + Ao(2) f =0,
where

1 26-3
Ao(z) = _853%7

(1+2)%072  3224+832+632—1

(1_2)2ﬁ+2+ 1+z2]g)1_z)2 )
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Al (Z) = 4ﬁ2




and
3z 440

(1+2)(1—=2)

are analytic in D; see [10]. Clearly, or(f12) = f—1, and o7(f3) = 0. On
the other hand, a routine computation shows that ag = o7 (M (r, Ao) 3(1—
r)) = 38-1, ar = on(M(r, A1)2(1=r)) = B—1, @y = o7 (Mi(r, Ay)(1—
r)) =0, v(0) = v(1) = v(2) = B(0) = —1. Tt follows that for the so-
lution base {f1, f2, f3} equality holds in the first inequality in (1.4),

and for the solution base {fi, fo, f1 + f3} equality holds in the last in-

equality in (1.4). This shows the sharpness of Corollary 1.2 in the case

o(r) = 4.

AQ(Z) = —
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