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Abstract

Geometric properties of self–similar solutions to the equation ut = uxx + γ(uq)x, x > 0, t > 0 are studied, q
is positive and γ ∈ R \ {0}. Two critical values of q (namely 1 and 2) appear the corresponding shapes are of
very different nature.
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1. Introduction

In this paper we shall derive properties of solutions to the equation







ut = uxx + γ(uq)x, for (x, t) ∈ (0,+∞) × (0,+∞),

ux(0, t) = 0, for t > 0,
(1.1)

having the form

u(x, t) = tαg(xt−1/2) =: tαg(ξ),(1.2)

where q > 0, α = − 1
2(q−1) , γ ∈ R\{0}, and u > 0 in the half space for appropriate nonnegative initial

data.

If we substitute (1.2) into (1.1) we obtain for q 6= 1, the ODE

g′′ + γ(gq)′ = αg − 1

2
ξg′, ξ > 0,(1.3)

subject to the condition

g′(0) = 0.(1.4)

Setting γ = ±1 we are led to the problem







g′′ + ε(gq)′ + 1
2ξg′ − αg = 0, ξ > 0,

g′(0) = 0, g(0) = λ,
(1.5)
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where ε = ±1, λ > 0 and q 6= 1 is a positive number. This problem has a unique local solution for
every λ > 0. We shall be interested in possible extension of solutions and their properties. A more

general equation with γ 6= 0 can be transformed to (1.5) by introducing a new function |γ|
1

q−1 g which

solves (1.5) with λ|γ|
1

q−1 instead of λ. When ε = 1 and q > 1 problem (1.5) was investigated in detail
by Peletier and Serafini [12]. It is shown that there exists λc such that problem (1.5) has a unique
global solution g > 0 such that ξ−2αg(ξ) goes to 0 if and only if 1 < q < 2 and g(0) = λc and its
asymptotic behavior at infinity is given by

g(ξ) = Lξ−2α−1e−ξ2/4
{

1 + 2(2α + 1)(α − 1)ξ−2 + o(ξ−2)
}

as ξ → +∞, for some positive constant L. The paper by Biler and Karch [3] is devoted to study the
large-time behavior of solutions to (1.1) with (u|u|q−1)x, q > 1 instead of γ(uq)x, where initial data
satisfying limx→∞ xβu(x, 0) = A for some A ∈ R and 0 < β < 1. In this paper we shall show that if
ε = −1 and 1 < q < 2 the solution of (1.5) changes the sign for every λ > 0. Also we are interested on
values on q and λ > 0 which guarantee that problem (1.5) has a global positive solution with given
behavior at infinity. The basic method used here is due to [5]. We analyze problem (1.5) in the phase
plane. Somes results can be found in [3]
Equation (1.3) does not belong to the class of well–studied second order nonlinear ODE’s. If we write
it in the standard (from point of view of nonlinear oscillation theory) form

g′′ +

(

qεgq−1 +
1

2
ξ

)

g′ − αg = 0,(1.6)

we can see that the “friction coefficient” which depends nonlinearly on g and on position, can change
sign if ε = −1. The sign of α depends on q: if q < 1 then α > 0 and α < 0 for 1 < q.

Remark 1.1. The function w(x, t) = xah(tx−b) =: xah(η) satisfies (1.1) if and only if b = 2 and
a = (q − 2)/(q − 1). The corresponding ODE is

h′′ = (a − 3/2)
h′

η
+

ε

2
(hq)′ +

h′

η2
+

h

η
(1 + qaγεhq−1), η > 0.

We shall not deal here with it.

The plan of the paper is the following:
Section 2 : Preliminary results.
Section 3 : Large ξ behaviour of all global solutions for q > 2 and ε = −1.
Section 4 : The case 0 < q < 1.

2. Preliminaries

Rather than studying (1.5), we will deal here with the slightly more general ODE

g′′ + qε|g|q−1g′ = αg − 1

2
ξg′, ξ > 0,(2.1)

g(0) = λ, g′(0) = 0,(2.2)
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in which the nonnegative number q is not equal to 1, α = − 1
2(q−1) , λ > 0 and ε ∈ {−1, 1} .

Problem (1.5) is a special case of (2.1)–(2.2) in which g > 0. As it was mentioned before, for any λ > 0,
problem (2.1)–(2.2) has a unique maximal solution g(., λ) ∈ C 2([0, ξmax)). Furthermore g(ξ, λ) > 0 for
small ξ > 0. An important objective is to find values of λ and q which insure that g(., λ) is global,
nonnegative and to give the asymptotic behavior as ξ tends to infinity. In this section we shall derive
some properties of g which will be useful in the proof of the main results.

Lemma 2.1. Assume that α < 0. Let g be a solution to (2.1)–(2.2) such that g > 0 on [0, ξ0). Then
g′(ξ) < 0, for all 0 < ξ < ξ0.

Proof. As g′′(0) = αλ < 0 and g′(0) = 0, the function g is decreasing for small ξ. Suppose that
there exists ξ1 ∈ (0, ξ0) such that g′(ξ) < 0 on (0, ξ1) and g′(ξ1) = 0. Using (2.1) one sees g′′(ξ1) < 0.
Therefore we get a contradiction. 2

Lemma 2.2. Assume that ε = −1 and α ≤ − 1
2 . Then g(., λ) changes the sign for every λ > 0.

Proof. Suppose in the contrary that g(., λ) > 0. Then g ′(., λ) < 0 (and then g(., λ) is global).
On the other hand Equation (2.1) can be written as

g′′ +
1

2
(ξg)′ = (α +

1

2
)g + (gq)′.

Thus we have

g′(ξ) +
1

2
ξg(ξ) = (α +

1

2
)

∫ ξ

0
g(η)dη + gq(ξ) − λq.

This implies that g(ξ) ≤ e−
ξ2

4 , for all ξ ≥ 0. Then passing to the limit, ξ → +∞, we infer

0 = (α +
1

2
)

∫ ∞

0
g(η)dη − λq.

This is impossible.
2

Remark 2.1. The situation is different if ε = 1. Peletier and Serafini [12] showed that if α < − 1
2 the

solution changes the sign for λ sufficiently small. And if 0 > α ≥ − 1
2 , the solution g is nonnegative

on [0,+∞[.

Finally a standard analysis gives the following

Lemma 2.3. Assume that α > 0. Let g be a solution to (2.1)–(2.2) defined on [0, ξ0[, where ε = ±1.
Then g′(ξ) > 0 for all 0 < ξ < ξ0.

In fact we shall show in Section 4 that the solution g cannot blow-up for finite ξ. In the next sections
we shall give the asymptotic behavior of all possible positive solutions to (2.1)–(2.2) in the following
cases : ε = −1 and q > 2 and ε = ±1 and 0 < q < 1.
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3. Global behavior for q > 2 and ε = −1

The first simple consequence of the fact that q > 2 is that 0 > α > − 1
2 , and then if g(ξ) > 0 on

(0,+∞) we have g′(ξ) < 0 for all ξ > 0. It is also clear that

g(ξ) ≤ λ, ∀ ξ ≥ 0.(3.1)

Actually g(ξ) ≤ λ, for small ξ, in order to be bigger that λ, the solution g has to return at some ξ1 > 0,
and at this point g′(ξ1) = 0 and g′′(ξ1) ≥ 0 in contradiction with (2.1) for g(ξ1) ≥ 0. If g(ξ1) < 0
then g cannot cross the line ξ = 0 again : suppose “yes” at point ξ2 : g(ξ2) = 0. Here we have that
g < 0 on (ξ1, ξ2) and by a uniqueness argument we may conclude that g ′(ξ1) < 0 and g′(ξ2) > 0. Now
observe that (2.1) can be written as

g′′ + (|g|q)′ + 1

2
(ξg)′ = (α +

1

2
)g, ξ ∈ (ξ1, ξ2).

Integrate the last equation over (ξ1, ξ2) :

g′(ξ2) = (α +
1

2
)

∫ ξ2

ξ1

gdξ + g′(ξ1) < 0,

while the left hand side is positive. We get a contradiction. So g(ξ) is bounded from above by λ. And
we can conclude that

Lemma 3.1. For any λ > 0, and ε = ±1, the solution g(., λ) to (2.1)–( 2.2) can have at most one zero
on (0,∞).

Peletier and Serafini proved in fact that for ε = 1 any solution is nonnegative.

The following lemma shows that all global positive solutions decay to 0.

Lemma 3.2. Let g be the solution to (2.1)–(2.2) where q > 2. Assume that g(ξ) > 0 for any ξ > 0.
Then

lim
ξ→+∞

g(ξ) = 0, lim
ξ→+∞

g′(ξ) = 0.

Proof. Since g′ < 0 and g is bounded below by 0 g has a finite limit at ∞; say g0. First there
exists (ξn) such that g′(ξn) goes to 0 as ξn tends to ∞ with n.
Now as the energy E = (g′)2 − αg2 is monotone decreasing for a large ξ we deduce that g ′ tends to 0
as ξ → ∞. Now suppose that g0 > 0. Equation (2.1) gives

g′′ +
1

2
ξg′ < αg0.

Multiply this by e
ξ2

4 and integrate :

g′(ξ) < αg0e
− ξ2

4

∫ ξ

0
e

τ2

4 dτ.(3.2)
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Since

lim
ξ→+∞

∫ ξ

0
e

τ2

4 dτ

1
ξ e

ξ2

4

= 2,

thanks to l’Hôpital’s rule, we infer

g′(ξ) < αg0
1

ξ
, for ξ large,

which implies that g goes to −∞ as ξ → +∞, this is impossible. 2

In [3] it is shown that

g(ξ) ≤ λξ2α

{

1 − 2α

∫ +∞

0
τ−2α−1e−

τ2

4 dτ

}

,(3.3)

for all ξ > 0. Therefore g(ξ) goes to 0 as ξ → +∞ since α < 0.

Lemma 3.3. Assume ε = −1. Then there exists λ1 > 0 such that the solution g(., λ) to (2.1)–(2.2),
where q > 2 and λ > λ1, has exactly one positive zero.

Proof. Assume that for all λ > 0 the solution, g(., λ), to (2.1)–(2.2) is positive on (0,+∞) and
then g′(., λ) < 0.
Set g = g(., λ).
Integrating of (2.1) over (0, ξ) yields

g′(ξ) +
1

2
ξg(ξ) = (α +

1

2
)

∫ ξ

0
g(τ)dτ + gq(ξ) − λq.

Then

g′(ξ) ≤ (α +
1

2
)λξ − λq + gq(ξ).

From the last inequality and (3.3), we deduce that

g(ξ) ≤ λ +
1

2
(α +

1

2
)λξ2 − λqξ + Cλq,

for some positive constant C, which is independent of λ.
Setting ξ = 2C we infer

g(2C) ≤ λ + 2(α +
1

2
)C2λ − Cλq.

This shows that g(2C) < 0 if λ is large, a contradiction. 2

Let us now investigate in more detail how (g, g ′) behaves in the phase plane as ξ increases. We
proceed as in [5]. Set h = g′, equation (2.1) is reduced to the following first order system











g′ = h,

h′ = αg + q|g|q−1h − 1

2
ξh,

(3.4)
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with the initial condition

g(0) = λ, h(0) = 0.(3.5)

This system has only one critical point (0, 0) and since q > 1, problem (3.4)–(3.5) has a unique local
solution (g, h) for every λ > 0.
For each γ > 0 we define

Pγ =
{

(g, h); g > 0, h < 0, h ≥ −γg
}

,

and we introduce

ξ(λ, γ) = 2(−α

γ
+ γ) + 2qλq−1.

Arguing as in [5, 9] we obtain

Lemma 3.4. For any fixed γ > 0, the set Pγ is positively invariant for ξ0 > ξ(λ, γ); that is
if ξ0 > ξ(λ, γ) and (g(ξ0), h(ξ0)) ∈ Pγ , then (g(ξ), h(ξ)) ∈ Pγ for all ξ ≥ ξ0.

According to Lemmas 3.2 and 3.4 we have

Lemma 3.5. Let g be the solution to (2.1). Assume that g(ξ) > 0 for all ξ > 0. Then

either lim
ξ→+∞

g′(ξ)

g(ξ)
= 0 or lim

ξ→+∞

g′(ξ)

g(ξ)
= −∞.(3.6)

The proof is similar to the proof of the corresponding results in [5, 9, 12].

Setting

L?(λ) = λ

{

1 − 2α

∫ +∞

0
τ−2α−1e−

τ2

4 dτ

}

.

Proposition 3.1. Let g be the solution to (2.1)–2.2) such that g > 0. Then the limit

L(λ) = lim
ξ→∞

ξ−2αg(ξ),

exists in [0, L?(λ)] and we have

lim
ξ→∞

g′(ξ)

g(ξ)
= −∞ ⇒ L(λ) = 0,

lim
ξ→∞

g′(ξ)

g(ξ)
= 0 ⇒ L(λ) > 0.

Proof. If limξ→∞
g′(ξ)
g(ξ) = −∞, then g(ξ) = O(e−kξ) as ξ → ∞, so that ξ−2αg(ξ) goes to 0 as

ξ → ∞. Now assume that

lim
ξ→∞

g′(ξ)

g(ξ)
= 0.
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Set

u(ξ) =
g′(ξ)

g(ξ)
.

Thus

u′ +
1

2
ξu = −1

2

2 − q

q − 1
+ ϕ(ξ), u(0) = 0,(3.7)

where ϕ(ξ) = qgq−1u − u2.
Note that ϕ goes to 0 as ξ → +∞ and u can be defined by

u(ξ) = e−
ξ2

4

∫ ξ

0
{α + ϕ(τ)}e τ2

4 dτ,(3.8)

hence

ξu(ξ) =

∫ ξ

0
{α + ϕ(τ)}e τ2

4 }dτ

1
ξ e

ξ2

4

, ∀ ξ > 0.(3.9)

Applying the l’Hôpital’s rule to the right–hand side of (3.9), we infer

lim
ξ→∞

ξu(ξ) = 2α.(3.10)

This shows in particular that for any τ > 0 there exists Kτ > 0 such that

g(ξ) ≤ Kτ ξ
(2α+τ), for all ξ ≥ 0.(3.11)

Now given 1 ≤ k < 2 − τ(q − 1). Since

ξkϕ(ξ) = qgq−1ξku − ξku2,

we get

ξk|ϕ(ξ)| ≤ qKq−1
τ ξk−2+τ(q−1) + ξk−2(ξu)2.

According to the choice of k and to (3.10) we deduce limξ→+∞ ξkϕ(ξ) = 0.

On the other hand u satisfies:

ξk {ξu(ξ) − 2α} =

∫ ξ

0
(α + ϕ(τ)) e

τ2

4 − 2αe
ξ2

4 ξ−1

e
τ2

4 ξ−1−k
.

Then, by l’Hôpital’s rule, we get that

lim
ξ→+∞

ξk {ξu(ξ) − 2α} = 2 lim
ξ→+∞

ξkϕ(ξ) = 0.
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It follows from this that

g′

g
= 2α

1

ξ
+

ε(ξ)

ξk+1
,

for all ξ > ξ0.
Hence

g(ξ) = L(λ)ξ2α

{

1 + o(
1

ξ
)

}

, L(λ) > 0.

2

Now we are in position to give the asymptotic behavior of g(., λ).

Theorem 3.1. Let g be the solution to (2.1)–(2.2) such that g(ξ) > 0 for all ξ > 0.

1. If L(λ) = 0, there exists A > 0 such that

g(ξ) = Ae−
ξ2

4 ξ
2−q

q−1

{

1 − b

ξ2
+ o(

1

ξ2
)

}

,

2. if L(λ) > 0, then

g(ξ) = L(λ)ξ−
1

q−1

{

1 − c

ξ2
+ o(

1

ξ2
)

}

,

as ξ → ∞, where b =
(2q − 3)(q − 2)

(q − 1)2
and c = 2qα(L(λ))q−1 + 2α(1 − 2α).

Proof. For the proof of item 2 it is sufficient to settle lim
ξ→+∞

ξ2(ξu(ξ) − 2α). Same as above we

have

lim
ξ→+∞

ξ2 [ξu(ξ) − 2α] = 2 lim
ξ→+∞

ξ2ϕ(ξ) + 4α.

This yields that

lim
ξ→+∞

ξ2 [ξu(ξ) − 2α] = 4qα(L(λ))q−1 − 2(2α)2 + 4α.

Consequently

g′

g
= −2

c

ξ3
− 1

q − 1

1

ξ
+

ε(ξ)

ξ3
,(3.12)

where c = 2qα(L(λ))q−1 + 2α(1 − 2α).
A simple integration of (3.12) yields the desired asymptotic.

Now we shall prove item 1. Here we assume that L(λ) = 0. By Equation (2.1) one sees

g′′

ξg′(ξ) + g
=

−1

2
+ α

g

ξg′
+

qgq−1

ξ

1 +
g

ξg′

.
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Now using the l’Hôpital’s rule and the fact that g/g ′ → 0 at infinity we obtain

lim
ξ→∞

g′

ξg
= −1

2
.(3.13)

Next define

G(ξ) = ξg′ +
1

2
ξ2g, F (ξ) = ξ2G − aξ2g,

where

a = −(2α + 1) =
q − 2

q − 1
.

A simple computation shows that

G′

g′
= 1 +

ξg

g′
+ qξgq−1 + α

ξg

g′
,(3.14)

and

F ′(ξ)

g′(ξ)
= 2(α + 1)ξ

g

g′
G

g
+ qξ3gq−1 + 2

ξg

g′

[

G

g
− a

]

.(3.15)

Applying again the l’Hôpital’s rule to (3.14)–(3.15) we deduce successively

lim
ξ→+∞

G(ξ)

g(ξ)
= a,

and

lim
ξ→+∞

F (ξ)

g(ξ)
= 2b,

where b = (2q−3)(q−2)
(q−1)2

. Same as above results we get item 1 by an easy integration. 2

Remark 3.1. The results of Theorem 3.1 have been recently obtained independently by P. Biler and
G. Karch in [3].

Remark 3.2. It follows from Theorem 3.1 that if g ∈ L1((0,+∞)) and is positive then g satisfies
item 1;

g(ξ) = Ae−
η2

4 ξ
2−q

q−1

{

1 − b

ξ2
+ o(

1

ξ2
)

}

.

Integrating (2.1) over (0, ξ) yields

g′(ξ) +
1

2
ξg(ξ) − gq(ξ) + λq = (α +

1

2
)

∫ ξ

0
g(η)dη.

Passing to the limit, as ξ → ∞, we deduce

λq 2(q − 1)

q − 2
=

∫ ∞

0
g(ξ)dξ.

This shows in particular the following uniqueness result.
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Proposition 3.2. Let q > 2. Let f and h be two solutions to






g′′ − (gq)′ = αg − 1
2ξg′, on (0,+∞),

g′(0) = 0, g(ξ) > 0, for all ξ ≥ 0,

such that
∫ ∞

0
f(ξ)dξ =

∫ ∞

0
h(ξ)dξ.

Then f ≡ h.

Now we shall show that problem (2.1)–(2.2) has a positive solution satisfying item 2 provided that
the initial data g(0) is sufficiently small. To this end we set

f = g/λ.

Therefore f satisfies






f ′′ + 1
2ξf ′ − qλq−1|f |q−1f ′ − αf = 0,

f ′(0) = 0, f(0) = 1.
(3.16)

If we now let λ → 0, we formally obtain






f ′′ + 1
2ξf ′ − αf = 0,

f ′(0) = 0, f(0) = 1.
(3.17)

Since the energy function H = (f ′)2 − αf2 is nonincreasing and uniformly bounded by −α > 0, f is
global and goes to 0. Moreover f > 0, f ′ < 0 and satisfies item 2 of Theorem 3.1 ( otherwise we get
0 = ‖f‖1, a contradiction -see Remark 3.1-). Since (3.16) is a regular perturbation of (3.17) it follows
that the solution to (3.16) is global, positive and satisfies item 1 for λ sufficiently small. Results of
the present section gives us quite a good picture of the main properties of solutions to (2.1)–(2.2). We
have one of the following properties:

a) g(ξ) > 0 on some (0, ξ0) and g(ξ0) = 0,

b) g(ξ) > 0 for all ξ ≥ 0 and g(ξ) = L(λ)ξ
− 1

q−1

{

1 − c
ξ2 + o( 1

ξ2 )
}

,

c) g(ξ) > 0 for all ξ ≥ 0 and g(ξ) = Ae−
ξ2

4 ξ
2−q

q−1

{

1 − b
ξ2 + o( 1

ξ2 )
}

.

Returning to the original variables u and x we can see that the asymptotics behavior given in a) and
b) yield the following two possibilities

a1) either
∫ ∞

0
u(x, t)dx = +∞, for any t > 0,

b1) or
∫ ∞

0
u(x, t)dx = Mt

1

2

q−2

q−1 , for any t > 0.
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4. Case 0 < q < 1 and ε = ±1

In this section we consider

g′′ + εq|g|qg′ = αg − 1

2
ξg′, ξ > 0,(4.1)

g(0) = λ > 0, g′(0) = 0,(4.2)

in which α = − 1
2

1
q−1 , 0 < q < 1 and ε = ±1. We study the asymptotic behavior of global solutions to

(4.1)–(4.2). Note that α > 0 and the standard theory of initial value problems implies the existence
and uniqueness of such solutions in a neighbourhood of the origin. At ξ = 0 g ′′(0) = αλ > 0. So in
a small neighbourhood of 0 g is increasing. In order to show that problem (4.1)–(4.2) has a unique
global solution, it is sufficient to show the following

Lemma 4.1. The solution g(ξ) to (4.1)–(4.2) cannot blow-up for finite ξ; moreover g ′(ξ) > 0 for all
ξ > 0.

Proof. Let ξ0 > 0 be the first positive zero for g′. At this point g > 0 so is g′′ which is impossible
in a small left neighbourhood of ξ0.
Now assume that g blows-up at ξ̄. Set

E = (g′)2 − αg2.(4.3)

Using (4.1)–(4.2) one sees that E ′(ξ) = −2(g′)2(ξ)
[

1
2ξ + εqgq−1

]

. Since gq−1(ξ) goes to 0 as ξ → ξ̄ we
deduce that the limit limξ→ξ̄ E(ξ) = L exits in [−∞, A], A < +∞. This implies that

g′

g
≤

√
α + γ, γ > 0

for all ξ ∈ (ξγ , ξ̄). And the last inequality yields that

g(ξ) ≤ g(ξγ)e(
√

α+γ)(ξ−ξγ ).

Therefore we get a contradiction. This means that g is bounded and then is global. 2

Lemma 4.2. limξ→+∞ g(ξ) = +∞.

Proof. Suppose to the contrary that g is bounded. In that case, because of the monotonicity of
g, we have g(ξ) → g0, 0 < g0 < +∞ and g′(ξm) → 0 for some sequence ξm converging to +∞ with m.
Using E we can see that limξ→+∞ g′(ξ) = 0. Therefore

lim
ξ→+∞

g′′ +
1

2
ξg′ = αg0,

thanks to equation (4.1).
Arguing as in the proof of Lemma 3.2 we get

g′ >
C

ξ
, for large ξ,
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and then g goes to infinity which leads to a contradiction. 2

Now we shall study the large ξ behaviour of g. First we prove that u = g ′/g decays to 0 as ξ → ∞.
Recall that u is bounded and satisfies

u′ +
1

2
ξu = α + ϕ(ξ),(4.4)

where

ϕ(ξ) = εqugq−1 − u2.(4.5)

A standard analysis of (4.4) implies that u(ξ) converges to 0 as ξ → ∞, and then ϕ(ξ) → 0.

Theorem 4.1. Assume that 0 < q < 1. Let g be the solution to (4.1)–(4.2). Then there exists
L(λ) > 0 such that

g(ξ) = L(λ)ξ2α

{

1 − c

ξ2
+ o(

1

ξ2
)

}

, as ξ → +∞,(4.6)

where c = 2α(1 − 2α) + 2εqα(L(λ))q−1.

The proof is similar as in Section 3. We show that u =
g′

g
satisfies

ξu = 2α + 2
c

ξ2
+ o(

1

ξ2
),(4.7)

which leads to (4.6). 2

The following result gives a more precise estimate of g as ξ goes to infinity.

Proposition 4.1. Let g be the solution to (4.1)–(4.2). Assume that 0 < q < 1, then

g(ξ) = L(λ)ξ2α

{

1 − c

ξ2
− d

ξ4
+ o(

1

ξ4
)

}

, as ξ → +∞,(4.8)

where

c = 2α(1 − 2α) + 2εqα(L(λ))q−1 and d = 3 − 4α − 2εqLq−1(λ)c.

Proof. It is sufficient to calculate

lim
ξ→+∞

ξ2
[

ξ2(ξu(ξ) − 2α) − 2c
]

.

In fact by (4.4) we deduce that

ξ2
[

ξ2(ξu(ξ) − 2α) − 2c
]

=

∫ ξ

0
(α + ϕ(s)e

s2

4 ds − 2αξ−1e
ξ2

4 − 2cξ−3e
ξ2

4

e
ξ2

4 ξ−5
.

Thus

lim
ξ→+∞

ξ2
[

ξ2(ξu(ξ) − 2α) − 2c
]

= 12c + 2 lim
ξ→+∞

ξ2
[

ξ2ϕ(ξ) + 2α − c
]

,
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thanks to l’Hôpital’s rule. Define

A(ξ) = ξ2ϕ(ξ) + 2α − c.

Thus

A(ξ) = (2α)2 − (ξu)2 − εq
{

ξ2gq−1u − 2α(L(λ))q−1)
}

,

A(ξ) = (2α − ξu)(2α + ξu) − εq
{

ξ2gq−1u − 2α(L(λ))q−1)
}

.

By (4.7) and (4.8), we conclude that

ξ2A(ξ) = −8αc − 4εq(L(λ))q−1c + o(1),

as ξ → 0. Therefore

lim
ξ→+∞

ξ2
[

ξ2(ξu(ξ) − 2α) − 2c
]

=
(

12 − 16α − 8εq(L(λ))q−1
)

c =: 4d.

The proof is completed as in the proof of the Theorem 3.1. 2

In what follows we give some properties of L(λ) in the case where ε = 1. We shall establish in particular
that L(λ) is strictly increasing with respect to λ, L(λ) goes to 0 with λ and

L(λ) = l.λ + o(1), l > 0, as λ → +∞.

This is a consequence of the following

Theorem 4.2. The function λ → L(λ) is continuous. Moreover for any λ2 > λ1 we have

L(λ2)

λ2
≥ L(λ1)

λ1

and there exists L? > 0 such that L(λ) < λL?, for any λ > 0.

Proof. First we claim that if g1 and g2 are two solutions to problem (4.1)–(4.2) with initial values
λ1 < λ2, then

g2(ξ)

g1(ξ)
≥ λ2

λ1
.

This leads in particular to

L(λ2)

L(λ1)
≥ λ2

λ1
.

Proof of the claim.
We show that the quotient v =

g2

g1
is an increasing function. To this end we study the sign of the

Wronskian

W = g1g
′
2 − g′1g2.
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Using (4.1)–(4.2) one sees that W satisfies

(

eh(ξ)W
)′

= −qg′2g1e
h(ξ)

[

gq−1
2 − gq−1

1

]

, W (0) = 0,(4.9)

where

h(ξ) :=
ξ2

4
+ q

∫ ξ

0
gq−1
1 (τ)dτ.

By assumption λ2 > λ1 the number

ξ0 := sup
{

ξ, g2(τ) > g1(τ) on [0, ξ]
}

is nonnegative. Suppose that ξ0 < +∞. It is clear that g1(ξ0) = g2(ξ0) and g′1(ξ0) > g′2(ξ0), so
W (ξ0) < 0. But since q < 1 we have

(

eh(ξ)W
)′

> 0,

on (0, ξ0). This implies that

eh(ξ)W (ξ) > W (0) = 0,

for any 0 < ξ < ξ0. By continuity of W we deduce that W (ξ0) ≥ 0. We get a contradiction. 2

This means that ξ0 = +∞ and W (ξ) > 0 for any ξ > 0. Therefore v is increasing. Now to prove
that L(λ)/λ is bounded, we consider problem (3.16) :







f ′′ + 1
2ξf ′ + qλq−1|f |q−1f ′ − αf = 0,

f ′(0) = 0, f(0) = 1.
(4.10)

If we now let λ → ∞, we get







f ′′ + 1
2ξf ′ − αf = 0,

f ′(0) = 0, f(0) = 1.
(4.11)

Let f0 be the solution to (4.11). Arguing as above we deduce that

f0(ξ) = L?ξ2α

{

1 − c?

ξ2
+ o(

1

ξ2
)

}

.

Thus we conclude that L(λ) < λL? for any λ > 0.

Now we are in position to prove the continuity of the function λ → L(λ). We follow an idea due to
[12]. Fix λ0 > 0, ξ0 > 0 and let δ > 0 be a constant to be specified later.
Set λ1 = λ0 − δ, λ2 = λ0 + δ. For any λ1 ≤ λ ≤ λ2 we have

g′(ξ, λ)

g(ξ, λ
) =

2α

ξ
+ r(ξ, λ), ξ ≥ ξ0,
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where

r(ξ, λ) = 2
c

ξ3
+ o(

1

ξ3
), c = 2α(1 − 2α) + 2qα(L(λ))q−1

thanks to (4.7). As L(λ) is bounded on [λ1, λ2] there exists c̄, which depends only on λ1, λ2 and ξ0

such that

|r(ξ, λ)| ≤ c̄
1

ξ3
, ∀ ξ ≥ ξ0.

This yields that

ξ−2αg(ξ, λ) = ξ−2α
0 g(ξ0, λ) exp

(
∫ +∞

ξ0

r(τ, λ)dτ

)

,

and for any β > 0

∣

∣

∣

∣

exp

(
∫ +∞

ξ0

r(τ, λ)dτ

)

− 1

∣

∣

∣

∣

< β,

if ξ0 > ξ1(β). This implies that for ξ0 > ξ1(β) and λ1 ≤ λ ≤ λ2

∣

∣

∣
L(λ) − ξ−2α

0 g(ξ0, λ)
∣

∣

∣
< βξ−2α

0 g(ξ0, λ),

therefore

ξ−2α
0 g(ξ0, λ) <

L(λ)

1 − β
≤ L(λ2)

1 − β
.

Consequently if β =
ε

8L(λ2)
<

1

2
, for ε small, we get

∣

∣

∣
L(λ) − ξ−2α

0 g(ξ0, λ)
∣

∣

∣
<

ε

4
,

for any λ1 ≤ λ ≤ λ2.
Hence

∣

∣

∣
L(λ) − L(λ0)

∣

∣

∣
≤

∣

∣

∣
L(λ) − ξ−2α

0 g(ξ0, λ)
∣

∣

∣
+

∣

∣

∣
ξ−2α
0 g(ξ0, λ) − ξ−2α

0 g(ξ0, λ0)
∣

∣

∣
+

∣

∣

∣
L(λ0) − ξ−2α

0 g(ξ0, λ0)
∣

∣

∣
.

Now if we choose for fixed ξ0 > ξ1 a δ > 0 such that
∣

∣

∣
g(ξ0, λ) − g(ξ0, λ0)

∣

∣

∣
<

ε

2
ξ−2α
0 ,

for any |λ − λ0| < δ we infer

∣

∣

∣
L(λ) − L(λ0)

∣

∣

∣
< ε,

if |λ − λ0| < δ.

This completes the proof of Theorem 4.2. 2
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Corollary 4.1. For any L > 0 the problem







g′′ + 1
2ξg′ + q|g|q−1g′ − αg = 0, on (0,+∞),

g′(0) = 0, g > 0, ξ−2αg(ξ) → L,

has a unique solution.

Corollary 4.2. Let α > − 1
2 . For any A > 0 the function f =

A

L?
f0 is the unique solution to







f ′′ + 1
2ξf ′ − αf = 0,

f ′(0) = 0, limξ→+∞ ξ2αf(ξ) = A,
(4.12)

where f0 is the solution to (4.11).
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