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Abstract

The existence of three distinct weak solutions for a perturbed mixed boundary value problem
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1 Introduction

Consider the following perturbed mixed boundary value problem

(1)

{ —(p(@) | [P2u!) + s(@)ulP~%u = Af (2, u) + pg(w,u) in ]a,b|
u(a) =/ (b) =0,

where p > 1, A > 0 and pu > 0 are real numbers, a,b € R with a < b, p,s € L*([a,b])
with po = essinf,c,yp(z) > 0, so = essinfycjqps(r) > 0 and f,g : [a,b] x R — R are two
L'-Carathéodory function.

*Corresponding author.
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Using two kinds of three critical points theorems obtained in [4, 8] which we recall in the
next section (Theorems 2.1 and 2.2), we ensure the existence of at least three weak solutions for
the problem (1); see Theorems 3.1 and 3.2. These theorems have been successfully employed to
establish the existence of at least three solutions for perturbed boundary value problems in the
papers [5, 6, 14, 16, 17].

Existence and multiplicity of solutions for mixed boundary value problems have been studied
by several authors and, for an overview on this subject, we refer the reader to the papers [2, 3,
12, 15, 18]. We also refer the reader to the papers [7, 9, 10, 11] in which the existence of multiple
solutions is ensured.

A special case of Theorem 3.1 is the following theorem.

Theorem 1.1. Let f : R — R be a continuous function. Put F(t / f(&)d¢ for each t € R.
Assume that F'(n) > 0 for some n >0 and F(§) >0 in [0,n] and

B _ . FE©

lim inf m sup

= 0.
-0 &P g—too &P

Then, there is \* > 0 such that for each X\ > X\* and for every L'-Carathéodory function g :
[a,b] x R — R satisfying the asymptotical condition

t
sup / g(x,s)ds

xz€[a,b] JO
P

lim sup
|t|—o0

< +0o0,
there exists 63 , > 0 such that, for each p € (0,63 [, the problem

{ —(p(@)|u'[P~2u') + s(@)ulP~*u = Af (u) + pg(z,w) in Ja,b]
u(a) =u'(b) =0,

admits at least three weak solutions.
Moreover, the following result is a consequence of Theorem 3.2.

Theorem 1.2. Let f: R — R be a nonnegative continuous function such that

t

lim & =0,

t—0+ t2
and

1
€)d —
/0 s < 222/ U

1 1 , .

Then, for every A € and for every L*-Carathéodory function g :

/0 e 6 /O ' fe)de

[0,1] x R — R satisfying the condition

t
sup /g(x,s)ds
10

z€[0,1

lim sup
|t|—o0

3 < H400,
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there exists 0} , > 0 such that, for each p € [0,5;‘\79[, the problem

{ — (') + Julu = A () + pg(z,u) in ]0,1]
u(0) =4/(1) =0,

admits at least three weak solutions.

The present paper is arranged as follows. In Section 2 we recall some basic definitions and
preliminary results, while Section 3 is devoted to the existence of multiple weak solutions for the
eigenvalue problem (1).

2 Preliminaries

Our main tools are the following three critical points theorems. In the first one the coercivity
of the functional ® — AV is required, in the second one a suitable sign hypothesis is assumed.

Theorem 2.1 ([8], Theorem 2.6). Let X be a reflexive real Banach space, ® : X — R be a coer-
cive continuously Gateaux differentiable and sequentially weakly lower semicontinuous functional
whose Gateaur derivative admits a continuous inverse on X*, W : X — R be a continuously
Gateaur differentiable functional whose Gateauz derivative is compact such that ®(0) = ¥(0) = 0.
Assume that there exist v >0 and T € X, with r < ®(T) such that

(a1) SUPg(p)<r V() - ()

r o(T)’

d(7) r
U(T) supg(yy<, ¥ ()
Then, for each \ € A, the functional ® — AV has at least three distinct critical points in X.

(ag) for each X\ € A, :=

the functional ® — AV is coercive.

Theorem 2.2 ([4], Theorem 3.3). Let X be a reflexive real Banach space, ® : X — R be
a convez, coercive and continuously Gateaux differentiable functional whose derivative admits a
continuous inverse on X*, W : X — R be a continuously Gateaux differentiable functional whose
derivative is compact, such that

1. infx & = ®(0) = ¥(0) = 0;

2. for each X\ > 0 and for every ui,us € X which are local minima for the functional ® — AWV
and such that U(ui) > 0 and ¥(u2) > 0, one has

inf W(su; + (1 — s)ug) > 0.
s€[0,1]

Assume that there are two positive constants r1,r2 and v € X, with 2r1 < ®(v) < %, such that

SUPyed—1(|—ooy[) V(1) 2 9(
1 3 (13(

(

(

(b1)
(b2)

SUDyedp—1(—oo,rs)) V(W) 1W
T9 30

SIS

Then, for each A\ €

3e(@) r )

S min , , the func-
2 \I/(’U) {Supueél(]—oo,rl[) \I](u) SUPyecd—1(]—o0,r2[) \I](u)

tional ® — AV has at least three distinct critical points which lie in ®~1(] — 0o, 13[).

In order to study the problem (1), the variational setting is the space

X = {u e W ([a,b]) : u(a) = o}
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endowed with the norm

b b
Jul = ( | owltaras+ | s<x>\u<m>rpdx>

We observe that the norm || - || is equivalent to the usual one.
It is well known that (X, | - ||) is compactly embedded in (C°([a,b]),]| - ||so) and

1/p

b— ) -D/p
Julle < =, @
Po

for every u € X.
We need the following proposition in the proof of Theorem 3.1.

Proposition 2.3. Let T : X — X* be the operator defined by

b b
T(u)v = / p(x)u ()P~ ()0 () da + / s(a)u(@) P~ ?u(z)v(z)dz
a a
for every u,v € X. Then T admits a continuous inverse on X*.

Proof. In the proof, we use Cy, Cs,...,C9 to denote suitable positive constants. For any u €

X\ {0},

b b
)| (2)|Pde + | s(x)|u(x)|Pdx
O [ st @ras+ st
lull oo [lu] Jull o0 [ul]
] [P

lul|—oo [|ull

= lim JJulf! = .
[[uf—o0

Thus, the map T is coercive.

Now, taking into account (2.2) in [19], we see that

(T'(u) = T(v),u —v)

&1 [ (i @)~ @F +swlate) o )ds itpz2

> a, . )
p@)| (z) —v'(2)>  s(x)|u(z) — v(z))] o
Cz/a <(]u()\+]v()])2 p+(‘()’+’v(x)’) )d fl<p<?.

At this point, if p > 2, then it follows that

(T(u) = T(v),u—v) = Ciflu—v|”,

so T is uniformly monotone. By [20, Theorem 26.A (d)], T~! exists and is continuous on X*.
On the other hand, if 1 < p < 2, by Holder’s inequality, we obtain

/a bS(:v)IU(w) —v(z)Pda < ( /a ' (Tifl’)@r(i)w—(;)('a)g)y2pdx>p/z ( /abs(x)(|u(x)| . |v(x)|)pdac> (2-p)/2

= (/: (Tz(j(ﬂg)c|)1|tf)|v_(;)(|:§2)|_2p dx>p/2 (/ab s(z)(Ju(z)P + \v(x)‘l’)dm> e
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b s@u(@) —v@P N\ e
<O ([ Gutor s beaers) 0w+ (4)

Similarly, one has
b b / 2 p/2
p(z)|u/ (z) — o _
Then, relation (3) together with (4) and (5), yields

(T(U)

(HUH " ”U” << bp —v'(x)]pdm>2/p+ (/abs(x)\u(m) —v(m)’pdm>2/p>

b 2/p
WW< / p(x)| (z) — ' ()P dx + / S(x)\u(x)—v(m)]pdx>

=l
5.
(flull + [lol)™"
Thus, T is strictly monotone. By [20, Theorem 26.A (d)], T~ exists and is bounded. Moreover,
given g1, ge € X*, by the inequality

= v|?

(el + ffol)*~>"

(T'(u) = T(v),u —v) = Cy
choosing u = T71(g1) and v = T~(g2) we have

1T~ (g1) = T H(g2)]l < CLQ(IIT_l(gl)H T g))* P llgr — gellx-.

So T~ is continuous. This completes the proof. O
We use the following notations:

[plloo := esssupyefapp(x),  |8]loo = essSUPLefq b5 (2)-

Corresponding to f and g we introduce the functions F': [a,b] xR — R and G : [a,b] xR — R,

respectively, as follows

F(x,t) ::/0 f(z,6)dg, V (z,t) € [a,b] xR

and

Glat) = /O o(2,6)de, ¥ (2,1) € [a,b] x R

Moreover, set G? := Iﬂ?o{ G(z,t)dt, for every 6 > 0 and Gy, := inf(, 4+ (0, G, for every n > 0.
[a,b] It

If g is sign-changing, then G > 0 and G,, < 0.
We mean by a (weak) solution of problem (1), any function v € X such that

b b
/ pl) () P2 (@) (@) + / () () P 2ue)o(z)dz

—A/ £z, u(z))o(z)dz — /abg(x,u(x))v(x)dm —0,

for every v € X.
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3 Main results

Put
2(p+ 1)po

T B+ Dol + o+ 20 — a5l o

Following the construction given in [6], in order to introduce our first result, fixing two positive

constants 6 and 7 such that

nP oP
b < )
k:/ F(x,n)dx / sup F(x,t)dz
ath a |t|<6
and taking
pon” 1 pot” 1
AeEA:=
< pk(b —a)p—1 b " p(b—a)p—t b ’
/ F(x,n)dx / sup F(z,t)dx
ath a |t|<6

set d) 4 given by

1] <6

b b
pof? — Ap(b — a)P~1 / sup F(x,t)dx  ponP — A\pk(b — a)P~! \ F(x,n)dx
a atb
2
Gy

min o= a)p1GY ; (b — a)p (7)
and
5 ind 5 ! (8)
Ag = min ¢ 0y g, )
’ ! p(b - a)p . SUPze[a,b] G(.%', t)
max { 0, —— lim sup
Po |t — o0 tr

where we read p/0 = 400, so that, for instance, SA@ = +o00 when

SUPe[a,b] G(I‘, t) <0

lim sup tp <0,

[t| =00

and G, =GY% =0.

Now, we formulate our main result.
Theorem 3.1. Assume that there exist two positive constants 8 and n with 8 < n such that
a+b

(A1) / ’ F(x,&)dx >0, for each & € [0,n];

a

b b
/ sup F(x,t)dz / F(xz,n)dx

atd
(As) t]<6 o |
Ul
sup F(x,t
(As) limsup z€la,b] (z,1) <

|t]—-+oo &

Then, for each A\ € A and for every L'-Carathéodory function g : [a,b] x R — R satisfying

the condition

su G(x,t
lim sup Pxe[a;;}) ( )<—|—oo,

|t| =00
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there exists 0,4 > 0 given by (8) such that, for each p € (0,5, 4, the problem (1) admits at least

three distinct weak solutions in X.

Proof. In order to apply Theorem 2.1 to our problem, we introduce the functionals &, ¥ : X — R
for each u € X, as follows

1
®(u) = —||ul|P
(u) pH |

and
b
W(w) = [ [Pla,u(e)) + 56l ul)d.

Let us prove that the functionals ® and W satisfy the required conditions.
It is well known that ¥ is a differentiable functional whose differential at the point v € X is

b
V() = [ e u(w) + Lo uo)u)ds

for every v € X as well as is sequentially weakly upper semicontinuous. Furthermore, ¥/ : X —
X* is a compact operator. Indeed, it is enough to show that ¥’ is strongly continuous on X. For
this end, for fixed u € X, let u, — u weakly in X as n — oo, then u,, converges uniformly to u
on [a,b] as n — oo; see [20]. Since f,g are L!-Carathéodory functions, f, g are continuous in R
for every x € [a,b], so

J,un) + Sglar.un) = fla.w) + Toe,u),

as n — oo. Hence ¥'(u,) — ¥'(u) as n — oco. Thus we proved that ¥’ is strongly continuous on
X, which implies that ¥’ is a compact operator by Proposition 26.2 of [20].

Moreover, ® is continuously differentiable whose differential at the point © € X is

b b
@wwz/rmwmw%mwwm+/swwmw%wWMm

for every v € X, while Proposition 2.3 gives that ®' admits a continuous inverse on X*. Further-
more, ¢ is sequentially weakly lower semicontinuous. Clearly, the weak solutions of the problem
(1) are exactly the solutions of the equation ®'(u) — A\¥'(u) = 0.

Put r .=

2n . ath
w(z) = b—a(x a) if x € a, 37|

n if 2 € [42,b).

It is easy to see that w € X and, in particular, one has

a+b a+b b

. 2P o2 2PyP > ) )
|w|? = b ap /a p(x)dr + o—ap /a (x —a)Ps(z)dx +n /a2+b s(x)dx.
Taking into account 0 < 6 < 7, using (6), we observe that
p
0<r<®(w)< Iﬁl
Bearing in mind relation (2), we see that
1] —o00,7)) = {ueX; )<}

P
= {uGX; _||u|| gr}
p

{u € X; |u(x)| <0 for each x € [a,b]},

N
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and it follows that

sup U (u)

ued~!(J—o0,r])

b
= s [ [P + 56w
u€d1(]—oo,r]) Ja A
b
< / supF(x,t)dx—FHG@.
a |t)<6 A

On the other hand, by using condition (A;), since 0 < w(z) < n for each = € [a, ], we infer

U (w)

Therefore, we have

sup U (u)

ue® ! (J—oo,r])

b
> , F(z,n)dz + %/a G(z,w(z))dx

b
/a+
2
b
/a_+b
2

b
/Hb F(z,n)dx + (b—a)

2

=

inf

F(z,n)dx + (b— a))\ L.

7

G

o

b
[ PG utw) + 46w ulw))ds

sup
u€®~!(]—oo,r])

r

and

Since p < 9 4, one has

p<

this means

Furthermore,

p<

r

K o
d fad
x+)\G

pot” ’
pb—a)r~!

sup F(z,t)
|t|<6

r

/aib F(z,n)dx + % /ab(;(x,w(m))dx

2

pon®
pk(b — a)p~1

F(z,n)dx + (b—a)

>|=

Gy

b
/a_+b

2

Y

pon? (11)

pk(b — a)P~1

b

pob? — Ap(b — a)P~! / sup F(z,t)dx
a [t|<0

p(b—a)p~1G? ’

sup F(z,t)dx + %GG

|t|<0

r

<

>| =

pot?”
p(b—a)r~t

b

pon? — Apk(b — a)P~! /+ F(z,n)dx
2

pk(b — a)PGy ,
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this means

b
1
F _\H
/“T*b (x,n)dx + (b a))\GT7
>

pon?

pk(b — a)P—1

> =

Then,

b b
Eao Y
/a sup F'(z,t)dx + )\G . /a;b F(z,n)dx + (b—a) )\G,7

[%
= <5< (12)

po@p pon?
p(b— a)p—T pk(b—a)P~!

Hence from (10)-(12), we observe that the condition (a;) of Theorem 2.1 is satisfied.
Finally, since p < SA,Q, we can fix [ > 0 such that

SUP, (a5 G(2,1)
P

lim sup <,

[t|—o0
L0

p(b—a)”’
Therefore, there exists a function h € L'([a, b]) such that

and pl <

G(z,t) < ItP + h(z), (13)

for every x € [a,b] and t € R.
Po

N fix 0 —_
ow, nix <€<p(b—a)p)\

l
- MX From (A3) there is a function h. € L!([a,b]) such that

F(z,t) < et + he(x), (14)

for every x € [a,b] and t € R.
Taking (2) into account, it follows that, for each u € X,

1 b
Bu) = M) = el =3 [ PG ul@) + 56l u@)ds
1 b b
> Sl = [ @)z = Nhely = pi | (@) = bl
1 b—a)P b—a)P
> (A A O g Nl =
Po

p Po

and thus
lim (®(u) — A¥(u)) = +o0,

l[ufl =00
which means the functional ® — AW is coercive, and the condition (ag) of Theorem 2.1 is verified.

By using relations (10) and (12) one also has

) e o (w) ’ T
\I’(w) SUPg(z)<r \I/(.%')
Finally, Theorem 2.1 (with T = w) ensures the conclusion. O

Now, we present a variant of Theorem 3.1 in which no asymptotic condition on the nonlinear

term is requested. In such a case f and g are supposed to be nonnegative.

EJQTDE, 2013 No. 24, p. 9



For our goal, let us fix positive constants 01,05 and n such that

3 nP . 67 6y
5 b < min b R b R
k:/ F(x,n)dx / sup F(x,t)dz 2/ sup F(x,t)dz
GT‘H’ ‘t|<91 a MSGQ
and taking
port”
3 — q)r—1 oP o7
AeAN:= |- ph(b —a) , 20 min L , 2
5 b (b — a)p1 b b
/ F(x,n)dx / sup F(x,t)dz 2/ sup F(x,t)dz
atb a |t|<6: a |t|<62

With the above notations we have the following multiplicity result.

Theorem 3.2. Let f : [a,b] x R — R satisfies the condition f(x,t) >0 for every (x,t) € [a, b]
(Rt U {0}). Assume that there exist three positive constants 01, 05 and n with 2Y/P0; < n < 21/p
such that assumption (A1) in Theorem 3.1 holds. Furthermore, suppose that

b
/ sup F(x,t)d / F(x,n)d
a ‘t|<91

B
( ) : 9117
/ sup F(x,t)d / F(x,n)d
It|<6
(BQ) £ 291;’ %

Then, for each X\ € A and for every nonnegative L'-Carathéodory function g : [a,b] x R — R,
there exists 53‘\g > 0 given by

b b
pod — Ap(b — a)p_l/ sup F(x,t)dz  pobh — Ap(b — a)p_l/ sup F(z,t)dz

a [t|<61 a [t/<62

p(b — a)P~1G% ' p(b — a)P~1GY2

min

such that, for each p € (0,63 [, the problem (1) admits at least three distinct weak solutions u;
fori=1,2,3, such that

0 <wi(z) <O, Yzecliab], (i=123).

Proof. Fix A, g and u as in the conclusion and take ® and ¥ as in the proof of Theorem 3.1. We
observe that the regularity assumptions of Theorem 2.2 on ® and ¥ are satisfied. Then, our aim
is to verify (b1) and (bs).

To this end, put w as given in (9), as well as

poty
™ i=——~—,
p(b—a)r—t
and
poty
T 1= .
p(b—a)r~t
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By using condition 2'/70; < 7 < 2?%, and bearing in mind (6), we get 2r; < ®(w) < %2
Since p < 0y , and Gy = 0, one has
b 1
sup U(u) sup / [F(z,u(z)) + =G(z,u(z))]dx
ued—1(]—oo,r1)) _ ued(—oom)) Ja A
1 B 1
b 1
/ sup F(z,t)dr + =G
a <6 A
< 7
poty
p(b—a)p~t
b 1
F d b—a)=
| g fe P+ 0= G
DDV porr”
pk(b— a)P~1
< g\I’(w)’
- 3%(w)
and
’ u
2 sup U (u) 2 sup / [F(z,u(x)) + =G(z,u(x))|dx
u€P1(]—o0,rz]) - ued1(]—oco,rs]) Ja A
r2 a r2
’ u
2/ sup F(z,t)dz 425G
a |t|<62 A
< P
pobts
p(b—a)yr~t
b 7
. Q/GTH? F(ac,n)dan—i—(b—a)XGT7
S 373 pon?
pk(b —a)p~!
)
- 3%(w)

Therefore, (by) and (b2) of Theorem 2.2 are verified.

Finally, we verify that ® — AU satisfies the assumption 2. of Theorem 2.2. Let u; and us be
two local minima for ® — AW. Then u; and us are critical points for & — AW, and so, they are
weak solutions for the problem (1). We want to prove that they are nonnegative.

Let up be a weak solution of problem (1). Arguing by a contradiction, assume that the set
A = {z €]a,b] : up(x) < 0} is non-empty and of positive measure. Put v(z) = min{0, ug(z)} for
all x € [a,b]. Clearly, v € X and one has

b b
| p@ls@luta)e' @i + [ s(@)un()l Puo()ota)da

b b
A / £ o)) o) d — p / 9(, 1o () (x)dz = 0,

for every v € X.
Thus, from our sign assumptions on the data, we have

0< [ p@lis(@)de+ [ s@uota)pPds <o
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Hence, up = 0 in A and this is absurd. Then, we deduce u(z

x € [a,b]. Thus, it follows that su; + (1 — s)ug > 0 for all s € [0,

(>‘f + //J.g)(xa sul + (1 - 5)“2) > 0’

and consequently, ¥(su; + (1 — s)ug) > 0, for every s € [0, 1].
By using Theorem 2.2, for every

> 0 and ug(x) > 0 for every

], and that

T2/2

_<I>(w) min "

A€

N W

U(w)’ sup U(u)’ sup

U(u) [

u€®1(]—oo,r1[) u€P~1(]—o0,rz|)

the functional ® — AW has at least three distinct critical points which are the weak solutions of

the problem (1) and the desired conclusion is achieved. O
Now we prove Theorems 1.1 and 1.2 in Introduction.
: 2pon”
Proof of Theorem 1.1: Fix A > \* := ———————— for some 1 > 0.
pk(b—a)PF(n)
Recalling that
F
lim inf (§) =0,
§—0
there is a sequence {6,,} C]0,+4o0[ such that lim 6, =0 and
n—oo
S F(£)
_lel<0n B
A =0
Indeed, one has
sup F(§)
where F(&, ) = sup F(€).
§1<6n
Hence, there exists 6 > 0 such that
sup F'(§) EF(r)
135 . n). £0
7 <mn{ 5 e
and 0 < .
O

The conclusion follows by using Theorem 3.1.

Proof of Theorem 1.2: Our aim is to employ Theorem 3.2 by choosing a = 0, b = 1, p(z) =

s(z) =1 (for every x € [a,b]) f2 =1 and n = 2.
Therefore, since k = 8/37, we see that

pon?

3 pk(b—a)P~
2 b
F(z,n)d /f
a+

and
Po 05

p(b_a)p_lz/bsuprt /f

a |t‘<92
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t
Moreover, since lim &2) = 0, one has
t—0t t

lim
t—0+

t
/ F(€)de
CAVE——
t3

Then, there exists a positive constant 61 < /4 such that

01 2
F(€)de / F(€)de
0 < 0
03 111
and
03 1
0 > 1 .
f©)de 2 / F(€)de
0

0
Finally, a simple computation shows that all assumptions of Theorem 3.2 are fulfilled. The
desired conclusion follows. O
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