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GLOBAL EXISTENCE AND ASYMPTOTIC BEHAVIOUR FOR A

DEGENERATE DIFFUSIVE SEIR MODEL

TARIK ALIZIANE AND MICHEL LANGLAIS

Abstract. In this paper we analyze the global existence and asymptotic behavior of a
reaction diffusion system with degenerate diffusion arising in modeling the spatial spread of
an epidemic disease.

1. Introduction

In this paper we shall be concerned with a degenerate parabolic system of the form

(1.1)















∂tU1 − ∆Um1

1 = −γ(U1, U2, U3, U4) − νU1 = f1(U1, U2, U3, U4),
∂tU2 − ∆Um2

2 = γ(U1, U2, U3, U4) − (λ+ µ)U2 = f2(U1, U2, U3, U4),
∂tU3 − ∆Um3

3 = λπU2 − (α +m+ µ)U3 = f3(U1, U2, U3, U4),
∂tU4 − ∆Um4

4 = (1 − π)λU2 + αU3 + νU1 = f4(U1, U2, U3, U4).

in Ω × (0,+∞), subject to the initial conditions

(1.2) Ui(x, 0) = Ui,0(x) ≥ 0, x ∈ Ω; i = 1..4.

and to the Neumann boundary conditions

(1.3)
∂Umi

i

∂η
(x, t) = 0, x ∈ ∂Ω, t > 0, i = 1..4.

Herein, Ω is an open, bounded and connected domain in IRN , N ≥ 1, with a smooth
boundary ∂Ω; ∆ is the Laplace operator in IRN . Powers mi verify mi > 1, i = 1..4.

In the spatially homogeneous case and for ν = µ = α = m = 0 and π = 1 this problem
reduces to one of the models of propagation of an epidemic disease devised in Kermack and
McKendricks [21], namely







S ′ = −γSI,
I ′ = +γSI − λI,
R′ = +λI.

In that setting it is known, loc. cit., that I(t) → 0 as t→ +∞, while the large time behavior
of S(t) and R(t) depends on the initial state (S0, I0, R0); note that for t > 0, S(t) + I(t) +
R(t) = S0 + I0 +R0.

This basic model served as a starting point for many further developments, both from
epidemiological or mathematical point of vue : see the books of Busenberg and Cooke [7] or
Capasso [8] and their references. These lead to so-called (S − E − I −R) models : S is the
distribution of susceptible individuals in a given population, γ(S,E, I, R) is the incidence
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term or number of susceptible individuals infected by contact with an infective individual
I per time unit and becoming exposed E, while R is the density of removed or resistant
(immune) individuals. Then λ (resp. α) is the inverse of the duration of the exposed stage
(resp. infective stage) or rate at which exposed individuals enter the infective class (resp.
infective individuals who do not die from the disease recover), m is the death-rate induced
by the disease. The last two parameters are control parameters : first ν is a vaccination
rate; next, for a population of animals, as it is considered here as in Anderson et al [5],
Fromont et al [17], Courchamp et al [10] or Langlais and Suppo [23], µ is an elimination
rate of exposed and infective individuals. Lastly, as it is suggested by the FeLV, a retrovirus
of domestic cats (Felis catus) see [17], one also introduces a parameter π measuring the pro-
portion of exposed individuals which actually develop the disease after the exposed stage,
the remaining proportion 1 − π becoming resistant.

The nonlinear incidence term γ takes various forms as it can be found from the literature;
at least two of them are widely used in applications

γ(S,E, I, R) =















γSI, [5, 8, 21],
mass action in [7, 8] ,
or pseudo-mass action in [20, 12] .

γ
SI

S + E + I +R
, [10, 17, 23],

proportionate mixing in [7]
or true mass action in [20, 12] .

We refer to De Jong et al, [20] and Diekmann et al [12] for a discussion supporting the
second one in populations of varying size and Fromont et al [18] for a specific discussion in
the case of a cat population. See Capasso and Serio [9] and Capasso [8] for more general
incidence terms. Note that no demographical effect is considered in our model.

A mathematical analysis of the model of Kermack and McKendricks for spatially struc-
tured populations with linear diffusion, i.e. mi = 1, i = 1..4, is performed in Webb [27].
Nonlinear but nondegenerate diffusion terms are introduced in Fitzgibbon et al [16]. Global
existence and large time behavior results are derived therein. Homogeneous Neumann bound-
ary conditions correspond to isolated populations.

A comprehensive analysis of generic (S − E − I − R) models with linear diffusion is ini-
tiated in Fitzgibbon and Langlais [14] and Fitzgibbon et al [15]. These models include a
logistic effect on the demography, yielding L1(Ω) a priori estimates on solutions independent
of the initial data for large time; this allows to use a bootstrapping argument to show global
existence and exhibit a global attractor in (C(Ω))4.

For degenerate reaction-diffusion equations, a similar approach is followed in Le Dung
[13]. In our case, L1(Ω) a priori estimates can be established for nonegative solutions upon
integrating over Ω × (0, t)

4
∑

i=1

∫

Ω

Ui(x, t)dx ≤
4

∑

i=1

∫

Ω

Ui,0(x)dx for all t > 0,
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but they cannot be found to be independent of the initial data. Moreover, generally speaking,
the large time behavior of solutions depends on these initial datas, as it can be already seen
for spatially homogeneous problems see §§5.3. This can also be checked on the disease free
model: assuming Ui,0(x) ≡ 0 in Ω i = 2..4, the uniqueness result given in Theorem 1 implies
Ui(x, t) ≡ 0 in Ω × (0,+∞) i = 2..4. Then, it should be clear that γ(U1, 0, 0, 0) = 0 for any
reasonable incidence term so that the equation for U1 reads

(1.4) ∂tU1 − ∆Um1

1 + νU1 = 0 in Ω × (0,+∞);

this is the so-called porous medium equation. Now U1 verifies homogeneous Neumann bound-
ary conditions and it is well-known (see Alikakos [1]) that as t −→ +∞







U1(., t) −→ 0 if ν > 0,

U1(., t) −→
1

mes(Ω)

∫

Ω

U1,0(x)dx if ν = 0.

The case of mass action incidence was studied by Aliziane and Moulay [4] and they
established the long time behavior of the solution of the SIS model, Aliziane and Langlais
[3] study the case of models include a logistic effect on the demography and they established
global existence result of the solution and existence of periodic solution. We also obtain
the existence of the global attractor. Finally Hadjadj et al [19] study the case where the
source term depends on gradient of solution, they study existence of globally bounded weak
solutions or blow-up, depending on the relations between the parameters that appear in the
problem.

2. Main results

2.1. Basic assumptions and notations. Herein, Ω is an open, bounded and connected
domain of the N -dimensional Euclidian space IRN , N ≥ 1, with a smooth boundary ∂Ω, a
(N − 1)-dimensional manifold so that locally Ω lies on one side of ∂Ω; x = (x1, ..., xN ) is the
generic element of IRN . Next we shall denote the gradient with respect to x by ∇ and the
Laplace operator in IRN by ∆.
Then we set Ω × (0, T ) = QT and for 0 ≤ τ < T , Ω × (τ, T ) = Qτ,T . The norm in Lp(Ω) is
‖ ‖p,Ω and the norm in Lp(Qτ,T ) is ‖ ‖p,Qτ,T

for 1 ≤ p ≤ +∞.

Next we shall assume throughout this paper

(H0) Powers mi verify mi > 1, i = 1..4.
(H1) µ, α, ν,m, λ, π are nonnegative constants, λ+ µ > 0, α +m+ µ > 0 and 0 ≤ π ≤ 1.
(H2) Ui,0 ∈ C(Ω̄), Ui,0(x) ≥ 0, x ∈ Ω, i = 1..4.
(H3) γ : IR4

+ −→ IR+ is a locally lipschitz continuous function with polynomial growth
and γ(0, U2, U3, U4) = 0 on IR3

+.
(H4) There exists nonnegative constants C1, C2 and r such that γ(U1, U2, U3, U4) ≤ C1 +

C2U
r
1 on IR4

+.

Remark 1. In the limiting case λ + µ = 0 the equations for U3 and U4 do not depend on

U2, the equation for U3 being a porous medium type equation as in (1.4). This condition also

implies λ = 0 which is not relevant if one goes back to our motivating problem.
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In the limiting case α +m+ µ = 0 one could not get L∞(Q0,∞) bounds for U3, but one still

has global existence.

The assumption γ(0, U2, U3, U4) = 0 is required to make sure that the nonnegative orthant
IR4

+ is forward invariant by (1.1); this is a natural assumption for our motivating problem :
no new exposed individuals when there is no susceptible ones.
(H4) removes mass action incidence terms; in that case one can also get global existence
results, but no L∞(Q0,∞) bounds for U2 and U3.

2.2. Main results. System (1.1) is degenerate : when Ui = 0 the equation for Ui degen-
erates into first order equation. Hence classical solutions cannot be expected for Problem
(1.1)− (1.3). A suitable notion of generalized solutions is required : we adopt the notion of
weak solution introduced in Oleinik et al [25].

Definition 1. A quadruple (U1, U2, U3, U4) of nonnegative and continuous functions Ui :
Ω × [0,+∞) → [0,+∞), i = 1..4, is a weak solution of Problem (1.1) − (1.3) in QT , T > 0

if for each i = 1..4 and for each ϕi ∈ C1(Q̄T ), such that
∂ϕi

∂η
= 0 on ∂Ω × (0, T ).

(i) ∇Umi exists in the sense of distribution and ∇Umi

i ∈ L2(QT );
(ii) Ui verifies the identity

(2.1)

∫

Ω

Ui(x, T )ϕi(x, T )dx+

∫

QT

∇Umi

i ∇ϕi(x, t)dxdt

=

∫

QT

(∂tϕiUi − fiϕi)(x, t)dxdt+

∫

Ω

Ui,0(x)ϕi(x, 0)dx.

We are now ready to state our first result.

Theorem 1. For each quadruple of continuous nonnegative initial functions (U1,0, U2,0, U3,0, U4,0)
there exists a unique weak solution (U1, U2, U3, U4) of Problem (1.1)− (1.3) on Q∞; further-

more

(i) For all i = 1..3, Ui ∈ L1 ∩ L∞(Q∞) and ∇Umi

i , ∂tU
mi

i ∈ L2(Qτ,∞), τ > 0;
(ii) U4 ∈ L1 ∩ L∞(QT ) and ∇Um4

4 , ∂tU
m4

4 ∈ L2(Qτ,T ), τ > 0.

The proof is found in Section §4.
Now we look at the large time behavior of weak solutions.

Theorem 2. There exist nonnegative constants U ∗
1 , U

∗
4 such that

U2(., t), U3(., t) −→ 0 , U1(., t) −→ U∗
1 in C(Ω̄) as t −→ +∞

and U4(t) −→ U∗
4 in Lp(Ω) forall p ≥ 1 as t −→ +∞; .

moreover, if ν > 0 then U ∗
1 = 0.
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The proof is found in Section §5.

Remark 2. In the non degenerate case m4 = 1 one has that U4(., t) −→ U∗
4 in C(Ω̄). More

generally, this still holds provided that U4 lies in L∞(Q∞), the proof being similar to the one

for U1 when ν = 0, see subsection §§5.2.

3. Auxiliary problem and a priori estimates

In this section we consider an auxiliary problem depending on a small parameter ε, with
0 < ε ≤ 1. Namely let us introduce in Ω× (0,+∞) the quasilinear nondegenerate initial and
boundary value problem

(3.1)















∂tU1 − ∆d1(U1) = −γ((U1 − ε)+, U2, U3, U4) − ν(U1 − ε),
∂tU2 − ∆d2(U2) = γ((U1 − ε)+, U2, U3, U4) − (λ+ µ)(U2 − ε),
∂tU3 − ∆d3(U3) = λπ(U2 − ε) − (α +m + µ)(U3 − ε),
∂tU4 − ∆d3(U4) = (1 − π)λ(U2 − ε) + α(U3 − ε) + ν(U1 − ε).

(3.2)







Ui,ε(x, 0) = Ui,0,ε(x) ≥ 0, x ∈ Ω;
∂di(Ui,ε)

∂η
(x, t) = 0, x ∈ ∂Ω, t > 0,

i = 1..4.

Herein (r)+ is the nonnegative part of the real number r; for each i = 1..4 di : IR −→ ( ε
2
,+∞)

is a smooth and increasing functions with

(3.3) di(u) = umi , ε ≤ u;

(Ui,0,ε)i=1..4 is a quadruple of smooth functions over Ω̄ such that

(3.4)











Ui,0,ε(x) ≥ ε, x ∈ Ω, 0 < ε ≤ 1;
∫

Ω

(Ui,0,ε(x) − ε)dx =

∫

Ω

Ui,0(x)dx

Ui,0,ε −→ Ui,0 in C(Ω̄), as ε −→ 0;

i = 1..4;

we refer to [2, 19] for a construction of such a set of initial data. From standard results, i.e.
[22] or [26], local existence and uniqueness of a quadruple (U1,ε, U2,ε, U3,ε, U4,ε), a classical
solution of (3.1) − (3.2) in some maximal interval [0, Tmax,ε) is granted.

Looking at the equation for Ui,ε it is checked that ε is a subsolution, thus 0 < ε ≤
Ui,ε(x, t), x ∈ Ω, 0 < t < Tmax,ε . Next, from the maximum principle and the nonnegativity
of γ, ν and U1,ε − ε, it follows U1,ε(x, t) ≤ ‖U1,ε,0‖∞,Ω, x ∈ Ω, 0 < t < Tmax,ε. As a
consequence one has

(3.5)

{

0 < ε ≤ U1,ε(x, t) ≤ ‖U1,ε,0‖∞,Ω, x ∈ Ω, t < Tmax,ε

0 < ε ≤ Ui,ε(x, t), x ∈ Ω, t < Tmax,ε, i = 2..4

Then one can apply results in [16] to show global existence, i.e. Tmax,ε = +∞, of a classical
solution for (3.1)− (3.2). Using (3.3) and (3.5) this yields global existence for the initial and
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boundary value problem

(3.6)















∂tU1 − ∆Um1

1 = −γ(U1 − ε, U2, U3, U4) − ν(U1 − ε),
∂tU2 − ∆Um2

2 = γ(U1 − ε, U2, U3, U4) − (λ+ µ)(U2 − ε),
∂tU3 − ∆Um3

3 = λπ(U2 − ε) − (α +m + µ)(U3 − ε),
∂tU4 − ∆Um4

4 = (1 − π)λ(U2 − ε) + α(U3 − ε) + ν(U1 − ε).

in Ω × (0,+∞), together with (3.2).

We derive a priori estimates. First, using the L1 property of U1,0,ε in (3.4) and the
nonnegativity of U1,ε − ε, a straightforward integration of the equation for U1,ε over Ω ×
(0,+∞) gives:

(3.7)

∫

QT

(γ(U1,ε − ε, U2,ε, U3,ε, U4,ε) + ν(U1,ε − ε))(x, t)dxdt ≤

∫

Ω

U1,0(x)dx.

In what follows T is a positive number, M1, ..,Mn are positive constants independent of T
and ε, 0 < ε ≤ 1, and F1, .., Fn are non decreasing functions of T independent of ε, 0 < ε ≤ 1.

Lemma 1. There exists a constant M1 and nondecreasing function F1, independent of ε, 0 <
ε ≤ 1 such that

(3.8) 0 < ε ≤ Ui,ε(x, t) ≤ M1, x ∈ Ω, t > 0, i = 1..3;

(3.9) ε ≤ U4,ε(x, t) ≤ F1(T ), x ∈ Ω, 0 < t < T.

Proof. The estimate for U1,ε follows from (3.5) and the choice of (U1,0,ε)ε>0.
Multiplying the equation for U2,ε by p (U2,ε − ε)p−1, p ≥ 1, and integrating over Ω one has

d

dt
‖U2,ε(., t) − ε‖p

p,Ω + p(λ+ µ) ‖U2,ε(., t) − ε‖p
p,Ω

≤ p

∫

Ω

γ(U1,ε − ε, U2,ε, U3,ε, U4,ε)(U2,ε − ε)p−1(x, t)dx;

keeping in mind λ+ µ > 0 from (H1), one gets from Young’s inequality

(3.10)
d

dt
‖U2,ε(., t) − ε‖p

p,Ω ≤ (
1

λ+ µ
)
p−1 ∫

Ω

[γ(U1,ε − ε, U2,ε, U3,ε, U4,ε)]
p(x, t)dx.

A further integration over (0, T ) leads to

‖U2,ε(., T ) − ε‖p
p,Ω ≤ ‖U2,0,ε − ε‖p

p,Ω + (
1

λ+ µ
)
p−1 ∫

QT

[γ(U1,ε − ε, U2,ε, U3,ε, U4,ε)]
p(x, t)dxdt.

Using the already known L∞ estimate for U1,ε, assumption (H4) and inequality (3.7) one
arrives at : for each T > 0

(3.11) ‖U2,ε(., T ) − ε‖p
p,Ω ≤ ‖U2,0,ε − ε‖p

p,Ω + (
1

λ+ µ
)
p−1

(C1 + C2M
r
1 )p−1‖U1,0‖1,Ω.

EJQTDE, 2005 No. 2, p. 6



To conclude, one observes that U2,ε − ε being continuous on Ω̄ × [0,+∞) it follows

lim
p→+∞

‖U2,ε(., t) − ε‖
p,Ω = ‖U2,ε(., t) − ε‖

∞,Ω.

Hence for some constant M2 independent of ε, 0 < ε ≤ 1, one gets

(3.12) 0 < ε ≤ U2,ε(x, t) ≤ M2, x ∈ Ω, t > 0.

Now, integrating the equation for U2,ε over Ω × [0, T ), using the L1 property of U2,0,ε in
(3.4), the nonnegativity of U2,ε − ε and (3.7) one has for 0 < ε ≤ 1

(3.13) (λ+ µ)

∫

QT

(U2,ε − ε)(x, t)dxdt ≤

∫

Ω

[U1,0,ε(x) + U2,0,ε(x)]dx.

The estimate for U3,ε follows from computations similar to the ones for U2,ε above, carried
over the equation for U3,ε and getting help from (3.13) and from the positivity of α+m+µ.

Along the same lines, from the equation for U3,ε one gets for 0 < ε ≤ 1

(3.14) (α+m + µ)

∫

QT

(U3,ε − ε)dxdt ≤

∫

Ω

[U1,0,ε(x) + U2,0,ε(x) + U3,0,ε(x)]dx.

Hence, going back to the equation for U4,ε one can derive the a priori estimate upon multi-
plying it by p (U2,ε − ε)p−1, p ≥ 1 and using (3.13) − (3.14).

�

Lemma 2. There exist constants Mi,3, i = 1..3 and a nondecreasing function F2, indepen-

dent of ε, 0 < ε ≤ 1 such that

(3.15)

∫

QT

‖∇Umi

i,ε ‖
2(x, t)dxdt ≤ Mi,3, T > 0, i = 1..3;

(3.16)

∫

QT

‖∇Umi

4,ε ‖
2(x, t)dxdt ≤ F2(T ), T > 0.

Proof. The estimate for ∇Um1

1,ε is obtained upon multiplying the equation for U1,ε by Um1

1,ε ,
integrating over Ω × (0, T ) and using the nonnegativity of γ and U1,ε − ε. One finds

M1,3 =
1

m1 + 1

∫

Ω

Um1+1
1,ε (x, 0)dx

Proceeding along the same lines for U2,ε one gets

1

m2 + 1

∫

Ω

Um2+1
2,ε (x, T )dx+

∫

QT

‖∇Um2

2,ε (x, t)‖2dxdt ≤

1

m2 + 1

∫

Ω

Um2+1
2,ε (x, 0)dx+

∫

QT

γ(U1,ε − ε, U2,ε, U3,ε, U4,ε)[U2,ε]
m2(x, t)dxdt.
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Using the properties of U2,0,ε, the uniform estimate for U2,ε in Lemma 1 and the L1 estimate
for γ in (3.7) we obtain

∫

QT

‖∇Um2

2,ε (x, t)‖2dxdt ≤M2,3, T > 0.

A similar computation supplies the estimate for U3,ε. The estimate for U4,ε then follows.
�

Lemma 3. For all t > 0

(3.17)

‖∇Um1

1,ε (., t)‖2
2,Ω ≤

2

t(m1 + 1)

∫

Ω

Um1+1
1,0,ε (x)dx

+m2
1ν

2‖U1,0‖
m1−1
∞,Ω

∫

Q t
2

,t

(U1,ε − ε)2(x, s)dxds

+m2
1‖U1,0‖

m−1
∞,Ω (C1 + C2‖U1,0‖

r

∞,Ω)

∫

Q t
2

,t

γ(U1,ε − ε, U2,ε, U3,ε, U4,ε)(x, s)dxds

Proof. Let us multiply the equation for U1,ε by ∂tU
m1

1,ε and integrate over Ω×(τ, t), t
2
≤ τ ≤ t;

then one finds
(3.18)

(
2

m1 + 1
)2

∫

Qτ,t

(∂tU
m1+1

2

1,ε )2(x, s)dxds+ ‖∇Um1

1,ε (., t)‖2
2,Ω

≤

∫

Qτ,t

(−γ(U1,ε − ε, U2,ε, U3,ε, U4,ε) − ν(U1,ε − ε))∂tU
m1

1,ε (x, s)dxds+ ‖∇Um1

1,ε (., τ)‖2
2,Ω.

Next, for any suitably smooth and nonnegative function U and any m > 1 one gets

∂tU
m =

2m

m+ 1
U

m−1

2 ∂tU
m+1

2 so that

(3.19)

∫

Qτ,t

(−γ(U1,ε − ε, U2,ε, U3,ε, U4,ε) − ν(U1,ε − ε))∂tU
m1

1,ε (x, s)dxds

≤
2

(m1 + 1)2

∫

Q t
2

,t

(∂tU
(

m1+1

2
)

1,ε )2(x, s)dxds

+m2
1ν

2

∫

Q t
2

,t

[(U1,ε − ε)U
m−1

2

1,ε ]2(x, s)dxds

+m2
1

∫

Q t
2

,t

[γ(U1,ε − ε, U2,ε, U3,ε, U4,ε)U
m−1

2

1,epsilon]2(x, s)dxds.

The last term on the right hand side of this inequality is bounded from above by

m2
1‖U1,ε‖

m−1
∞,Q∞

‖γ(U1,ε − ε, U2,ε, U3,ε, U4,ε)‖∞,Q∞

∫

Q t
2

,t

γ(U1,ε − ε, U2,ε, U3,ε, U4,ε)(x, s)dxds.
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putting this estimate in (3.18) one obtains

(3.20)

‖∇Um1

1,ε (., t)‖2
2,Ω ≤ ‖∇Um1

1,ε (., τ)‖2
2,Ω +m2

1ν
2‖U1,0‖

m1−1
∞,Ω

∫

Q t
2

,t

(U1,ε − ε)2(x, s)dxds

+m2
1‖U1,0‖

m1−1
∞,Ω (C1 + C2‖U1,0‖

r

∞,Ω)

∫

Q t
2

,t

γ(U1,ε − ε, U2,ε, U3,ε, U4,ε)(x, t)dxdt.

Integrating this inequality in τ over ( t
2
, t) and using the explicit value for M1,3 found in the

proof of Lemma 2 we deduce the desired result.
�

Lemma 4. There exists a constant M1 and non decreasing function F1, independent of

ε, 0 < ε ≤ 1 such that

(3.21)

∫

QT

|(Umi

i,ε )t|
2(x, t)dxdt ≤M2, T > 0, i = 1..3;

(3.22)

∫

QT

|(Umi

4,ε )t|
2(x, t)dxdt ≤ F2(T ), T > 0.

Proof. The estimate for U1,ε is immediatly deduced from (3.18) keeping in mind that

|(Um1

1,ε )t|
2(x, t) ≤

m1
2

2
‖U1,ε‖

m1−1
∞,Ω (U

m1+1

2

1,ε )2
t (x, t).

And one can establish such estimates for U2,ε, U3,ε and U4,ε in the same way.
�

4. Existence and uniqueness: proofs

In this section we supply a quick proof of Theorem 1.

4.1. Existence. Let us fix T > 0. From the estimates established in the previous section one
has : for each i = 1..4 (Ui,ε − ε)0<ε≤1 and (∇Umi

i,ε )0<ε≤1 are respectively bounded in L2(QT )

and (L2(QT ))N . Then there exists two sequences which one still denotes (Ui,ε − ε)0<ε≤1 and
(∇Umi

i,ε )0<ε≤1 such that for i = 1..4 as ε → 0 : (Ui,ε − ε)0<ε≤1 is weakly convergent to some

Ui in L2(QT ) and (∇Umi

i,ε )0<ε≤1 is weakly convergent to some Vi in (L2(QT ))N .
On the other hand (Ui,ε)0<ε≤1 is bounded in L∞(QT ); using a weak formulation of the
equation for Ui,ε one can invoke the results in Di Benedetto [11] to get : (Ui,ε)0<ε≤1 is a
relatively compact subset of C(Ω×[0, T ]). It follows that actually (Ui,ε−ε)0<ε≤1 is convergent
to Ui in C(Ω × [0, T ]) and (Umi

i,ε )0<ε≤1 is convergent to Umi

i in C(Ω × [0, T ]).
As a first consequence one has : Vi = ∇Umi

i ; next one also has :

γ(U1,ε − ε, U2,ε, U3,ε, U4,ε) → γ(U1, U2, U3, U4) in C(Ω × [0, T ]) as ε → 0.

From standard arguments one may conclude that the quadruple (U1, U2, U3, U4) is a desirable
weak solution.

The regularity results for ∇Umi

i and ∂tU
mi

i follow from the a priori estimates in Lemma 2
and Lemma 4.
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4.2. Uniqueness. Assume there exist two quadruples (Uj,1, Uj,2, Uj,3, Uj,4)j=1,2, both weak
solutions of Problem (1.1) − (1.3). They verify the integral identity, for i = 1..4
(4.1)

∫

Ω

(U1,i − U2,i)(x, T )ϕi(x, T )dx+

∫

QT

∇(Umi

1,i − Umi

2,i )∇ϕi(x, t)dxdt

=

∫

QT

[∂tϕi(U1,i − U2,i) − (fi(U1,1, U1,2, U1,3, U1,4) − fi(U2,1, U2,2, U2,3, U2,4))ϕi](x, t)dxdt

for every ϕi ∈ C1(Q̄T ), such that
∂ϕi

∂η
= 0 on ∂Ω × (0, T ) and ϕi > 0.

We follow an idea of [24] and introduce a function ψi as follows

(4.2) ψi(x, t) =







Umi

1,i − Umi

2,i

U1,i − U2,i

if U1,i 6= U2,i,

0 otherwise.
i = 1..4.

Let us consider a sequence of smooth functions (ψi,ε)ε≥0 such that ψi,ε ≥ ε, ψi,ε is uniformly
bounded in L∞(QT ) and

lim
ε→0

‖(ψi,ε − ψi)/
√

ψi,ε‖L2(QT )
= 0.

For any 0 < ε ≤ 1, σ > 0 let us introduce the adjoint nondegenerate boundary value
problem

(4.3)











∂tϕi + ψi,ε∆ϕi = 0 in Ω × (0, T )
∂ϕi

∂η
(x, t) = 0 in ∂Ω × (0, T )

ϕi(x, T ) = χi in Ω

i = 1..4.

For any smooth χi with 0 ≤ χi(x, t) ≤ 1, i = 1..4, any 0 < ε ≤ 1 and any σ > 0 this
problem has a unique classical solution ϕi,ε such that see [24]

(4.4) 0 ≤ ϕi,ε(x, t) ≤ 1

(4.5)

∫

QT

ψi,ε(∆ϕi,ε)
2dxdt ≤ K1,

If in (4.1) we replace ϕi by ϕi,ε, which is the solution of problem (4.3) with χi = sign((Ui−
Vi)

+) we obtain.

(4.6)

∫

Ω

(U1,i − U2,i)
+(x, T )ϕi,ε(x, T )dx+

∫

QT

(ψi − ψi,ε)(U1,i − U2,i)∆ϕi,εdxdt

=

∫

QT

(fi(U1,1, U1,2, U1,3, U1,4) − fi(U2,1, U2,2, U2,3, U2,4))ϕi,εdxdt

Using the local lipschitz continuity of fi and the properties of ψi,ε and ϕi,ε we deduce by
letting ε→ 0

(4.7)

∫

Ω

(U1,i − U2,i)
+(x, T )dx ≤ K

∫

QT

4
∑

i=1

|U1,i − U2,i|(x, t)dxdt
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In a similar fashion we establish an analogous inequality for (Ui − Vi)
− and deduce

(4.8)

∫

Ω

4
∑

i=1

|U1,i − U2,i|(x, T )dx ≤ K

∫

QT

4
∑

i=1

|U1,i − U2,i|(x, t)dxdt

Uniqueness follows from Gronwall’s Lemma.

5. Large time behavior: proofs

The semi-orbit {(U1(., t), U2(., t), U3(., t)), t ≥ 0} is relatively compact in (C(Ω̄))3 : it is
actually bounded in (L∞(Q∞))3 by (3.15) and then one may use a result of [11].

5.1. Case ν > 0. A convergence and continuity argument allows to deduce from (3.7)

(5.1)

∫

QT

γ(U1, U2, U3, U4)(x, t)dxdt + ν

∫

QT

U1 (x, t)dxdt ≤ ‖U1,0‖1,Ω, T > 0.

Hence U1 ∈ L1(Ω × (0,+∞)) and there is a sequence (τj)j≥0 such that τj −→ +∞ as
j −→ +∞ and

∫

Ω
U1(x, τj)dx −→ 0 as j −→ +∞. Next, given any t > τj, one has

(5.2) 0 ≤

∫

Ω

U1(x, t)dx ≤

∫

Ω

U1(x, τj)dx;

actually such an identity holds for U1,ε from a straightforward integration over Ω × (τj, t)
and is preserved upon letting ε −→ 0 because U1,ε → U1 in C0(Ω × (0,+∞) as ε→ 0. This
shows that U1(., t) −→ 0 in L1(Ω) as t −→ +∞ and also in C(Ω̄).

Then, along the same lines, from (3.13) and (3.14) one has for T > 0

(5.3)
(λ+ µ)

∫

QT

U2 (x, t)dxdt+ (α +m+ µ)

∫

QT

U3 (x, t)dxdt

≤ 2‖U1,0‖1,Ω + 2‖U2,0‖1,Ω + ‖U3,0‖1,Ω.

Again, for some sequence (τj)j≥0 such that τj −→ +∞ one has
∫

Ω
U2(x, τj)dx −→ 0 as

j −→ +∞. Integrating over Ω× (τj, t) the equation in (3.6) for U2,ε and letting ε −→ 0 one
finds

(5.4) 0 ≤

∫

Ω

U2(x, t)dx ≤

∫ t

τj

∫

Ω

γ(U1, U2, U3, U4)(x, τ)dxdτ +

∫

Ω

U2(x, τj)dx;

thus again U2(., t) −→ 0 in L1(Ω) and in C(Ω̄) because γ lies in L1(Ω × (0,+∞).
The conclusion for U3(., t) is derived in the same fashion, using the third equation in (3.6).

Now we will establish the long time behavior of U4, to do this let us consider for any
τ > 0 the following problem

(5.5)











∂tV − ∆V m4 = 0, (x, t) ∈ Ω × (0,+∞)
V (x, 0) = U4(x, τ), x ∈ Ω;
∂V m4

∂η
(x, t) = 0. x ∈ ∂Ω, t > 0.
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It is well known see [1] that lim
t→+∞

V (., t) = V (0) = U4(τ) in Lp(Ω), for all p ≥ 1, and in

another hand from [6] we have for all p ≥ 1

(5.6) ‖U4(x, τ + h) − V (x, h)‖p,Ω ≤

∫ τ+h

h

‖f4(x, s)‖p,Ω ds,

with f4(x, t) = (1 − π)λU2(x, t) + αU3(x, t) + νU1(x, t). Set τ = h = t
2
, we can write

‖U4(x, t) − U4(
t

2
)‖p,Ω ≤ ‖U4(x, t) − V (x,

t

2
)‖p,Ω + ‖V (x, t) − U4(

t

2
)‖p,Ω,

≤

∫ t

t
2

‖f4(x, s)‖p,Ωds+ ‖V (x, t) − U4(
t

2
)‖p,Ω; p ≥ 1,

since f4 ∈ L1(Q∞) ∩ L∞(Q∞) we deduce that limt→+∞ ‖U4(x, t) − U4(
t
2
)‖p,Ω = 0, fur-

thermore f4 ≥ 0 allow to show that t −→ U4(t) is bounded and nondecreasing and then
converges to some nonnegative constant U ∗

4 and this yields lim
t→+∞

U4(., t) = lim
t→+∞

U4(t) = U∗
4

in Lp(Ω) for all p ≥ 1.

5.2. Case ν = 0. The analysis of the behavior of {U1(., t), t > 0} requires modifications
because it is not known, and actually it is not true, that U1 ∈ L1(Ω × (0,+∞)). Set

φ̄(t) =
1

mes(Ω)

∫

Ω

φ(x, t)dx;

then multiplying the equation for U1,ε in (3.7) by 1
m1
Um1−1

1,ε and integrating over Ω×(τ, τ + t)
yields

(5.7) Um1

1,ε (τ) ≥ Um1

1,ε (τ + t) ≥ 0, τ > 0, t > 0;

so that upon letting ε −→ 0, the average Ūm1

1 is a nonincreasing function of time. From the
inequality of Poincaré-Wirtinger one can conclude the existence of a constant K(Ω) such
that for t > 0

(5.8) ‖Um1

1 (., t) − Um1

1 (t)‖2,Ω ≤ K(Ω) ‖∇Um1

1 (., t)‖2,Ω.

Now, one gets from Lemma 3 with ν = 0 that

(5.9)

‖∇Um1

1 (., t)‖2
2,Ω ≤

2

t(m1 + 1)

∫

Ω

Um1+1
1,0 (x)dx

+m2
1‖U1,0‖

m−1
∞,Ω (C1 + C2‖U1,0‖

r

∞,Ω)

∫

Q t
2

,t

γ(U1, U2, U3, U4)(x, s)dxds

It follows that ‖∇Um1

1 (., t)‖2,Ω −→ 0 as t −→ +∞, so that ‖Um1

1 (., t) − Ūm1

1 (t)‖2,Ω −→ 0

by (5.8). The monotonicity of t −→ Um1

1 (t) yields lim
t→+∞

Um1

1 (., t) = lim
t→+∞

Ūm1

1 (t) = U∗
1 in

L2(Ω) and also in C(Ω̄).
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5.3. An elementary spatially homogeneous system. Let us consider the system of
ordinary differential equation

(5.10)















U ′
1 = −γ(U1, U2, U3, U4)

U ′
2 = γ(U1, U2, U3, U4) − λU2 − µU2,

U ′
3 = λπU2 − αU3 − µU3 −mU3,

U ′
4 = (1 − π)λU2 + αU3.

With Ui(0) ≥ 0, i = 1..4, U1(0) > 0, U3(0) ≥ 0 and,
{

λ > 0, α > 0, m ≥ 0, µ ≥ 0,
γ(U1, U2, U3, U4) = σ(U2, U3, U4)U1,

γ having either a masse action or a proportionate mixing form : see the introduction.

Then U1(t) = U1(0)exp

(

−

∫ t

0

σ(U2, U3, U4)(τ)dτ

)

so that U1(t) ↘ U∗
1 ≥ 0 as t −→ +∞

and U∗
1 = 0 if and only if

∫ +∞

0

σ(U2, U3, U4)(τ)dτ = +∞.

Next U1 + U2 = −(λ + µ)U2(t) and upon integrating over (0,+∞) one gets U2 lies in
L1(0,+∞) so that U2(t) −→ 0 as t −→ +∞ because U ′

2 is bounded.
A similar argument yields U3 lies in L1(0,+∞) and U3(t) −→ 0 as t −→ +∞. Then one

has U4(t) = U4(0)+(1−π)λ

∫ t

0

U2(τ)dτ +α

∫ t

0

U3(τ)dτ. Here U4(t) ↗ U∗
4 > 0 as t −→ +∞.

To conclude that U ∗
1 > 0 note that

• When γ(U1, U2, U3, U4) = γU1U3 then σ(U2, U3, U4) = γU3 lies in L1(0,+∞).

• When γ(U1, U2, U3, U4) = γ
U1U3

U1 + U2 + U3 + U4

then σ(U2, U3, U4) = γ
U3

U1 + U2 + U3 + U4
Now (U1 + U2 + U3 + U4)(t) −→ U∗

1 + U∗
4 as t −→ +∞ and U ∗

1 + U∗
4 > 0, because

U∗
4 > 0 and U∗

1 ≥ 0; hence for t ≥ t0 one has

1

2
(U∗

1 + U∗
4 ) ≤ (U1 + U2 + U3 + U4)(t) ≤ (U3 + U4)(0)

which implies

U3(t)

(U3 + U4)(0)
≤ σ(U2, U3, U4)(t) ≤ 2

U3(t)

U∗
1 + U∗

4

, t ≥ t0.

As a conclusion σ(U2, U3, U4) lies in L1(0,+∞) and U∗
1 > 0.

Last when m = µ = 0, U ∗
1 + U∗

4 = (U1 + U2 + U3 + U4)(0).
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