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On contact problems for nonlinear parabolic
functional differential equations

Léaszlé Simon*

Abstract

The results of [3] by W. Jiager and N. Kutev on a nonlinear ellip-
tic transmission problem are extended (in a modified way) to nonlinear
parabolic problems with nonlinear and nonlocal contact conditions.

Introduction

In [3] W. Jéger and N. Kutev considered the following nonlinear transmission
(contact) problem for nonlinear elliptic equations:

n

> Dilai(w,u, Du)] + b(z,u, Du) = 0 in Q (0.1)
_ u =g on 00 (0.2)
[zn: ai(z,u, Duji] | =0 (0.3)
. uy = ®(uz) on S (0.4)

where Q@ C R™ is a bounded domain with sufficiently smooth boundary 02 which
is divided into two subdomains 21, 25 by means of a smooth surface S which has
no intersection point with 02, the boundary of 2 is S and the boundary of €5 is
SUON. Further, [f]|s denotes the jump of f on S in the direction of the normal
v, ® is a smooth strictly increasing function and u; denotes the restriction of
u to Q; (j = 1,2). The coefficients of the equation are smooth in Q; and
satisfy standard conditions but they have jump on the surface S. The problem
was motivated e.g. by reaction-diffusion phenomena in porous medium. The
authors formulated conditions which implied comparison principles, existence
and uniqueness of the weak and the classical solution, respectively.

The aim of this paper is to consider nonlinear parabolic functional differential
equations with a modified contact condition on S: with boundary conditions of
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third type, containing delay. In [7] we studied parabolic differential equations
with contact conditions, considered in [3]. In Section 1 we shall prove existence
and uniqueness theorems and in Section 2 we shall formulate a theorem on
boundedness of the solutions and a stabilization result.

1 Existence and uniqueness of solutions

Let 2 C R" be a bounded domain having the uniform C' regularity property
(see [1]) which is divided into two subdomains 7, Qs by means of a smooth
surface S which has no intersection point with 0f2, the boundary of Q; is S
and the boundary of Q9 is S U (such that £ and Qs have the C" regularity

property).
We shall consider weak solutions of the problem

Dy? =Y Dylal(t, 2,07, Du?)|+b (t, w07, Du )+ G (u', u?) = FI(t, ), (1.5)
=1

(t,x) e QL =(0,T)xQ;, j=1,2
u? =0 on I'r = [0,7] x 99 (1.6)

> adl(t,z, !, Dud) s, = H (u',u?), Sr=1[0,T]xS, j=1,2 (L7)
=1
’LL(O,:L’) = 0, S Ql U QQ (18)

where u/ = | Qi G7, H’ are operators (which will be defined below as well as
T

functions F', F? ), v7 = (1], ..., is the normal unite vector on S (v! = —1?),
al, b7 have certain polynomial growth in u/, Du?.

Let p > 2 be a real number. For any domain Qg C R™ denote by W1P(Qq)
the usual Sobolev space of real valued functions with the norm

= [ | (ou =+ |u|p>} "

Let V3 = WHP(Q), Vo = {w € W'P(Q) : wlog = 0} and V = V; x Vs
Denote by LP(0,T;V) the Banach space of the set of measurable functions
u= (u,u?): (0,T) — V such that || u ||” is integrable and define the norm by

T
o W= [ 1(®) 1§

The dual space of LP(0,T;V) is L4(0,T;V*) where 1/p+1/qg=1 and V* is
the dual space of V' (see, e.g., [4], [8]).
Now we formulate the conditions with respect to the problem (1.5) - (1.8)

and the existence theorem on the weak solutions of this problem where F' =
(F1,F?) € LY0,T; V™).
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Assume that

I. The functions a, b’ : Q% x R**! — R satisfy the Carathéodory conditions,
ie. ag (t,z,n,¢), b (t,2,m,() are measurablein (t,z) € Q= (0,T) x €, for each
fixed (1,¢) € R"*! and they are continuous in (1, ¢) € R*t! for a.e. (t,x) € Q.

IL |al(t,2,n,¢)] < erl|nP~! + [¢[P~1] + K (z), for a.e. (t,x) € Q}, each
(n,¢) € R™! with some constant ¢; and a function k] € L9(Q;),

b7 (t, 2, n, Q)] < eallnP~H + [CIP7H] + K (2).

L 3000 [ag (82, m,€) — ag (8,2, m, ¢*) (G — ¢F) > 0/if ¢ # ¢*.

IV. 370 af (2, m, Q)G + b (82,1, Q)n = c2[|CIP + InfP] — k3 (2), (t,2) € QF

> @i (6w, QG + 0% (2, On = e2[CP — k3 (), (¢, 2) € QF

with some constant cy > 0, k3 € LY(Q;).

V. G9 : LP(QL) x LP(Q2) — L%(QJ}) are bounded (nonlinear) operators
which are demicontinuous (i.e. (uy) — u with respect to the norm LP(QL) x
LP(Q%) implies that G7 (ug) — G (u) weakly in LI(Q%.).

VI. H? : LP(0,T;V) — L%(St) are bounded (nonlinear) operators having
the following property: There exists a positive number 6 < 1 — 1/p such that
the operators H? are demicontinuous from LP(0,T; W!1=%P(Q) x W1=9P(Qy))
into LI(ST).

162G,y HIH @5,

D
”“”LP(O,T;\/)

for any w € L?(0,T;V).
Then we may define the operators A7 : L?(0,T;V;) — L9(0,T; V) by

‘ [Zaf(t,x,uj,Duj)Divj+bj(t,m,uj,Duj)vj dtdzx,
T Li=1

)= [
Q
= [ i), @),
0
A= (A A% LP(0,T;V) — L0, T; V*)
by [A(u),v] = [A'(u'),v'] + [A*(u?), v?]
and the operators B7 : LP(0,T;V) — L4(0,T;V}) by
[B7 (u), '] = [B] (u), o] = [Bj(u), '] =
G () dtdr — HI (u)v’ dtdo,,
Q7 St
u=(u',u?) € LP(0,T;V), (v',v?) € LP(0,T;V).
By I, II, V, VI, Hélder’s inequality and Vitali’s theorem operator
A+ B=(A',A*)+ (B*,B*) : LP(0,T;V) — L%0,T;V*)
is bounded (i.e. it maps bounded sets of LP(0,7;V) into bounded sets of

L%(0,T;V*)) and demicontinuous.
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Theorem 1.1 Assume I - VII. Then for any F = (F*, F?) € L4(0,T;V*) there
exists u = (u',u?) € LP(0,T; V) such that Dy’ € L9(0,T;V}),

Dy + AV (u?) + Bi(ut,u?) = F1, j=1,2 (1.9)
uw(0) =0, j=1,2. (1.10)

Remark 1 If u satisfies (1.9), (1.10), we say that u = (u!,u?) is a weak
solution of (1.5) - (1.8).

Proof of Theorem 1.1 Let the operators L7 : LP(0,T;V;) — L%(0,T; V)
be defined by

D(L7) = {u/ € L*(0,T;V;) : Dy’ € LY(0,T;V}), ’(0) =0},

T
[Liud v :/ (D (t,)07 (¢, ))dt, ! € D(L7), v’ € LP(0,T;V;)
0

where D;u? is the distributional derivative of w?. It is well known that L7 is
a closed linear maximal monotone map (see, e.g., [8]), thus L = (L, L?) :
L?(0,T7;V) — L%0,T;V*) is a closed linear maximal monotone map, too.
Therefore, Theorem 1. will follow from Theorem 4. of [2] if we show that
operator A + B is coercive and pseudomonotone with respect to D(L). It is
known that A is pseudomonotone with respect to D(L) (see, e.g. [5]). The
latter property means that for any sequence (uy) in D(L) with

(ug) — u weakly in LP(0,T;V), (1.11)
(Luy) — Lu weakly in LY(0,T; V™), (1.12)
lim sup[A(ug), ur —u] <0 (1.13)
k—oo
we have
klim [A(ug), ur —u] =0, (1.14)
(A(ur)) — A(u) weakly in L1(0,T; V™). (1.15)

Now we prove that (A + B) is pseudomonotone with respect to D(L), too.
Assume (1.11), (1.12) and

limsup[(A + B)(ux), up — u] < 0. (1.16)

k—o0

Since the imbedding W1P(Q;) — W!=%P(Q;) is compact, by a well known
compactness result (see, e.g., [4]) (1.11), (1.12) imply that there is a subsequence
(ug,) of (ug) such that

(up,) — w in LP(0, T; W=P()) x W1T0P(Qy)). (1.17)

Since the trace operators W1=%P(Q;) — LP(S) are continuous (§+1/p < 1, see,
e.g., [1]), we obtain by (1.17), V, VI and Hoélder’s inequality

lim [B(uy, ), uk, —u] = 0. (1.18)

l—o0
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Further, (1.17), V, VI imply
(B(ug,)) — A(u) weakly in LI(0,T; V™). (1.19)
From (1.16), (1.18) we obtain

lim sup[A(ug, ), uk, —u] < 0. (1.20)

l—o00

As A is pseudomonotone with respect to D(L), (1.11), (1.12) and (1.20) imply

Jim [Aug, ), u, ] = 0, (1.21)
(A(u,)) — A(u) weakly in L9(0, T; V*). (1.22)
Finally, from (1.18), (1.19), (1.21) and (1.22) we obtain
Jim [(A+ B)(ug,), u, —u] =0, (1.23)
(A + B)(ug,)) — (A + B)(u) weakly in L%(0, T; V*) (1.24)

which means that (A + B) is pseudomonotone with respect to D(L). (It is easy
to show that (1.23), (1.24) hold for the sequence (uy), t00.)
Now we show that A + B is coercive. By assumption IV we have

[A(u),u] = ca || w 70070y —€5 (1.25)
with constants co > 0, ¢5. Further, assumption VII implies

Bl _ | Bl _ [l Bw 7]
TP Sww*[nww} 0 (1.26)

if || w ||— 0. Thus by (1.25), (1.26)

Tl Tal ~ Jal
o llullr s Bl 1
Tl Tul?
LT B
nuw1p— I IR
Talr |~ Tul

if || u ||— oo, i.e. A+ B is coercive.
Examples for G7 and H’
a/ Let

(G (u)](t,z) :Vl(t,z,ul(m(t%z),/ﬂ d*(y)u’ (x2(8), y)dy), (t,2) € Qr,

[@wwmzﬁmqéwwwm@w@ﬁummm (1) € Q3
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where x1,x2 are C* functions satisfying x/; > 0, 0 < x;(t) < t; d*,d* are L™
functions; the functions 77 satisfy the Carathéodory conditions and

i (¢, 01, 62)] < (61, 02)|01" + K] () (1.27)
with continuous functions ¢/ having the property

=0, kleLiQ;).

lim
[(61,02)|—o0

By using Hoélder’s inequality and Vitali’s theorem it is not difficult to prove that
condition V is fulfilled (see [5], [6]) and by (1.27) one obtains VII.
b/ Similarly can be considered operators

G Wit = [+ (6l | PO dr (4 €

e - | o (1 [ @t ) ar. ) € 03

where 77 satisfy a condition which is analogous to (1.27).
c/ Let

[Hj(u)](t’aj) = hj(t,m,ul(Xl(t),CE),UQ(XQ(t),x)), (tax) € Sr,

where the functions h’ satisfy a condition analogous to (1.27). By § <1 —1/p
the trace operator W1=%P(Q)) — LP(0R) is bounded, thus by using Hélder’s
inequality and Vitali’s theorem, one can prove that VI and by the condition,
analogous to (1.27), VII are satisfied.

Similarly can be treated the following examples:

d/
[H (u)](t, x) :/ P (t, 1, z,ut (1, ®1(x)), u? (T, ®o(2)))dr, (t,x) € S,
0

where ®;, (®;)~! are C' functions in a neighbourhood of S, ®;(S) = S.
e/

(9 (w)](t,2) = W (¢, 2, /

W (x(t), y)do, / 2(x(8),y)doy), () € Sr,
S

S

t/
[ (w)](t, 7) = / gy (t,m, /S (7, y)doy, /S w2(r, y)day) dr, (t,z) € Sr.

0

By using monotonicity arguments one can prove uniqueness of the solution.
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Theorem 1.2 Assume that

> lal(t,2.n,¢) — al(t, 2, 0%, CN(G — ¢+ (1.28)
i=1
7 (t,2,m,¢) =V (t, 2,0, )] (n — %) = —co(n — n*)?
with some constant co and

i[HJ(u) — Hi(v),u —v] >0, wu,veLP0,T;V). (1.29)

Further, for the operators

[ (@)](t,x) = =[G (™ a)](t, @),

the inequality
| G (@) — G () Ir2qiy < €l =0 llL2(@u)xr2(Q2) (1.30)

holds where the constant ¢ is not depending on the positive number o and u,v.
Then the problem (1.9), (1.10) may have at most one solution.

Remark 2 It is easy to show that (1.30) holds for the above examples a/
and b/ if functions 77 satisfy (global) Lipschitz condition with respect to #; and
0. Further, (1.29) holds if [H7 (u)](t,x) = kI (t, x,u! (t,2),u?(t,z)) and

2
> (Wt x,01,00) — B (t,2,07,05)](0; — 0) > 0
j=1
(E.g. h! is not depending on 6o, h? is not depending on #; and for a.e. fixed
(t,x) the functions 8; — h’(t,z,6;) are monotone increasing.)

The proof of Theorem 1.2 Perform the substitution u = e®**%. Then

(1.9), (1.10) is equivalent with

Dyiid + A (@) + B (@', 4®) + a@’ = FI, (1.31)
@ (0) = 0. (1.32)
where
[A7 (@), v / lz al (t,z, @, D@ ) Dy’ + b (t, 2, @, D@’ v j] dtdx,
=1
@l (t,2,1,Q) = e~ *a](t,x, e, ‘“C)
W (t,x,m,C) = e~V (t, 2, e, e(),

[BY (1), v7] = / - GI(a)v? dtdr — H (@)’ dtdo,
J So

[G7(@))(t, 2) = e [G (e @) (t, @), [H (D)](t, ) = e [H (™)) (t, ).
The solution of (1.31), (1.32) is unique because by (1.28) - (1.29) the operator
A+ B+ «l is monotone if « is sufficiently large:

[(A+ B)(@) + ai — (A + B)(®) — ab, @ — 9] > 0.
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2 Boundedness and stabilization

One can prove an existence theorem also for the interval (0, 00). Denote by X
and X7 the set of functions

u:(0,00) =V, w:(0,00) = V*,
respectively, such that (for their restrictions to (0,7))
we LP(0,T; V), we LY0,T;V*)

for any finite 7' > 0. Further, let Q7 = (0,00) x Q;, Soo = [0,00) x S. L} (Q2,)
will denote the set of functions v’/ : QJ, — R such that vj|QjT € LYQ%Y);
L} (Soo) will denote the set of functions v : Soo — R such that v|s, € LY(St).

loc
Theorem 2.1 Assume that we have functions ag,bj : QL x R — R such
that assumptions I - IV are satisfied for any finite T' with the same constants
¢; and functions k. Further, operators G7 : X — L?OC(QgO) and H7 : X —
L} (Sx) are such that their restrictions to LP(0,T;V) satisfy V - VII. Assume
that G7, H7 are of Volterra type, which means that [G7(u)|(t,x), [H? (u)](t, z)
depend only on the restrictions of u? to (0,t) x Q; (7 = 1,2). Then for any
F e X% there exists u € Xoo such that the statement of Theorem 1.1 holds for
any finite T'.

Proof Let T; be a strictly increasing sequence of positive numbers with
lim(7T})) = +oo. For arbitrary k there exists a weak solution uy € LP(0,T); V)
of (1.9), (1.10) with 7' = T}. Since G’, H’ are of Volterra type, the restrictions
of u] to QJTk is a solution in QJTK if { > j. By using a diagonal process and
arguments of the proof of Theorem 1.1 we can select a subsequence of (uy)
which is weakly convergent to a function u € X in LP(0,T;V) for arbitrary
finite 7" and the statement of of Theorem 1.1 holds for v with any finite 7'.

If some additional conditions are satisfied then one can prove that

y(&) =l u(®) 17200y x £2(0)
is bounded in (0, 00) for a solution w.
Theorem 2.2 Let the assumptions of Theorem 2.1 be satisfied and assume that

p>2,
| F(t) |v+ is bounded ,t € [0, 00), (2.33)

for arbitrary u € X

/Q, |Gj(u)(t,a:)|qu+/ | () (£, 2)|9dors < (2.34)

’ S

cqsup |y| + ¢5(t) sup |y|p/2 + cg
[0,¢] [0,¢]
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where cy4,cg are constants and cs is a continuous function with lims c5 = 0.
Then y is bounded in [0,00) for a solution w. Further,

T
/ lalt) |7 dt < (T —To) + ¢, 0<Ty<To (2.35)
T

with some constants c’,c”, not depending on T1,Ts.
The idea of the proof Applying (1.9) to u = (u',u?) with arbitrary
T, < Ty we obtain

/ * (Dl (8), 0 (£))dt + / (AT (W] (1), () e+ (2.36)

L B (b ) (1), (£))dt = /T B (1), ud (1)

Since y is absolutely continuous and
Y (t) = 2(Dyu’ (1), u' (1)) + 2(Dy? (1), u? (1))

(see, e.g., [8]), by using assumption IV, (2.33), (2.34), Young’s inequality and
Holder’s inequality, we obtain from (2.36) the inequality

T>

W(T) ~y(T) + 5 [ O < (237

T

dt

Ts
CZ/ supy + ¢s(t) supy?’® + 1
T [0,] [0,]

where ¢, ¢} are constants. It is not difficult to show that (2.37) and p > 2 imply
the boundedness of y and (2.35).

Remark 3 The estimation (2.34) is fulfilled for G7, e.g. if G’ is given in
examples a/ or b/ and the functions 47 satisfy

|71(tama91592)|q’ |’71(t77_7x791’92)|q < 03(0% + 9%) + Cé(t)|92|p + C;’

|72(t,$,91,92)|q, |’72(t77_7x791’92)|q < 03(0% + 9%) + Cé(t)|91|p + C;a

respectively, with some constants c%, ¢, lim., cg = 0 and there is a positive
number p such that

Vit T, 2,01,05) =0 if 7 <t —p.

The estimation (2.34) is fulfilled for H7, e.g. if H? is given in examples ¢/, d/,
e/ or f/, the functins h? are bounded and

B (t,7,2,01,05) =0 if 7 <t —p.

By using monotonicity arguments, similarly to Theorem 2.2, one can prove
the following stabilization result.
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Theorem 2.3 Assume that the conditions of Theorem 2.2 are fulfilled and

n

> el (t2.n,¢) — al (t 0%, NG — ¢+
=1

o (t,z,m,¢) = b (t,z, 0", )] (i —n7) = clajln —n* P + (¢ — P

with some constant ¢ > 0 and a1 = 1, ag = 0; for a.e. © €y, each (n,¢) €
RnJrl

lim af (t,2,9,0) = af oo (2,0,¢),  lim b7 (t,2,n,¢) = Vo (2,1, €),

J

@ oo bl satisfy the Carathéodory condition. Further, assume that for any u €

/ |Gj(u)(t,:z:)|qu+/|Hj(u)(t,o:)|qdoz (2.38)
Q, s

J

< ca(t)sup |y| + es(t) sup [y[*/? + ¢s(t), t € (0,00)
t t

; ;
where

y(8) =l u(®) [I72(00)x L2 (00): lime, =0, v=4,5,6.

Finally, assume that there exists Foo € V* such that
lim || (1)~ P [[y-=0.
If w is a solution in (0,00) then there exists us € V such that
tlggo | w(t) = voo |l L2(01)xL2(022)= 0
and ueo 18 the (unique) solution of
Al (ul) = FL

where AJ_ is defined by
(AL (u,),w?) = 3 / ol (.ul, Dul) Dl dot
i=17%

/bﬁo(%ugo,Duﬁo)wjdx, w! € V.
Q.

J

Remark 4 The assumption (2.38) is satisfied for the examples a/ - f/ if
[V (¢, 2,01, 02)| 7 < @7 (t)(67 + 63) + D (1),

Y (t, 7, 2,01,02)|7 < D*(£) (07 + 63) + O(2),
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respectively, with lim,, ®* = limy, ® = 0 and there is a positive number p such

that ‘
¥ (t, 7, 2,601,02) =0if 7 <t — p;
further, ‘ } ‘ 3
|W7 (t,,01,02)|7 < ®(t), |h (t,7,2,01,02)|7 < D(t)
and _
W (t,7,2,01,0:) =0if 7 <t —p.
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