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Abstract
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1 Introduction

Consider the following perturbed mixed boundary value problem

{

−(ρ(x)|u′|p−2u′)′ + s(x)|u|p−2u = λf(x, u) + µg(x, u) in ]a, b[

u(a) = u′(b) = 0,
(1)

where p > 1, λ > 0 and µ ≥ 0 are real numbers, a, b ∈ R with a < b, ρ, s ∈ L∞([a, b])

with ρ0 = essinfx∈[a,b]ρ(x) > 0, s0 = essinfx∈[a,b]s(x) ≥ 0 and f, g : [a, b] × R → R are two

L1-Carathéodory function.

∗Corresponding author.
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Using two kinds of three critical points theorems obtained in [4, 8] which we recall in the

next section (Theorems 2.1 and 2.2), we ensure the existence of at least three weak solutions for

the problem (1); see Theorems 3.1 and 3.2. These theorems have been successfully employed to

establish the existence of at least three solutions for perturbed boundary value problems in the

papers [5, 6, 14, 16, 17].

Existence and multiplicity of solutions for mixed boundary value problems have been studied

by several authors and, for an overview on this subject, we refer the reader to the papers [2, 3,

12, 15, 18]. We also refer the reader to the papers [7, 9, 10, 11] in which the existence of multiple

solutions is ensured.

A special case of Theorem 3.1 is the following theorem.

Theorem 1.1. Let f : R → R be a continuous function. Put F (t) :=

∫ t

0
f(ξ)dξ for each t ∈ R.

Assume that F (η) > 0 for some η > 0 and F (ξ) ≥ 0 in [0, η] and

lim inf
ξ→0

F (ξ)

ξp
= lim sup

ξ→+∞

F (ξ)

ξp
= 0.

Then, there is λ∗ > 0 such that for each λ > λ∗ and for every L1-Carathéodory function g :

[a, b] × R → R satisfying the asymptotical condition

lim sup
|t|→∞

sup
x∈[a,b]

∫ t

0
g(x, s)ds

tp
< +∞,

there exists δ∗λ,g > 0 such that, for each µ ∈ [0, δ∗λ,g[, the problem

{

−(ρ(x)|u′|p−2u′)′ + s(x)|u|p−2u = λf(u) + µg(x, u) in ]a, b[

u(a) = u′(b) = 0,

admits at least three weak solutions.

Moreover, the following result is a consequence of Theorem 3.2.

Theorem 1.2. Let f : R → R be a nonnegative continuous function such that

lim
t→0+

f(t)

t2
= 0,

and
∫ 1

0
f(ξ)dξ <

1

222

∫ 2

0
f(ξ)dξ.

Then, for every λ ∈









37
∫ 2

0
f(ξ)dξ

,
1

6

∫ 1

0
f(ξ)dξ









and for every L1-Carathéodory function g :

[0, 1] × R → R satisfying the condition

lim sup
|t|→∞

sup
x∈[0,1]

∫ t

0
g(x, s)ds

t3
< +∞,
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there exists δ∗λ,g > 0 such that, for each µ ∈ [0, δ∗λ,g[, the problem

{

−(|u′|u′)′ + |u|u = λf(u) + µg(x, u) in ]0, 1[

u(0) = u′(1) = 0,

admits at least three weak solutions.

The present paper is arranged as follows. In Section 2 we recall some basic definitions and

preliminary results, while Section 3 is devoted to the existence of multiple weak solutions for the

eigenvalue problem (1).

2 Preliminaries

Our main tools are the following three critical points theorems. In the first one the coercivity

of the functional Φ − λΨ is required, in the second one a suitable sign hypothesis is assumed.

Theorem 2.1 ([8], Theorem 2.6). Let X be a reflexive real Banach space, Φ : X −→ R be a coer-

cive continuously Gâteaux differentiable and sequentially weakly lower semicontinuous functional

whose Gâteaux derivative admits a continuous inverse on X∗, Ψ : X −→ R be a continuously

Gâteaux differentiable functional whose Gâteaux derivative is compact such that Φ(0) = Ψ(0) = 0.

Assume that there exist r > 0 and x ∈ X, with r < Φ(x) such that

(a1)
supΦ(x)≤r Ψ(x)

r
<

Ψ(x)

Φ(x)
,

(a2) for each λ ∈ Λr :=

]

Φ(x)

Ψ(x)
,

r

supΦ(x)≤r Ψ(x)

[

the functional Φ − λΨ is coercive.

Then, for each λ ∈ Λr the functional Φ − λΨ has at least three distinct critical points in X.

Theorem 2.2 ([4], Theorem 3.3). Let X be a reflexive real Banach space, Φ : X −→ R be

a convex, coercive and continuously Gâteaux differentiable functional whose derivative admits a

continuous inverse on X∗, Ψ : X −→ R be a continuously Gâteaux differentiable functional whose

derivative is compact, such that

1. infX Φ = Φ(0) = Ψ(0) = 0;

2. for each λ > 0 and for every u1, u2 ∈ X which are local minima for the functional Φ− λΨ

and such that Ψ(u1) ≥ 0 and Ψ(u2) ≥ 0, one has

inf
s∈[0,1]

Ψ(su1 + (1 − s)u2) ≥ 0.

Assume that there are two positive constants r1, r2 and v ∈ X, with 2r1 < Φ(v) < r2

2 , such that

(b1)
supu∈Φ−1(]−∞,r1[) Ψ(u)

r1
<

2

3

Ψ(v)

Φ(v)
;

(b2)
supu∈Φ−1(]−∞,r2[) Ψ(u)

r2
<

1

3

Ψ(v)

Φ(v)
.

Then, for each λ ∈
]

3

2

Φ(v)

Ψ(v)
, min

{

r1

supu∈Φ−1(]−∞,r1[) Ψ(u)
,

r2

2

supu∈Φ−1(]−∞,r2[) Ψ(u)

}[

, the func-

tional Φ − λΨ has at least three distinct critical points which lie in Φ−1(] −∞, r2[).

In order to study the problem (1), the variational setting is the space

X :=
{

u ∈ W 1,p([a, b]) : u(a) = 0
}
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endowed with the norm

‖u‖ :=

(

∫ b

a
ρ(x)|u′(x)|pdx +

∫ b

a
s(x)|u(x)|pdx

)1/p

.

We observe that the norm ‖ · ‖ is equivalent to the usual one.

It is well known that (X, ‖ · ‖) is compactly embedded in (C0([a, b]), ‖ · ‖∞) and

‖u‖∞ ≤ (b − a)(p−1)/p

ρ
1/p
0

‖u‖, (2)

for every u ∈ X.

We need the following proposition in the proof of Theorem 3.1.

Proposition 2.3. Let T : X → X∗ be the operator defined by

T (u)v =

∫ b

a
ρ(x)|u′(x)|p−2u′(x)v′(x)dx +

∫ b

a
s(x)|u(x)|p−2u(x)v(x)dx

for every u, v ∈ X. Then T admits a continuous inverse on X∗.

Proof. In the proof, we use C1, C2, . . . , C9 to denote suitable positive constants. For any u ∈
X \ {0},

lim
‖u‖→∞

〈T (u), u〉
‖u‖ = lim

‖u‖→∞

∫ b

a
ρ(x)|u′(x)|pdx +

∫ b

a
s(x)|u(x)|pdx

‖u‖

= lim
‖u‖→∞

‖u‖p

‖u‖
= lim

‖u‖→∞
‖u‖p−1 = ∞.

Thus, the map T is coercive.

Now, taking into account (2.2) in [19], we see that

〈T (u) − T (v), u − v〉

≥















C1

∫ b

a

(

ρ(x)|u′(x) − v′(x)|p + s(x)|u(x) − v(x)|p
)

dx if p ≥ 2,

C2

∫ b

a

(ρ(x)|u′(x) − v′(x))|2
(|u′(x)| + |v′(x)|)2−p

+
s(x)|u(x) − v(x))|2
(|u(x)| + |v(x)|)2−p

)

dx if 1 < p < 2.

(3)

At this point, if p ≥ 2, then it follows that

〈T (u) − T (v), u − v〉 ≥ C1‖u − v‖p,

so T is uniformly monotone. By [20, Theorem 26.A (d)], T−1 exists and is continuous on X∗.

On the other hand, if 1 < p < 2, by Hölder’s inequality, we obtain

∫ b

a
s(x)|u(x) − v(x)|pdx ≤

(
∫ b

a

s(x)|u(x) − v(x)|2
(|u(x)| + |v(x)|)2−p

dx

)p/2(∫ b

a
s(x)(|u(x)| + |v(x)|)pdx

)(2−p)/2

≤ C3

(
∫ b

a

s(x)|u(x) − v(x)|2
(|u(x)| + |v(x)|)2−p

dx

)p/2(∫ b

a
s(x)(|u(x)|p + |v(x)|p)dx

)(2−p)/2
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≤ C4

(
∫ b

a

s(x)|u(x) − v(x)|2
(|u(x)| + |v(x)|)2−p

dx

)p/2

(‖u‖ + ‖v‖)(2−p)p/2 . (4)

Similarly, one has

∫ b

a
ρ(x)|u′(x) − v′(x)|pdx ≤ C5

(
∫ b

a

ρ(x)|u′(x) − v′(x)|2
(|u′(x)| + |v′(x)|)2−p

dx

)p/2

(‖u‖ + ‖v‖)(2−p)p/2 . (5)

Then, relation (3) together with (4) and (5), yields

〈T (u) − T (v), u − v〉

≥ C6

(‖u‖ + ‖v‖)2−p

(

(
∫ b

a
ρ(x)|u′(x) − v′(x)|pdx

)2/p

+

(
∫ b

a
s(x)|u(x) − v(x)|pdx

)2/p
)

≥ C7

(‖u‖ + ‖v‖)2−p

(
∫ b

a
ρ(x)|u′(x) − v′(x)|pdx +

∫ b

a
s(x)|u(x) − v(x)|pdx

)2/p

≥ C8
‖u − v‖2

(‖u‖ + ‖v‖)2−p .

Thus, T is strictly monotone. By [20, Theorem 26.A (d)], T−1 exists and is bounded. Moreover,

given g1, g2 ∈ X∗, by the inequality

〈T (u) − T (v), u − v〉 ≥ C8
‖u − v‖2

(‖u‖ + ‖v‖)2−p ,

choosing u = T−1(g1) and v = T−1(g2) we have

‖T−1(g1) − T−1(g2)‖ ≤ 1

C9
(‖T−1(g1)‖ + ‖T−1(g2)‖)2−p‖g1 − g2‖X∗ .

So T−1 is continuous. This completes the proof.

We use the following notations:

‖ρ‖∞ := ess supx∈[a,b]ρ(x), ‖s‖∞ := ess supx∈[a,b]s(x).

Corresponding to f and g we introduce the functions F : [a, b]×R → R and G : [a, b]×R → R,

respectively, as follows

F (x, t) :=

∫ t

0
f(x, ξ)dξ, ∀ (x, t) ∈ [a, b] × R

and

G(x, t) :=

∫ t

0
g(x, ξ)dξ, ∀ (x, t) ∈ [a, b] × R.

Moreover, set Gθ :=

∫

[a,b]
max
|t|≤θ

G(x, t)dt, for every θ > 0 and Gη := inf [a,b]×[0,η] G, for every η > 0.

If g is sign-changing, then Gθ ≥ 0 and Gη ≤ 0.

We mean by a (weak) solution of problem (1), any function u ∈ X such that

∫ b

a
ρ(x)|u′(x)|p−2u′(x)v′(x)dx +

∫ b

a
s(x)|u(x)|p−2u(x)v(x)dx

−λ

∫ b

a
f(x, u(x))v(x)dx − µ

∫ b

a
g(x, u(x))v(x)dx = 0,

for every v ∈ X.
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3 Main results

Put

k :=
2(p + 1)ρ0

2p(p + 1)‖ρ‖∞ + (p + 2)(b − a)p‖s‖∞
, (6)

Following the construction given in [6], in order to introduce our first result, fixing two positive

constants θ and η such that

ηp

k

∫ b

a+b

2

F (x, η)dx

<
θp

∫ b

a
sup
|t|≤θ

F (x, t)dx

,

and taking

λ ∈ Λ :=











ρ0η
p

pk(b − a)p−1

1
∫ b

a+b

2

F (x, η)dx

,
ρ0θ

p

p(b − a)p−1

1
∫ b

a
sup
|t|≤θ

F (x, t)dx











,

set δλ,g given by

min



















ρ0θ
p − λp(b − a)p−1

∫ b

a
sup
|t|≤θ

F (x, t)dx

p(b − a)p−1Gθ
,

ρ0η
p − λpk(b − a)p−1

∫ b

a+b

2

F (x, η)dx

pk(b − a)pGη



















(7)

and

δλ,g := min























δλ,g,
1

max

{

0,
p(b − a)p

ρ0
lim sup
|t|→∞

supx∈[a,b] G(x, t)

tp

}























, (8)

where we read ρ/0 = +∞, so that, for instance, δλ,g = +∞ when

lim sup
|t|→∞

supx∈[a,b] G(x, t)

tp
≤ 0,

and Gη = Gθ = 0.

Now, we formulate our main result.

Theorem 3.1. Assume that there exist two positive constants θ and η with θ < η such that

(A1)

∫ a+b

2

a
F (x, ξ)dx > 0, for each ξ ∈ [0, η];

(A2)

∫ b

a
sup
|t|≤θ

F (x, t)dx

θp
< k

∫ b

a+b

2

F (x, η)dx

ηp
;

(A3) lim sup
|t|→+∞

supx∈[a,b] F (x, t)

tp
≤ 0.

Then, for each λ ∈ Λ and for every L1-Carathéodory function g : [a, b] × R → R satisfying

the condition

lim sup
|t|→∞

supx∈[a,b] G(x, t)

tp
< +∞,
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there exists δλ,g > 0 given by (8) such that, for each µ ∈ [0, δλ,g[, the problem (1) admits at least

three distinct weak solutions in X.

Proof. In order to apply Theorem 2.1 to our problem, we introduce the functionals Φ, Ψ : X → R

for each u ∈ X, as follows

Φ(u) =
1

p
‖u‖p

and

Ψ(u) =

∫ b

a
[F (x, u(x)) +

µ

λ
G(x, u(x))]dx.

Let us prove that the functionals Φ and Ψ satisfy the required conditions.

It is well known that Ψ is a differentiable functional whose differential at the point u ∈ X is

Ψ′(u)(v) =

∫ b

a
[f(x, u(x)) +

µ

λ
g(x, u(x))]v(x)dx,

for every v ∈ X as well as is sequentially weakly upper semicontinuous. Furthermore, Ψ′ : X →
X∗ is a compact operator. Indeed, it is enough to show that Ψ′ is strongly continuous on X. For

this end, for fixed u ∈ X, let un → u weakly in X as n → ∞, then un converges uniformly to u

on [a, b] as n → ∞; see [20]. Since f, g are L1-Carathéodory functions, f, g are continuous in R

for every x ∈ [a, b], so

f(x, un) +
µ

λ
g(x, un) → f(x, u) +

µ

λ
g(x, u),

as n → ∞. Hence Ψ′(un) → Ψ′(u) as n → ∞. Thus we proved that Ψ′ is strongly continuous on

X, which implies that Ψ′ is a compact operator by Proposition 26.2 of [20].

Moreover, Φ is continuously differentiable whose differential at the point u ∈ X is

Φ′(u)(v) =

∫ b

a
r(x)|u′(x)|p−2u′(x)v′(x)dx +

∫ b

a
s(x)|u(x)|p−2u(x)v(x)dx,

for every v ∈ X, while Proposition 2.3 gives that Φ′ admits a continuous inverse on X∗. Further-

more, Φ is sequentially weakly lower semicontinuous. Clearly, the weak solutions of the problem

(1) are exactly the solutions of the equation Φ′(u) − λΨ′(u) = 0.

Put r :=
ρ0θ

p

p(b − a)p−1
, and

w(x) :=







2η

b − a
(x − a) if x ∈ [a, a+b

2 [

η if x ∈ [a+b
2 , b].

(9)

It is easy to see that w ∈ X and, in particular, one has

‖w‖p =
2pηp

(b − a)p

∫ a+b

2

a
ρ(x)dx +

2pηp

(b − a)p

∫ a+b

2

a
(x − a)ps(x)dx + ηp

∫ b

a+b

2

s(x)dx.

Taking into account 0 < θ < η, using (6), we observe that

0 < r < Φ(w) <
ρ0η

p

pk(b − a)p−1
.

Bearing in mind relation (2), we see that

Φ−1(] −∞, r]) = {u ∈ X; Φ(u) ≤ r}

=

{

u ∈ X;
||u||p

p
≤ r

}

⊆ {u ∈ X; |u(x)| ≤ θ for each x ∈ [a, b]} ,

EJQTDE, 2013 No. 24, p. 7



and it follows that

sup
u∈Φ−1(]−∞,r])

Ψ(u) = sup
u∈Φ−1(]−∞,r])

∫ b

a
[F (x, u(x)) +

µ

λ
G(x, u(x))]dx

≤
∫ b

a
sup
|t|≤θ

F (x, t)dx +
µ

λ
Gθ.

On the other hand, by using condition (A1), since 0 ≤ w(x) ≤ η for each x ∈ [a, b], we infer

Ψ(w) ≥
∫ b

a+b

2

F (x, η)dx +
µ

λ

∫ b

a
G(x,w(x))dx

≥
∫ b

a+b

2

F (x, η)dx + (b − a)
µ

λ
inf

[a,b]×[0,η]
G

=

∫ b

a+b

2

F (x, η)dx + (b − a)
µ

λ
Gη .

Therefore, we have

sup
u∈Φ−1(]−∞,r])

Ψ(u)

r
=

sup
u∈Φ−1(]−∞,r])

∫ b

a
[F (x, u(x)) +

µ

λ
G(x, u(x))]dx

r

≤

∫ b

a
sup
|t|≤θ

F (x, t)dx +
µ

λ
Gθ

ρ0θ
p

p(b − a)p−1

, (10)

and

Ψ(w)

Φ(w)
≥

∫ b

a+b

2

F (x, η)dx +
µ

λ

∫ b

a
G(x,w(x))dx

ρ0η
p

pk(b − a)p−1

≥

∫ b

a+b

2

F (x, η)dx + (b − a)
µ

λ
Gη

ρ0η
p

pk(b − a)p−1

. (11)

Since µ < δλ,g, one has

µ <

ρ0θ
p − λp(b − a)p−1

∫ b

a
sup
|t|≤θ

F (x, t)dx

p(b − a)p−1Gθ
,

this means
∫ b

a
sup
|t|≤θ

F (x, t)dx +
µ

λ
Gθ

ρ0θ
p

p(b − a)p−1

<
1

λ
.

Furthermore,

µ <

ρ0η
p − λpk(b − a)p−1

∫ b

a+b

2

F (x, η)dx

pk(b − a)pGη
,
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this means
∫ b

a+b

2

F (x, η)dx + (b − a)
µ

λ
Gη

ρ0η
p

pk(b − a)p−1

>
1

λ
.

Then,
∫ b

a
sup
|t|≤θ

F (x, t)dx +
µ

λ
Gθ

ρ0θ
p

p(b − a)p−1

<
1

λ
<

∫ b

a+b

2

F (x, η)dx + (b − a)
µ

λ
Gη

ρ0η
p

pk(b − a)p−1

. (12)

Hence from (10)-(12), we observe that the condition (a1) of Theorem 2.1 is satisfied.

Finally, since µ < δλ,g, we can fix l > 0 such that

lim sup
|t|→∞

supx∈[a,b] G(x, t)

tp
< l,

and µl <
ρ0

p(b − a)p
.

Therefore, there exists a function h ∈ L1([a, b]) such that

G(x, t) ≤ ltp + h(x), (13)

for every x ∈ [a, b] and t ∈ R.

Now, fix 0 < ǫ <
ρ0

p(b − a)pλ
− µl

λ
. From (A3) there is a function hǫ ∈ L1([a, b]) such that

F (x, t) ≤ ǫtp + hǫ(x), (14)

for every x ∈ [a, b] and t ∈ R.

Taking (2) into account, it follows that, for each u ∈ X,

Φ(u) − λΨ(u) =
1

p
‖u‖p − λ

∫ b

a
[F (x, u(x)) +

µ

λ
G(x, u(x))]dx

≥ 1

p
‖u‖p − λǫ

∫ b

a
up(x)dx − λ‖hǫ‖1 − µl

∫ b

a
up(x)dx − µ‖h‖1

≥
(1

p
− λ

(b − a)p

ρ0
ǫ − µ

(b − a)p

ρ0
l
)

‖u‖p − λ‖hǫ‖1 − µ‖h‖1,

and thus

lim
‖u‖→+∞

(Φ(u) − λΨ(u)) = +∞,

which means the functional Φ−λΨ is coercive, and the condition (a2) of Theorem 2.1 is verified.

By using relations (10) and (12) one also has

λ ∈
]

Φ(w)

Ψ(w)
,

r

supΦ(x)≤r Ψ(x)

[

.

Finally, Theorem 2.1 (with x = w) ensures the conclusion.

Now, we present a variant of Theorem 3.1 in which no asymptotic condition on the nonlinear

term is requested. In such a case f and g are supposed to be nonnegative.
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For our goal, let us fix positive constants θ1, θ2 and η such that

3

2

ηp

k

∫ b

a+b

2

F (x, η)dx

< min



















θp
1

∫ b

a
sup
|t|≤θ1

F (x, t)dx

,
θp
2

2

∫ b

a
sup
|t|≤θ2

F (x, t)dx



















,

and taking

λ ∈ Λ :=











3

2

ρ0η
p

pk(b − a)p−1

∫ b

a+b

2

F (x, η)dx

,
ρ0

p(b − a)p−1
min



















θp
1

∫ b

a
sup
|t|≤θ1

F (x, t)dx

,
θp
2

2

∫ b

a
sup
|t|≤θ2

F (x, t)dx





























.

With the above notations we have the following multiplicity result.

Theorem 3.2. Let f : [a, b] × R → R satisfies the condition f(x, t) ≥ 0 for every (x, t) ∈ [a, b] ×
(R+ ∪ {0}). Assume that there exist three positive constants θ1, θ2 and η with 21/pθ1 < η <

θ2

21/p

such that assumption (A1) in Theorem 3.1 holds. Furthermore, suppose that

(B1)

∫ b

a
sup
|t|≤θ1

F (x, t)dx

θp
1

< 2
3k

∫ b

a+b

2

F (x, η)dx

ηp ;

(B2)

∫ b

a
sup
|t|≤θ2

F (x, t)dx

θp
2

< 1
3k

∫ b

a+b

2

F (x, η)dx

ηp .

Then, for each λ ∈ Λ and for every nonnegative L1-Carathéodory function g : [a, b] × R → R,

there exists δ∗λ,g > 0 given by

min



















ρ0θ
p
1 − λp(b − a)p−1

∫ b

a
sup
|t|≤θ1

F (x, t)dx

p(b − a)p−1Gθ1
,

ρ0θ
p
2 − λp(b − a)p−1

∫ b

a
sup
|t|≤θ2

F (x, t)dx

p(b − a)p−1Gθ2



















.

such that, for each µ ∈ [0, δ∗λ,g [, the problem (1) admits at least three distinct weak solutions ui

for i = 1, 2, 3, such that

0 ≤ ui(x) < θ2, ∀ x ∈ [a, b], (i = 1, 2, 3).

Proof. Fix λ, g and µ as in the conclusion and take Φ and Ψ as in the proof of Theorem 3.1. We

observe that the regularity assumptions of Theorem 2.2 on Φ and Ψ are satisfied. Then, our aim

is to verify (b1) and (b2).

To this end, put w as given in (9), as well as

r1 :=
ρ0θ

p
1

p(b − a)p−1
,

and

r2 :=
ρ0θ

p
2

p(b − a)p−1
.
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By using condition 21/pθ1 < η <
θ2

21/p
, and bearing in mind (6), we get 2r1 < Φ(w) <

r2

2
.

Since µ < δ∗λ,g and Gη = 0, one has

sup
u∈Φ−1(]−∞,r1])

Ψ(u)

r1
=

sup
u∈Φ−1(]−∞,r1])

∫ b

a
[F (x, u(x)) +

µ

λ
G(x, u(x))]dx

r1

≤

∫ b

a
sup
|t|≤θ1

F (x, t)dx +
µ

λ
Gθ1

ρ0θ
p
1

p(b − a)p−1

<
1

λ
<

2

3

∫ b

a+b

2

F (x, η)dx + (b − a)
µ

λ
Gη

ρ0η
p

pk(b − a)p−1

≤ 2

3

Ψ(w)

Φ(w)
,

and

2 sup
u∈Φ−1(]−∞,r2])

Ψ(u)

r2
=

2 sup
u∈Φ−1(]−∞,r2])

∫ b

a
[F (x, u(x)) +

µ

λ
G(x, u(x))]dx

r2

≤
2

∫ b

a
sup
|t|≤θ2

F (x, t)dx + 2
µ

λ
Gθ2

ρ0θ
p
2

p(b − a)p−1

<
1

λ
<

2

3

∫ b

a+b

2

F (x, η)dx + (b − a)
µ

λ
Gη

ρ0η
p

pk(b − a)p−1

≤ 2

3

Ψ(w)

Φ(w)
.

Therefore, (b1) and (b2) of Theorem 2.2 are verified.

Finally, we verify that Φ − λΨ satisfies the assumption 2. of Theorem 2.2. Let u1 and u2 be

two local minima for Φ − λΨ. Then u1 and u2 are critical points for Φ − λΨ, and so, they are

weak solutions for the problem (1). We want to prove that they are nonnegative.

Let u0 be a weak solution of problem (1). Arguing by a contradiction, assume that the set

A =
{

x ∈]a, b] : u0(x) < 0
}

is non-empty and of positive measure. Put v̄(x) = min{0, u0(x)} for

all x ∈ [a, b]. Clearly, v̄ ∈ X and one has
∫ b

a
ρ(x)|u′

0(x)|p−2u′
0(x)v̄′(x)dx +

∫ b

a
s(x)|u0(x)|p−2u0(x)v̄(x)dx

−λ

∫ b

a
f(x, u0(x))v̄(x)dx − µ

∫ b

a
g(x, u0(x))v̄(x)dx = 0,

for every v ∈ X.

Thus, from our sign assumptions on the data, we have

0 ≤
∫

A
ρ(x)|u′

0(x)|pdx +

∫

A
s(x)|u0(x)|pdx ≤ 0.
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Hence, u0 = 0 in A and this is absurd. Then, we deduce u1(x) ≥ 0 and u2(x) ≥ 0 for every

x ∈ [a, b]. Thus, it follows that su1 + (1 − s)u2 ≥ 0 for all s ∈ [0, 1], and that

(λf + µg)(x, su1 + (1 − s)u2) ≥ 0,

and consequently, Ψ(su1 + (1 − s)u2) ≥ 0, for every s ∈ [0, 1].

By using Theorem 2.2, for every

λ ∈







3

2

Φ(w)

Ψ(w)
, min











r1

sup
u∈Φ−1(]−∞,r1[)

Ψ(u)
,

r2/2

sup
u∈Φ−1(]−∞,r2[)

Ψ(u)
















,

the functional Φ − λΨ has at least three distinct critical points which are the weak solutions of

the problem (1) and the desired conclusion is achieved.

Now we prove Theorems 1.1 and 1.2 in Introduction.

Proof of Theorem 1.1 : Fix λ > λ∗ :=
2ρ0η

p

pk(b − a)pF (η)
for some η > 0.

Recalling that

lim inf
ξ→0

F (ξ)

ξ2
= 0,

there is a sequence {θn} ⊂]0,+∞[ such that lim
n→∞

θn = 0 and

lim
n→∞

sup
|ξ|≤θn

F (ξ)

θp
n

= 0.

Indeed, one has

lim
n→∞

sup
|ξ|≤θn

F (ξ)

θp
n

= lim
n→∞

F (ξθn
)

ξp
θn

ξp
θn

θp
n

= 0,

where F (ξθn
) = sup

|ξ|≤θn

F (ξ).

Hence, there exists θ > 0 such that

sup
|ξ|≤θ

F (ξ)

θ
p < min

{

kF (η)

2ηp
;

ρ0

pλ(b − a)p

}

and θ < η.

The conclusion follows by using Theorem 3.1. �

Proof of Theorem 1.2 : Our aim is to employ Theorem 3.2 by choosing a = 0, b = 1, ρ(x) =

s(x) = 1 (for every x ∈ [a, b]) θ2 = 1 and η = 2.

Therefore, since k = 8/37, we see that

3

2

ρ0η
p

pk(b − a)p−1

∫ b

a+b

2

F (x, η)dx

=
37

∫ 2

0
f(ξ)dξ

and
ρ0

p(b − a)p−1

θp
2

2

∫ b

a
sup
|t|≤θ2

F (x, t)dx

=
1

6

∫ 1

0
f(ξ)dξ

.
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Moreover, since lim
t→0+

f(t)

t2
= 0, one has

lim
t→0+

∫ t

0
f(ξ)dξ

t3
= 0.

Then, there exists a positive constant θ1 < 3
√

4 such that

∫ θ1

0
f(ξ)dξ

θ3
1

<

∫ 2

0
f(ξ)dξ

111
,

and
θ3
1

∫ θ1

0
f(ξ)dξ

>
1

2

∫ 1

0
f(ξ)dξ

.

Finally, a simple computation shows that all assumptions of Theorem 3.2 are fulfilled. The

desired conclusion follows. �
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