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Abstract. In this paper we investigate the oscillation and asymptotic behavior of solu-
tions to the n-th order neutral nonlinear differential equations of the form

[x(t) + g (t, x(τ(t)))](n) + f (t, x(σ(t))) = 0.
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1 Introduction

In the last two decades, there has been a growing interest in the study of oscillation properties
of solutions of higher order neutral differential equations, see [1–8] and the references cited
therein. This interest is due to the appearance of these equations in many applications in
natural science and technology. In particular, such equations appear in networks containing
lossless transmission lines and in problems dealing with vibrating masses attached to an
elastic bar, see Hale [3].

This paper is concerned with the oscillation of n-th order neutral type nonlinear differential
equations of the form

[x(t) + g (t, x(τ(t)))](n) + f (t, x(σ(t))) = 0, (1.1)

where n ≥ 2, and the following conditions are always assumed to hold:

(H1) τ(t), σ(t) ∈ C(R+, R), τ(t) < t, σ(t) ≤ t, and limt→∞ τ (t) = limt→∞ σ(t) = ∞, where
R+ = [0, ∞);

(H2) g : R+ ×R→ R is continuous, and xg(t, x) > 0;

(H3) |g(t, x)| ≤ M|x| for some M > 0;
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(H4) f : R+ ×R→ R is continuous, and x f (t, x) > 0;

(H5) The function f (t, x) can be written as f (t, x) = h(t, x)k(x), where h : R+ ×R → R is
continuous and xh(t, x) > 0, k : R→ R is continuous, positive for x 6= 0, nondecreasing
if x > 0, and nonincreasing if x < 0.

In this paper we establish new oscillation criteria for equation (1.1). This equation involves
one delay in the differential part and one delay in the non-differential part. Many authors have
used a frequent assumption for the differential part that is g(t, x(τ(t))) = p(t)x(τ(t)), where
p is a continuous function, see [2, 5–8]. Here the function g(t, x) can be a nonlinear function
of x. As well as the function f (t, x) can be nonlinear function. Moreover, both bounded and
unbounded solutions are considered.

We extend the arguments developed in Zafer [6], Dahiya and Zafer [1] and employ these
ideas to establish sufficient conditions for the oscillation of (1.1). One can see that the results
in [6] are included in our results.

As is customary, solution of (1.1) is said to be oscillatory if it has arbitrarily large zeros
and non-oscillatory otherwise.

This paper is organized as follows: Section 2 states some useful lemmas that are used in
the proof of the results. Section 3 is devoted to our main results. In Section 4 some examples
are given to illustrate the applicability of the new theorems.

2 Auxiliary lemmas

Lemma 2.1 ([4, p. 193]). Let y(t) be an n times differentiable function on R+ of constant sign, y(n)(t)
be of constant sign and not identically equal to zero in any interval [t0, ∞), t0 ≥ 0, and y(t)y(n)(t) ≤ 0.
Then:

i. There exists a t1 ≥ t0 such that y(k)(t) , k = 1, . . . , n− 1, is of constant sign on [t1, ∞),

ii. There exists an integer l, 0 ≤ l ≤ n− 1 , with n− l odd, such that

y(t)y(k)(t) > 0, k = 0, 1, . . . , l, t ≥ t1, (2.1)

(−1)n+k−1 y(t)y(k)(t) > 0, k = l + 1, . . . , n− 1, t ≥ t1, (2.2)

and

iii.

|y(t)| ≥ (t− t1)
n−1

(n− 1) . . . (n− l)

∣∣∣y(n−1)
(

2n−l−1t
)∣∣∣ , t ≥ t1. (2.3)

Lemma 2.2 ([5]). Let n ≥ 3 be an odd integer, β(t) ∈ C(R+, R+), 0 < β(t) ≤ β0 , and y ∈ Cn

(R+, R) such that (−1)i y(i)(t) > 0, 0 ≤ i ≤ n− 1 , and y(n)(t) ≤ 0. Then

y (t− β (t)) ≥ (β (t))n−1

(n− 1)!
y(n−1) (t) , for t ≥ β0. (2.4)
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3 Main results

Theorem 3.1. Assume that φ(t) is a nonnegative continuous function on R+, and that w(t) > 0 for
t > 0 is continuous and nondecreasing on R+ with:

|h(t, x)| ≥ φ(t)w

(
|x|

[σ (t)]n−1

)
, (3.1)

∫ ±α

0

dx
w (x)

< ∞ , for every α > 0, (3.2)

and ∫ ∞
φ(t) dt = ∞. (3.3)

Then:

i. If n is even, every solution x(t) of equation (1.1) is oscillatory.

ii. If n is odd, every unbounded solution x(t) of equation (1.1) is oscillatory.

Proof. Assume that equation (1.1) has a non-oscillatory solution x(t). Without loss of general-
ity, we may assume that x(t) is eventually positive (the proof is similar when x(t) is eventually
negative). That is, let x(t) > 0, x(τ(t)) > 0, and x(σ(t)) > 0 for t ≥ t0 ≥ 0.

Set
z(t) = x(t) + g(t, x(τ(t))). (3.4)

By (H2), z(t) > x(t) > 0 for t ≥ t0 ≥ 0.
From (1.1) and (3.4) we have

z(n)(t) = − f (t, x(σ(t))) < 0. (3.5)

Thus z(n)(t) < 0. It follows that z(i)(t) (i = 0, 1, . . . , n− 1) is strictly monotonic and of constant
sign eventually.

By applying Lemma 2.1, z(t) satisfies (2.1) and (2.2). If n is even, the integer l associated
with z(t) is odd, i.e. l ≥ 1. But if n is odd then l ∈ {0, 2, . . . , n− 1}, and since the solution x(t)
is unbounded for odd orders, then z(t) is unbounded, and hence l ≥ 2. Therefore, either n is
odd or even, then l ≥ 1. Hence z(t) is increasing for t ≥ t1 ≥ t0.

From (H3) and (3.4) we have

z(t) ≤ x(t) + Mx(τ(t)). (3.6)

Let x(s) = max{x(t), x(τ(t))}, where τ(t) ≤ s ≤ t and assume that τ(t) ≥ t1 for t ≥ t2 ≥
t1. Using (3.6) with the fact that z(t) is increasing we obtain

z(s) ≤ z(t) ≤ (1 + M)x(s).

Hence

x(s) ≥ z(s)
1 + M

,

or

x(t) ≥ z(t)
1 + M

, t ≥ t2. (3.7)
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From (2.3), and the fact that z(t) is increasing, we have

z(t) ≥ z(2l−n+1t) ≥ 2(l−n+1)(n−1)

(n− 1) . . . (n− l)
(t− t3)

n−1 z(n−1) (t) , t ≥ t3 = 2n−l−1t1.

Therefore, by choosing t4 > t3, sufficiently large, we have

z (t) ≥ ctn−1z(n−1) (t) , t ≥ t4, (3.8)

where c > 0 is an appropriate constant dependent upon n and l.
Let t5 ≥ max{t2, t4} be such that σ(t) ≥ t5 for all t ≥ t6. From (3.7), (3.8), and the

decreasing character of z(n−1)(t) we then have

x (σ(t))

[σ (t)]n−1 ≥
c

1 + M
z(n−1) (t) , t ≥ t6. (3.9)

Using (H5), (3.1) and (3.9), it follows from (3.5) that

z(n) (t) + φ (t)w
(

c
1 + M

z(n−1) (t)
)

k(x(σ(t))) ≤ 0. (3.10)

Since z(t) > 0 and z′(t) > 0 limt→∞ z(t) > 0, this implies that lim inft→∞ x(t) 6= 0. Let
ε > 0 such that x(σ(t)) > ε for t ≥ t7 ≥ t6.

Using the fact that k(x) is nondecreasing it follows from (3.10) that for t ≥ t7

z(n) (t) + φ (t)w
(

c
1 + M

z(n−1) (t)
)

k(ε) ≤ 0. (3.11)

Setting u(t) = c
1+M z(n−1)(t), and integrating (3.11) divided by w(u(t)) from t7 to t, we

obtain
c

1 + M
k(ε)

∫ t

t7

φ (v) dv ≤
∫ u(t7)

u(t)

ds
w (s)

. (3.12)

Since u′(t) < 0, u(t) is decreasing. And since u(t) > 0, it follows that limt→∞ u(t) = L ≥ 0.
If L 6= 0 , then by (3.10) we must have ∫ ∞

t8

φ (t) dt < ∞, (3.13)

which contradicts (3.3). In the case when L = 0, letting t → ∞ in (3.12) and using (3.2), we
again obtain (3.13). Thus the proof is complete.

In the next theorem besides conditions (H1)–(H5) we further assume that:

(H6) 0 < t− σ(t) ≤ σ0, where σ0 is positive constant;

(H7) The constant M in (H3) is assumed to be 0 < M < 1.

Theorem 3.2. Assume that φ(t) is a nonnegative continuous function on R+, and that w(t) > 0 for
t > 0 is continuous and nondecreasing on R+ with:

|h(t, x)| ≥ φ(t)w
(

|x|
[t− σ(t)]n−1

)
, (3.14)
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and ∫ ±α

0

dx
w (x)

< ∞ , for every α > 0. (3.15)

If n is odd and ∫ ∞
φ(t)dt = ∞, (3.16)

then every bounded solution x(t) of equation (1.1) is either oscillatory or tends to zero as t −→ ∞.

Proof. Assume that equation (1.1) has a bounded non-oscillatory solution x(t). Without loss
of generality, we may assume that x(t) is eventually positive (the proof is similar when x(t) is
eventually negative). That is, let x(t) > 0, x(τ(t)) > 0, and x(σ(t)) > 0 for t ≥ t0 ≥ 0.

Set z(t) as in (3.4). By (H2), z(t) > x(t) > 0 for t ≥ t0 ≥ 0. Then from (1.1) and (3.4) we
have (3.5). Thus z(n)(t) < 0. It follows that z(i)(t) (i = 0, 1, . . . , n− 1) is strictly monotonic and
of constant sign eventually.

From (H3) and (3.4) we have (3.6), which implies that z(t) is bounded for t ≥ t1 ≥ t0.
By applying Lemma 2.1, there exists a t2 ≥ t1 and an integer l with n− l odd such that

(2.1) and (2.2) are satisfied by z(t) for t ≥ t2. Since n is odd and z(t) is bounded then l = 0
(otherwise z(t) is not bounded). Hence from relations (2.1) and (2.2) we have

(−1)iz(i) (t) > 0, i = 0, 1, . . . , n− 1. (3.17)

Thus z(t) is decreasing for t ≥ t2.
From (3.6) and the fact that z(t) > x(t), we obtain

x(t) ≥ z(t)−Mx(τ(t)) ≥ z(t)−Mz(τ(t)),

or

x(t) ≥ z(τ(t))
[

z(t)
z(τ(t))

−M
]

. (3.18)

From (3.17) and from z(t) > 0, z′(t) < 0 and z′′(t) > 0, we have limt→∞ z(t) = λ ≥ 0.
Now, we consider two cases:

Case I: λ > 0. Since z(t) is decreasing, for every ε > 0 there exists t3 ≥ t2 such that

λ ≤ z(t) ≤ z(τ(t)) ≤ λ + ε

for all t ≥ t3. From this we can conclude that

z(t)
z(τ(t))

≥ λ

λ + ε
, for t ≥ t3.

Let us choose an ε > 0 and ε1 > 0 such that M + ε1 ≤
λ

λ + ε
. Thus

z(t)
z(τ(t))

≥ M + ε1, t ≥ t3.

Using this inequality in (3.18), and the fact that z(t) is decreasing, we obtain

x(t) ≥ ε1z(t), t ≥ t3. (3.19)



6 R. Al-Hamouri and A. Zein

Since n is odd, from (H6) and (3.17) we can apply Lemma 2.2. Then we have

z (σ (t)) = z (t− (t− σ (t))) ≥ [t− σ (t)]n−1

(n− 1)!
z(n−1) (t) , t ≥ t3 + σ0.

Hence,

z (σ (t)) ≥ [t− σ (t)]n−1

(n− 1)!
z(n−1) (t) , t ≥ t3 + σ0. (3.20)

Let t4 ≥ t3 + σ0 be such that σ(t) ≥ t4 for all t ≥ t5. From (3.19), and (3.20) we have

x (σ (t))

[t− σ (t)]n−1 ≥
ε1z(n−1) (t)
(n− 1)!

, t ≥ t5. (3.21)

Using (3.14), and (3.21), then it follows from (3.5) that

z(n) (t) + φ (t)w
(

cz(n−1) (t)
)

k(x(σ(t))) ≤ 0,

where c =
ε1

(n− 1)!
. Proceeding as in the proof of Theorem 3.1, we obtain a contradiction.

Case II: λ = 0, since x(t) ≤ z(t), x(t) tends to zero as t −→ ∞, and this completes the
proof.

4 Examples

Example 4.1. Consider the equation[
x(t) + (5 + sin2 t)2 x(t− 2π)

5 + x2(t− 2π)

]′′
+ 9x3(t− 4π) = 0. (4.1)

Here |g(t, x)| = (5+ sin2 t)2
∣∣ x

5+x2

∣∣ < 7.2|x|. By setting h(t, x) = 9x
1
3 , k(x) = x

8
3 , w(x) = x

1
3 ,

φ(t) = 9(t − 4π)
1
3 , we can see that all conditions of Theorem 3.1 are satisfied. Thus every

solution of equation (4.1) is oscillatory. It is easy to check that x(t) = sin t is such a solution.

Example 4.2. Consider the equation[
x(t) + e2π(4 + e−t)x(t− 2π)

](4)
+ e2π(20− e−t)x(t− 2π) = 0. (4.2)

Here |g(t, x)| = e2π(4 + e−t) |x| ≤ 5e2π|x|. If we take h(t, x) = e2π(20− e−t)x
1
3 , k(x) = x

2
3 ,

w(x) = x
1
3 , φ(t) = e2π(20− e−t)(t− 2π), we conclude from Theorem 3.1 that every solution

of equation (4.2) is oscillatory. In fact, x(t) = et sin t is such an unbounded solution.

Example 4.3. Consider the equation[
x(t) + e

3π
2 (1 + e−t)x

(
t− 3π

2

)]′′′
+ e2π(4− e−t)x(t− 2π) = 0. (4.3)

Here |g(t, x)| = e
3π
2 (1 + e−t) |x| ≤ 2e

3π
2 |x|. By setting h(t, x) = e2π(4− e−t)x

1
3 , k(x) = x

2
3 ,

w(x) = x
1
3 , φ(t) = e2π(4− e−t)(t− 2π)

2
3 , we see that all conditions of Theorem 3.1 are satisfied.

Hence every unbounded solution of equation (4.3) is oscillatory. Indeed, x(t) = et sin t is such
an unbounded solution of the equation.
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Example 4.4. Consider the equation[
x(t) +

1 + sin2 t
4

x(t− 2π)

1 + x2(t− 2π)

]′′′
+

5
4

x
(

t− 3π

2

)
= 0. (4.4)

Here |g(t, x)| = 1+sin2 t
4

∣∣ x
1+x2

∣∣ < 1
2 |x|. By taking h(t, x) = 5

4 x
1
3 , k(x) = x

2
3 , w(x) = x

1
3 ,

φ(t) = 5
4

( 3π
2

) 2
3 , all conditions of Theorem 3.2 are satisfied. Thus every bounded solution of

equation (4.4) is either oscillatory or tends to zero as t −→ ∞. In fact, x(t) = sin t is an
oscillatory solution of the equation.

Example 4.5. Consider the equation[
x(t) +

e−t

2
x
(

t
2
− ln 2

)]′′′
+ 24e4t−6x3(t− 1) = 0. (4.5)

Here |g(t, x)| = e−t

2 |x| ≤
1
2 |x|. All conditions of Theorem 3.2 are satisfied with h(t, x) =

24e4t−6x
1
3 , k(x) = x

8
3 , w(x) = x

1
3 , φ(t) = 24e4t−3. So every bounded solution of equation (4.5)

is either oscillatory or tends to zero as t −→ ∞. Indeed, x(t) = e−2t is a solution that tends to
zero as t −→ ∞.
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