Electronic Journal of Qualitative Theory of Differential Equations
2013, No. 33, 1-38; http://www.math.u-szeged.hu/ejqtde/

Nonlocal Boundary Value Problem for Strongly
Singular Higher-Order Linear Functional-Differential
Equations

Sulkhan Mukhigulashvili

Abstract

For strongly singular higher-order differential equations with deviating argu-
ments, under nonlocal boundary conditions, Agarwal-Kiguradze type theorems are
established, which guarantee the presence of the Fredholm property for the prob-
lems considered. We also provide easily verifiable conditions that guarantee the
existence of a unique solution of the problem.
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1 Statement of the main results

1.1 Statement of the problems and the basic notation

Consider the differential equations with deviating arguments
uPm () =3 " pi(u? (r(t) + q(t) for a<t<b, (1.1)
j=0

with the boundary conditions

/u(s)d(p(s) =0 where ©(b) — ¢(a) # 0, (1.2)
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Here m € N, —oo <a <b <400, p;,q€ Liec(Ja, b)) (7=0,...,m), ¢ :a,b] - Risa
function of bounded variation, and 7; :]Ja, b[—]a, b] are measurable functions. By u((a)
(resp., u'(b)), we denote the right (resp., left) limit of the function u( at the point a
(resp., b). Problem (1.1), (1.2) is said to be singular if some or all the coefficients of (1.1)
are non-integrable on [a, b], having singularities at the end-points of this segment.

The first step in studying the linear ordinary differential equations

m

ul(t) = " pi(t)ul N (7(t) + q(t) for a<t<b, (1.3)

j=1

where m is the integer part of /2, under two-point conjugated boundary conditions, in
the case when the functions p; and ¢ have strong singularities at the points a and b, i.e.

/ (5 — )" (b— 5™ (= 1)""py ()] ds < +oo,

a

b
/(5 —a)" 7 (b—8)*"|p;(s)|ds < +oo (j=1,...,m), (1.4)

/ (5 — @)y V2(b — 5y 12| g(s)]ds < +oo,

a

are not fulfilled, was made by R. P. Agarwal and I. Kiguradze in the article [3].

In this paper, Agarwal-Kiguradze type theorems are proved which guarantee the Fred-
holm property for problem (1.1), (1.2), when for the coefficients p, (j = 1,...,m), condi-
tions (1.4), with n = 2m, are not satisfied. Throughout the paper we use the following
notation.

Rt = [0’ +OO[;

[x], is the positive part of a number x, that is [z], = z+2|$|;

Lioc(]a, b]) is the space of functions y :]a, b— R, which are integrable on [a + &, b — €]
for arbitrary small € > 0;

Lo p(Ja, b)) (L2 5(Ja,b])) is the space of integrable (square integrable) with the weight
(t — a)*(b — t)? functions y :]a, b[— R, with the norm

b

lolle. = [(s= b= "lys)lds (lollzz, = / s—a) (o — )’y (s)ds) )

a
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L([a,b]) = Loo(Ja,b]), L*([a,b]) = L§o(Ja, b]);
M(Ja, b) is the set of measurable functions 7 :Ja, b[—]a, b[;
L2 5(]a,b]) is the Banach space of functions y € Lis(]a, b[) such that

t t

||y||ii,g = max{[/(s —a)a(/y(é)d§>2d8} 1/2 i< a;b}+

a S

b s

+max{[/(b—s)5</y(§)d£)2dsr/2 : “;b gtgb} < +00.

t t

On

" .(Ja, b]) is the space of functions y :]a,b[— R which are absolutely continuous
together with o/, 3, ..., y™ on [a + ,b — ¢] for an arbitrarily small £ > 0.
C™™(]a, b[) (m < n) is the space of functions y € C* (]a, b]), satisfying

loc

/\y(m)(s)\st < +00. (1.5)

a

When problem (1.1), (1.2) is discussed, we assume that the conditions

p; € Lioe(Ja, b[) (7=0,...,m) (1.6)

are fulfilled. B

A solution of problem (1.1), (1.2) is sought for in the space C*™™¥1(]a, ).

By hj ]a, b[x]a, bj— R; and f; : R x M(]a,b]) — Cie(Ja,b[x]a,b]) (j =1,...,m) we
denote the functions and, respectively, the operators defined by the equalities

(t,s) = | [1-1)"pi(€))e],
° (1.7)

i) = | [ o] G=2.om),

and,
¢ 75 (§)
pemts=| [l [ G- e G=1.m 0
s 3
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and also we put that

fott.s)=| [ o]
Let m = 2k + 1, then S

1 for m<0
mll = )
1-3-5----m for m>1

1.2 Fredholm type theorems

Along with (1.1), we consider the homogeneous equation
v (@) = " pi (D (r(t) for a<t<b. (1.15)
5=0
Definition 1.1. We will say that problem (1.1), (1.2) has the Fredholm property in the

space C2mm+1 (], b[) if the unique solvability of the corresponding homogeneous problem
(1.1p), (1.2) in that space implies the unique solvability of problem (1.1), (1.2) for every
q € L%m72,2m72<]a7 b[)

In the case where conditions (1.4) for n = 2m are violated, the question on the
presence of the Fredholm property for problem (1.1), (1.2) in some subspace of the space
C?™(]a, b[) remains so far open. This question is answered in Theorem 1.1 formulated

below which contains conditions guaranteeing the Fredholm property for problem (1.1),
(1.2) in the space C*™™1(]a, b|).

Theorem 1.1. Let there exist ag €la, b], by €|ag, b, numbers ly; > 0, v > 0, y; > 0
(k=0,1,7=1,...,m) such that
(t—a)*Thi(t,s) <ly; (j=1,...,m) for a<t<s<a,

l. t— m*%*"/oo t <
11’{15;1p( a) folt, s) < +o0, (1.9)

lim sup(t — a)m_%_voﬂ'fj(a, T)(t,s) <400 (j=1,...,m),

t—a

(b=t Th(t,s) <ly; (j=1,...,m) for by<s<t<b,

lim sup(b — ¢)™ "2 70 t,s) < +oo,
nsup(b =) folt, s) (1.10)

limsup(b — £)™~ 2775 f;(b, ;) (t,8) < 400 (j=1,...,m),

t—b
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and
m

2m 9)22m 7+1
I, <1 (k=0,1). 1.11
Z2m—1”2m 25+ )™ (k=0.1) (1.11)

Let, moreover, the homogeneous problem (1.1y), (1.2) have only the trivial solution in the
space C*™™ 1 (Ja, b[). Then problem (1.1), (1.2) has a unique solution u for an arbitrary
qE L%m_272m_2(]a, b[), and there exists a constant r, independent of q, such that

™12 < rllallg L (1.12)
Corollary 1.1. Let numbers kyj,vp; € RT be such that
v >4dm+2, v, >2 (k=0,1; j=2,...,m), (1.13)
: |7;(t) — 1] : |7;(t) — 1] ‘
lim sup ————— < +o00, limsu 7<+oo =1,...,m), 1.14
o p (t _ a)yoj b p (b _ t) (] ) ( )
and
m 92m—j+1
<1 (k=0,1).
z; 2m — )N(2m — 25 + D)I1 ( 1) (1.15)
Moreover, let k € RT, poo € Lim-1,m—1(]a,b[; R"), poj € Lom—j am—j(]a,b[; RT), and
K Ro1 K11
- — —por(t) < (=1)"pi(t) < + —+poi(t), (1.16
t—a)(b— 1P (t—apm " (b1 (1.16)
K K
P < g5 + g TP
(1.17)

Koj K1j -
Ip;(t)] < i - b e +poi(t) (G=2,...,m).

Let, moreover, the homogeneous problem (1.1y), (1.2) have only the trivial solution in the
space C*™™ 1 (Ja, b[). Then problem (1.1), (1.2) has a unique solution u for an arbitrary

q € L3, 9 9m_o(Ja, b)), and there exists a constant r, independent of q, such that (1.12)
holds.
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1.3 Existence and uniqueness theorems

Theorem 1.2. Let there exist numbers t* €|a, b[, lyo > 0, ly; > 0, l;; > 0, and yr0 >
0,v; >0(k=0,1; j=1,...,m) such that along with

B =
_; ( gm-1 )2(b—a)m 172 V°°/|90 pla)] +[p(§) — Sfﬂ(l))\d€+
— O\ @2m = 3)! (2m—1)1/2 V270 o(b) — ¢(a)] (1.18)
92m—j+17] 22m =L — )05 [ 1
+Z( —J) 6 T )y ) L
2m — DNE2m — 25+ I (2m — 25 — D)I1(2m — 3)!1\ /270, 2
B =
EZO( om—1 >2(b )™ (b—t7) W’/w pla)l + |o(€) = o)l
2m =311 2m—1)"2 29 ¢(b) — ¢(a)l (1.19)
ST M AT
2m — D)N2m — 25 + DN (2m — 25 — D)IN(2m — )1\ /2v,;/ 2

the condztzons
(t—a)" 02 fi(t, s) < oo,

» o - (1.20)
(t=a)* I hy(t,s) <loj, (t—a)" 2 fi(a,m)(t, ) <oy

fora <t <s<t* and

(b—t)m o2 fo(t, s) < Tao,
(b—1)*"h(t,s) < by, (b—t)" 72 f;(b,7)(t,8) < Ty

fort* < s <t < b hold with any j = 1,...,m. Then problem (1.1), (1.2) is uniquely
solvable in the space C*™ "™ (]a, b]) for every q € L3, 5 5,,_o(]a, b[).

(1.21)

Remark 1.1. Let all the conditions of Theorem 1.2 be satisfied. Then the unique solution
u of problem (1.1), (1.2) for every ¢ € L3, 5 5,, 5(]a,b[) admits the estimate

12 < 7llqllz : (1.22)

2m—2,2m—2

with
2m

(1 — 2max{By, B1})(2m — 1)!IV

r =
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and thus the constant r > 0 depends only on the numbers I, 110, ij, Yios Yij (B =
0,1;7=0,...,m), and a, b, t*.

To illustrate this theorem, we consider the third order differential equation with a
deviating argument

u®(t) = po(t)u(ro(t) + pr(t) (n (1) + q(t), (1.23)

under the boundary conditions

/u(s)ds =0, wu(a)=0, u(b) =0. (1.24)

As a corollary of Theorem 1.2 with m = 1, t* = (a + b)/2, Y00 = Y10 = 1/4, Y01 =

21/4 2K1

Y11 = 1/2, ZOO = 710 = 8m, l01 = lll = Ko, 701 = 711 = Vi—a’ we obtain the fOHOWng
statement.

Corollary 1.2. Let function 7y € M(Ja,b]) be such that

26
Ogﬁ(t)—tg(b )6(t—a)7 for a<t§a;b,
—a
1.25
— bt <i—mn) <0 for 20 <icy e
(b — a)6 ~ T ~ or 5 < .
Moreover, let function p :|a,b|— R and constants ko, k1 be such that
K
t) < t<b
|p0( )| = [(b—t)(t—a)]5/4 fO’f’ a <1<
- 275(b — a)*ro <p(t) < 277(b— )’ for a<t<b 20
G=0—aP =" = o= —a)
and .
8k\/2(b—a) + 4ro + K1 < 5 (1.27)

Then problem (1.23), (1.24) is uniquely solvable in the space C*2(la, b)) for every q €
L3 o(Ja, b]).
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2 Auxiliary Propositions

2.1 Lemmas on integral inequalities

Now we formulate two lemmas which are proved in [3].

Lemma 2.1. Let € C" Y(Jto, t1]) and

W () =0 (j=1,...,m), /|u(m’(8)|2ds<+00- (2.1)
Then .
(uD(s))? S / "
< ( d 2.2
| St = () [ ok >

to

fOT’tQStStl.

Lemma 2.2. Let u € C’Z}c Y(Jto, t1[), and
wI V() =0 (=1,...,m), /|u(m)(s)|2ds < +00. (2.3)
Then .
1 . .
(u(j_l)(s))Q ( 2m_j+1 / 2
. < d 24
/ (tl _ S)2mf2j+2d8 — <2m o 2) + 1 1 ‘u S ( )

t
fOT’tQStStl.

Let to, t1 €]a,b], u € C[;Lc "(Jto, t1]) and 7; € M(Ja,b]) (j =0,...,m). Then we define
the functions pu; : [a, (a+b)/2] X [(a +b)/2, b] X [a,b] — [a,b], pi: [to, 1] — Ry (k =

0,1), \; : [a,b]X]a, ’(a+b)/2] [(a+0)/2, b[x]a,b|— R, and for any t¢,%; € [a, b] the
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operator xi, .+ : C([to, t1]) — C([a, b)), by the equalities

7;(t) for T;(t) € [to, t1]

/ij(lfo,tl,t) = 1y for Tj(lf) < 1o )
t

1 for Tj(t) > 1
ul™ s|,
s)|*d
x(tg) for a <t <t

w (to,ta,t) )
Aj(e to tr,t) = ‘ / (s — c)2m=gs| (2.5)
(to
Xto,ty ('T)(t> = .T(t) for to <t <t;.
x(ty) for t; <t <b

Let also ap : RS x [0,1[— Ry, «;: RY x [0,1[— R} and 5; € Ry x [0,1[— Ry (j =
0,...,m) be the functions defined by the equalities

2m (b —a)" Py [ [0(§) — w(a)] + |p(§) — ¢(b)]
ao(r,y,7) = (2m — 3)II 2m—1 1/2/ ) o(a)l d
et - o () — pla)] + 1e(©) — o(b)
Bol@, 7) = <(2m— 3)!!) (2m —1)172 / (b) = (a) ReY)
2m Jq 27
o(#y,2,7) =w+ (2m—2§/i DI’
B 22m—j—1 y'y
5w = G =5 —1iEm = i v
and
N o(s) = plb) for s>
Gt s) = o(b) — ¢(a) 8 {gp(s) —¢(a) for s<t 27)
is the Green function of the problem:
b
w'(t) =0, /w(s)dgp(s) =0, (2.8)

a

where ¢ : [a,b] — R is a function of bounded variation and ¢(b) — p(a) # 0.
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Lemma 2.3. Let ag €]a, b, ty €la, aol, t1 €lag, b[, and the function u € 5&’1(]150_, t1])

be such that conditions (2.1), (2.3) hold. Moreover, let constants ly; > 0, lpo > 0, lo; >
0, Y05 > 0, and functions p; € Liac(]to, t1[), 75 € M(]a,b]) be such that the inequalities

ag

=t [()ds <l (2.9
(t— tg)md /pj(s)ds‘gzoj G=2....m), (2.10)

t

ag
(¢t 2 [ iy (s)lds < T
! (2.11)

ag
(t—to)m_%_,yoj/|ﬁj($)|>\j(t0,t0,t1,$)d8 SZOJ’ (j = 1,...,m)
t

hold for to <t < ag. Then

ag

/Z_?j(s)u(s)uul)(ﬂj(to, b 5))ds <

t
< &jUOjaZOja ap — a, ’YOj)/Jé/2<T*)P(1)/2 (t) =+ ZOJﬂj(ao — a, ’VOJ)PLI)/Q(T*)/Jé/z(ao)+

(2m — j)2%m—itl .
(2m — 1)!!(gm pY 1)!!;00(610) (j=1,...,m) (2.12)

+ le

forty <t <ag and

ao

[ au(sute) ([ Glalta, i) xiga ()€ ds <

t
< ay(loo, ap — a, ’Yoo)/)(l)/Q(h)/?(l)/Q (1)

+ looBo(ao — a, %o)ﬂ(l)/z (tl)p(l)/Q(GO) (2.13)

for tg <t < ap, where 7" = sup{p,;(to, t1,t) :to <t < ap,j=1,...,m} <ty.
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Proof. In view of the formula of integration by parts, for ¢ € [tg, ag] we have

ag ag

[ Bl a9 = [ B ulput s
ao wj(tot1,s) ao
+ / B, (s)u(s) / ul) (€)d ) ds = u(tyu (1) / P, (s)ds+
. @ a ) ao Nj(t()ftlvs)
D.: u(k) S u(j’k) s)as D (s)uls u(j) S .
+;%/(!}x®%) (s)ub=(s)d +/¢x><>( !’ (€)de)ds  (2.14)

(j=2,...,m), and

ag

/@@W@WW&MhﬁﬁBﬁ/ﬁdﬂﬂﬂQ@+

t

ag p(to,t1,s) ao
+ [mene| [ w@das <) [e)as
ag  ap S t w1 (to,t1,5)

%4/(/m®M@m@MM%+f@@M®M | s, @13)

t s s

On the other hand, by virtue of conditions (2.1), the Schwartz inequality and Lemma 2.1,
we deduce that

WGV (1) :ﬁ’ / (t — )™ u™ (s)ds| < (t — to)™ T2 pi/2 (1) (2.16)

for tg <t < ap (j = 1,...,m). If along with this, in the case where j > 1, we take
inequality (2.10) and Lemma 2.1 into account, for ¢ € [y, ag], we obtain the estimates

ap ao

‘u(t)u(jl)(t)/pj(s)ds‘ < (= tg)?m /]_gj(s)ds‘po(t) < lo;po(t) (2.17)

t t
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and

ag ag

> ([ mcra)at sy (s < / o S_Z(sz )l gy <

k=0 "% s

1

¢ 2ds \ 1 ul 2ds \1/2
Z(/ﬁ%) / (/(l—to)Q(mng—?J)/ <

1 .
227)’I,7_]
< ly; . (21
< lojpo(ao) kz% Gm == DiEm ok =2 =i 218
Analogously, if j = 1, by (2.9) we obtain
ao
(1) [ [pu(s)ads < topolt)
! (2.19)

(2m — 1)22m

9 / ( / [pl(g)]+d§>|u(s)u’(s)|ds < lmpo(ao)mm EEMIE

for tg <t < ag.
By the Schwartz inequality, Lemma 2.1, and the fact that py is a nondecreasing func-
tion, we get

Hj (t() St 78)

| we <

S

9m=i
(2m —2j — DIl

A (to, to, t1, )pé/z( ) (2.20)

for tg < s < ag. Also, due to (2.2), (2.11) and (2.16), we have

u(®)| / 5,(5) Ay (fos o 1, 5)ds = (£ — t0)™ 2 p2/2(1) / 15, (5, (fo, o 1, 5)ds <
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and

]O |u'<s>|(fmj(f)uj(to,to,tl, eyic)as <1, [ T

_ mel( ag — a)’YOJ 1/2

<y,
T 2m — 3)11 /270,

(o)

for tg < t < ag. It is clear from the last three inequalities that

. ao pj (to,t1,s)
(2m — 25 — )N /ﬁj(s)U(8)< / u(j)(f)d£> ds

<

27— gy (1)
/‘p‘] |)\ t07t07t17 )dSS

< u(®)] [ 15, (5)\ oo, 1, 5)ds + / o) ( | |@<§>|Aj<to,to,tl,ads)ds <

2m—1(a0 _ a)"/Oj 1/2(
(2m — 3)!'\ /270,

< To; (t —to)" po(t) + To; ao) (2.21)

for tg <t < ay. Now we note that, by (2.17)-(2.19) and (2.21), inequality (2.12) follows
immediately from from (2.14) and (2.15).

In view of the definition of the function G, the operator x;,;, and condition (2.1), we
have

ao b

/ Pols)uls) ( / Glpn(tor 11,5). O vion <u><s>d§) ds —

ag o (tot1,s)
-/ po<s>u<s>( / Mu<g>d§)ds+

J ) el —ela
[ ol&) -l
n / po<s>u<s>< (t / )¢<b>¢<a)“<5>df>d5- (222)
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On the other hand, by the carrying out integration by parts and using the Schwartz
inequality, we get the inequality

o (to,t1,s)

[ s [ 1=

1/2 , t1 o 1/2
x</<§—to>m1d£> </ @}Tgf()ml)d&) (2.23)

to to

from which, by Lemma 2.1 and the definition of the function py, it follows that

2m—1<b_ a)m 1/2 1/2 (,0 CL
mu(ﬁ)dég (@m = 3)11(2m — 117270 (1) /‘ @ ‘d& (2.24)

Analogously, by Lemma 2.2, in view of the fact that po(t;) = p1(to), we get

u(§)dg <

om— l(b a)m 1/2 1/2 t ’Qp 90 (1,
(2m — 3)11(2m — 1)1/27° 1)

o (tost1,s)

On the other hand by the integration by parts, inequality (2.16), and condition (2.11) we

get
/ Po(s)u(s)lds < Ju(s)| / Po(s)lds + / ol (s)] / Po(©)\déds

ag
Uu

(t - to)700 12 ( )ZOO + ZO / (S _ t|0)7§1—)1|/2—“/00 ds,

t

from which, by the Schwartz inequality and Lemma 2.1, we get

2m_1<a0 — a)w’ 1/2
(2m — 3)11/2700"°

/\po s)lds < (t —t9)"p 1/2< )loo + aO)ZOO, (2.26)

From (2.22) by (2.24)-(2.26) and notation (2.6), inequality (2.13) follows immediately. [

The following lemma can be proved similarly to Lemma 2.3.
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Lemma 2.4. Let by €]a, b], t, €]by, b[, to €la, bo[, and the function u € 5&’1(]150_, t1])

be such that conditions (2.1), (2.3) hold. Moreover, let constants l;; > 0, l19 > 0, l1; >
0, 715 > 0, and functions p; € Liac(]to, t1[), 75 € M(]a,b]) be such that the inequalities

(0= [y ()ds <1, (2.27)
bo
(tr —t)*" | [ Bi(s)ds| < ly; (j=2,...,m), (2.28)
J s

t
(0 =ty 22 [ gy (s)lds < T
bo

(2.29)

t

/]_?j(S)Aj(tl, to, tl, S)dS

bo

(ty — t)™ 2"

<h; (j=1,...,m)

hold for by <t <ty. Then

t

/ﬁj(s)u(s)u(j_l)(ﬂj(to,tl, $))ds <

bo
< O‘j(hjazlja b — by, ’Ylj)/ﬁ/z(ﬂk)/ﬁ/z(t) + leﬁj(b — bo, ’Vlj)P}/Q(T*)P}/Q(bO)-F

(2m — j)22m—i+!
(2m — 1)!!(;m () (230)

+

forby <t <ty and

t

b
[ auteuts) ([ Glalta,ts,9) xiga ()€ ds <

bo
< ao(l10, b — bo, 110)pi 2 (to) 3 2 (1) + T10Bo(b — bo, 10) o1 (o) i * (bo),  (2.31)

for by <t <ty, where 7. = inf{p;(to,t1,t) :bp <t <t1,7=1,...,m} > to.
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2.2 Lemma on a property of functions from C*"" (]a, b|)

Lemma 2.5. Let

_ i iczk (2m k) )u(i_l)(t),

i=1 k=i
where w € C?™=Ym(Ja, b)), and each ¢y : [a,b] — R is an 2m—k—i+1 times continuously

differentiable function. Moreover, if

W V(@) =0, «VB)=0, Timsuple(t)] < +oo (i=1,...,m),

t—a

then
liminf |w(t)] =0, liminf |w(t)| = 0.

t—a t—b

The proof of this Lemma is given in [9].

2.3 Lemmas on the sequences of solutions of auxiliary problems

Remark 2.1. Tt is easy to verify that the function w is a solution of problem

a®m(t Zp] t))—i—po(t)/G(Tg(t),s)ﬂ(s)ds+q(t) for a<t<b (2.32)
" Va)y=0, a"VB) =0 (i=1,...,m), (2.33)

if and only if the function wu(t f G(t, s)u(s)ds is a solution of the problem (1.1), (1.2),

and analogously v is a solution of problem

T (¢) = ij(t)g(jfl)(n(t)) + po(t) /G(To(t), s)v(s)ds for a<t<b  (2.32)

j=1
@) =0, VB)=0 (i=1,...,m). (2.33¢)

if and only if the function v(¢ f G(t, s)v(s)ds is a solution of the problem (1.1p), (1.2).
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Now for every natural k we consider the auxiliary equation

m

a(Qm)(t) = ij(t)ﬂ(j_l)(ﬂj(tom tik, 1))+

j=1
b

+po(t) / G (po(tors Laks 1) 8) Xugptas (W) (8)ds + qu(t) - (2.34)

a

for to, <t < typ, with the corresponding homogenous equation

b
u®m(t Zp] 097 (i (tok, tas 1) + po(t /G to(toks Lk, £), 8) Xegpty, (W) (8)ds
(2.349)
for top, <t < tqg, under the boundary conditions
" V(ter) =0, aUV(ty)=0 (i=1,...,m), (2.35)
where
a <ty <ty <b (k’ c N), kllr_’l_l top = a, kllr_’l_l t1, = b. (236)

Throughout this section, when problems (2.32), (2.33) and (2.34), (2.35) are discussed
we assume that

pj € LlOC(]a7 b[) (] = 07 S m>7 q;qr € z§m72,2m72<]a’7 b[)v (237)

and for an arbitrary m — 1-times continuously differentiable function z :]Ja, b[— R, we set

m

Ag(z)(t) = ij(t)vf(jfl)(ﬂj (tok, tik, t))
. b
+pO /G Ko tOkatlk’ )as)Xtoktlk(x)(s)dS’ (238)
. b
A@)(0) = by (905 (0) + polt / Glno(t), $)(s)ds.
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Remark 2.2. From the definition of the functions p; (j = 0,...,m), the estimate

0 for Tj(t) G]t()k, tlk[
max{b — tllm tOk — CL} fOI' Tj(t) g]tok, tlk[

|\ (toks g, t) — 75(¢)] < {

follows and thus, if conditions (2.36) hold, then

klim wi(tog, tig, t) = 7;(¢) (j=0,...,m) uniformly in |a,bl. (2.39)
— 400

Let now the sequence of the m — 1 times continuously differentiable functions xy :
Jtor, tix[— R, and functions V=Y € C([a,b]) (j =1,...,m) be such that

khT a:,g Diy=2Y"D4) (j=1,...,m) uniformly in Ja,b[. (2.40)
Remark 2.3. Let the functions xy :Jtor, tix|— R, and x € C([a,b]) be such that (2.40)
with j = 1 holds. Then from the definition of the operators xi,,, and (2.40) it is clear
that

kET Xtortir (xk)@) = Xtowtix (SL’) (t)v kETw Xtoktix (SL’) (t) = .T(t) (241)

uniformly in |a, b|.
Lemma 2.6. Let conditions (2.36) hold and the sequence of the m — 1-times continuously

differentiable functions xy, :Jtox, tix|— R, and functions U~ € C([a,b]) (j = 1,...,m)
be such that (2.40) holds. Then for any nonnegative function w € C([a,b]) and t* €]a, b],

t t

klim w(s)Ag(zg)(s)ds = /w(s)A(x)(s)ds (2.42)
— 400

t t
uniformly in |a, b, where Ay, and A are defined by equalities (2.38).
Proof. We have to prove that for any ¢ €]0, min{b— t*, t* — a}[, and € > 0, there exists
a constant ng € N such that

’/ V(Ag(zr)(s) — Az)(s))ds| <e for t€fa+0,b—10], k> ng. (2.43)

-1
Let now w(t,) = max w(t) and €, = 5<2w Z f+5 Ipi(s) |ds> . Then from the inclu-

a<t<b

sions 2 € C(la+ 6, b—6]), 20-V € C([a, b]) (j = 1,...,m), conditions (2.39) and
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(2.40), it follows the existence of such constant ny € N that
™ (1 (o ks 5)) — 2971 (g bk tar, )| < e, (2.44)
|29 (s (tors trx 5)) — 297D (75(9))] < &1
fort € [a+d, b—0], k> np, j=1,...,m. Furthermore, (2.39)-(2.41) imply the existence
of such constant ngy € N that

b b

’/G(Mo(tomtm,t)aS)XtOktlk($k)(5)d3—/G(Mo(tomtlk,t),S)Xt%tlk(!f)(s)ds <

a

b
Sa/Wmm@M@—MWM@@WhS% (2.45)

if k> ngo, and

’/G(,uo(t%,tlk,t),S)XtOktlk(x)(s)ds—/G(To(t),s):p(s)ds

T0(t)

po(toktik,t)
- OO NTRNY (G R G AV
_’ / Qp(b)_(p(a)XtOktlk( )( )d a/ so(b)—cp(a) ( )d +
b M z)(s)ds — b st s
| e ;éw@—¢m>(” :

po(tokstik,t)

< a/ [Xtoptr, () (s) — z(s)|ds + 204)

po(tokstik,t)

SL’(S)dS‘ <ep, (2.46)

m0(t)

if k& > ngy, where a = mex {%}. Thus from (2.43)-(2.46) it is clear that

[Ak(zx)(s) = A@)(s)] < [An(zn)(s) = Ai(2)(s)] + [Ax(2)(s) — Alz)(s)] < 221 Z Ip; (1)l

if k > ng, with ng = max{ngi, ng2}, and (2.43) follows immediately from the last inequal-
i U

1ty.
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Lemma 2.7. Let condition (2.36) hold, and for every natural k, problem (2.34), (2.35)
have a solution iy, € C27*(Ja,b]), and there exist a constant 1o > 0 such that

t

1k
/ @™ (s)|?ds <12 (k€ N) (2.47)
Lok
holds. Moreover, let
Jm o —allz; =0 (2.48)

and the homogeneous problem (2.32y), (2.339) have only the trivial solution in the space

C2m=Ltm(1q b[). Then the inhomogeneous problem (2.32), (2.33) has a unique solution U
such that
1@||2 < o, (2.49)
and . '
klim ﬂ,(jfl)(t) =V V) (j=1,...,2m) uniformly in ]a,b] (2.50)
— 400

(that is, uniformly on [a + 0,b — 6] for an arbitrarily small § > 0).
Proof. Suppose that tq,...,ts, are the numbers such that

a+b
2

=t < - <tgy <Db, (2.51)

and g;(t) are the polynomials of (2m — 1)th degree satisfying the conditions

gj(tj)zla gj(ti) =0 ('L#]a Zajzlaan) (252)

Then, for every natural k, the solution wy of problem (2.34), (2.35) admits the represen-
tation

) = 3 (1) - G [ 6= 9 @) + )iy 01+

# ey P @) + e, (259

t1
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For an arbitrary ¢ €]0, %[, we have

t1 t1 t1

| [ =02 as) = aonas| = m )| [ s =021 ( [ (aul) - at€)yag)as| <

t t s

t1 t1 t1

gzm(/w—awwwmf”(/w—anJ(/mua—q@wmfmf”g

t t s
om—2j41 _ som—2j4+1|"/
<n|(ty —a)™ T =5 ||qk—q||Z%me’2mf2 for a+6 <t <ty,
: 2
‘/ )2 (qi(s) — q(s ds) < Qm‘ )L 22t ) X (2.54)

X|ar — allz for t;<t<b—6 (j=1,...,2m—1).

2m—2,2m—2

Hence, by condition (2.48), we find

t1

khlf (s —1)*" I (qu(s) — q(s))ds = 0 uniformly in ]a, b], (2.55)
t

for (j =1,...,2m — 1). Analogously, one can show that if ¢y €]a, b[, then

t

khIJP (s —to)(qr(s) —q(s))ds =0 uniformly on I(t), (2.56)

to

where I(ty) = [to, (a+b)/2] for ty < (a+b)/2 and I(tg) = [(a+b)/2,to] for to > (a+b)/2.
In view of inequalities (2.47), the identities

t

Sy - _ o™ (g)ds
0 = o [ ) (25)

tik

fori=0,1;j=1,...,m; k € N, yield

[V @) < il — a) (b — )T (2.58)
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fortor, <t <ty j=1,...,m; k€ N, where

_ T . —1/2( 2 )mj+1/2
= —"2m — 2 1 — . 2.5

1y = e (m =2+ ) (2 (2.50)
By virtue of the Arzela-Ascoli Lemma and conditions (2.47) and (2.58), the sequence

{ux}2S contains a subsequence {y, };-% such that {ﬁgfl) >G=1

formly convergent in |a, b[. Suppose that

,...,Mm) are uni-

lim iy, (t) = u(t). (2.60)

l—400

Then, in view of (2.58), uV=Y € C([a,b]) (j =1,...,m), and
lim ﬁ,&i_l)(t) =aU V() (j=1,...,m) uniformlyin ]a,b]. (2.61)

If, along with this, we take conditions (2.36) and (2.55) into account, from (2.53) by
Lemma 2.6 we find

2m 4

10 = 3 (10 ~ Gy [ 0= @) + als)as (014
” t h (2.62)
+m /(t — PN A@)(s) + g(s))ds for a<t<b,
i) < ri[(t —a)(b— HmIHY2 for a<t<b(j=1,...,m), (2.63)
u € C2" (Ja, b)), and
lE-rEloo ﬁg_l)(t) =V Yt (j=1,...,2m —1) uniformly in ]a,b]. (2.64)

On the other hand, for any tq €|a, b[ and natural [, we have

t

(t—to)uL" D (t) = a2 () — "™ (to) + / (5 — to) (A (@) () + qy (5))ds.  (2.65)

to

Hence, due to (2.36), (2.56), (2.64), and Lemma 2.6 we get

lim ™ (t) = a®™V(¢) uniformly in ]a,b. (2.66)
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Now it is clear that relations (2.64), (2.66), and (2.47) result in (2.49). Consequently,
% e C?=1m(]q,b[). On the other hand, from (2.62) it is obvious that @ is a solution of
(2.32), and from (2.63) equalities (2.33) follow, that is, u is a solution of problem (2.32),
(2.33).

To complete the proof of the Lemma, it remains to show that equality (2.50) is satisfied.
First note that in the space C2™17(]a, b) problem (2.32), (2.33) does not have another
solution since in that space the homogeneous problem (2.32y), (2. 330) has only the trivial
solution. Now let assume the contrary. Then there exist § €]0, 2“[, e > 0, and an
increasing sequence of natural numbers {k;};7> such that

maX{Zm(ﬂ D)y —a9 V@) ca+6<t<b—6} >e (I€N). (2.67)

By virtue of the Arzela-Ascoli Lemma and condition (2.47), the sequence {u Dyt (=
1,...,m), without loss of generality, can be assumed to be uniformly Converglng in |a, bl.
Then, in view of what we have shown above, conditions (2.64) and (2.66) hold. However,
this contradicts condition (2.67). The obtained contradiction proves the validity of the
lemma. 0

Lemma 2.8. Let ag €]a, b, by €]ag, b, the functions h; and the operators f; be given by
equalities (1.7) and (1.8). Let, moreover, 7; € M(|a,b]), and the constants l; j > 0, vi; >
0(k=0,1; j =1,...,m) be such that conditions (1.9)-(1.11) are fulfilled. Then there
exists positive constants 6 and ry such that if ag €la, a+ [, by €]b—10,b[, to €la, a[, t1 €
[bo, b[, and q € L2, _ 2.om—2(]a, b)), an arbitrary solution w € Ci'~"(Ja,b) of the problem

loc

ij A (p(to, 1, 1))+
b (2.68)
+p0 /G 1221 th tl) ) )Xtotl( )( )ds + q( ) f07" tO S t S tl)

a9 () =0, a9 V() =0 (j=1,...,m) (2.69)
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satisfies the inequality

/ 7™ (s5)2ds < r1<

+| / pols)ii(s) / Gluslto tr,5). € xion (D()deds| + llallEy ). (2:70)

u] 1)(,uj<t0,t1, dS""

Proof. Conditions (1.9) and (1.10) imply the existence of constants I;; > 0 (k = 0,1)
such that : )
(t—a)" 2% fi(a,1)(t,s) <lp; for a<t<s<ay,

(b—t)™ 26 fi(b,75) (L, s) < Ty; for by <s<t<b.

Consequently, all the requirements of Lemma 2.3 with p;(t) = (=1)"p;(t), a < to < ao,
and Lemma 2.4 with p;(t) = (=1)"p;(t), by <t < b, are fulfilled. Condition (1.11) also
guarantees the existence of a v €]0, 1] such that

)22m Jj+1

Z 2m—1 N2m —2j+1)!

J=1

gl <1=2v (k=0,1). (2.71)

On the other hand, without loss of generality we can assume that ay €]a,a + ] and
by €]b — 9, b[, where 0 is a constant such that

> 038, 70) + 13856, 15)) < v, (2.72)
7=0

where the functions 3; are defined by (2.6). Let now ¢ € Z%me, om—2(]a, b[), u be a solution
of problem (2.68), (2.69), and

22m

(v(2m — 3)I)2

(2.73)

r =

Multiplying both sides of (2.68) by (—1)™u(t) and then integrating by parts from ¢ to
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t1, in view of conditions (2.69), we obtain

m

/ @) ds = ()" Y [ T st 11 5)) s+
1" [ ml)ls) [ Glulta,t,9). i @(Ededs+

t1

+ (—l)m/q(s)ﬂ(s)ds. (2.74)

to

Applying Lemmas 2.3 and 2.4 with p;(t) = (—=1)"p;(t), and using equalities po(to) =
p1(t1) = 0, by virtue of (2.71), we get

Y / s ()50 sy fo. 11, ) s+
Jj= 1t0

ag b
I / Po(s)i(s) / Gty (Fos 1. 5). €) Xuon () (€)dEds <
m 2m j>22m 7+1 m _
; om — D (2m =2 +1 )”lojﬂo(ao) + jgolojﬂj(a — @, Vo) po(t1) <
< (1= 2o + 3 B 6.0m) [ [G(s)Pds, (275
=0
and
1y / P (8)(5)TI Dyt 11, 8)) s+
=1y

b
I / pols)ii(s) / Gty (Fos 11, 5), €) Xuon () (€)déds <

bo
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)22m Jj+1

< ; 2m S )(2m —2j + 1 )”lljpl(bo) + ;luﬂj(bo —b,m;)p(to) <

m

< (1= 2plte) + Y106, ,) [ 177 6)Pds. - (276)
=0

If along with this we take into account inequalities (2.72) and ay < by, we find

Z/p] (J 1)<Mj<t07t175))d5+
=1
b
(=1 / / G5 (o 1, ), €)ooty () (€)dids <
m bo
< |3 [ BT Dot +
b
+| / pols / Gy (to, 1, 5), )iy (T (€) s+
—|—(1—21/)(p0a0 +p1b0)+1//\u s)|2ds < 1—y/\u s)|2ds+
X / TN ot 1, )|+
=1

+| [ms) [ Gttt 5. Ovn@©dés]. 277

On the other hand, if we put ¢ = (a + b)/2, then, again on the basis of Lemmas 2.1, 2.2,
and the Young inequality, we get

‘?q(s)ﬂ(s)ds) < ‘/ca'(s) / £)de ds‘+)/ / d§>d5) <
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C

= <j %ds)m( / s—a( [ a€)de) ds) "+

to to S
t1 t1 s
u?(s) 1/2 S 2 \1/2
_ )2m <
+(/(b—s) =1 (/(b ) (/C-’(g)dg) d) " <
2 2
e / @ )lds) Nl ., <
22m
a™ (s)|%d 2 2.
/ AP+ lllfy L (279)

2m

and without loss of generality we can assume that W > 1. In view of inequalities

(2.77), (2.78) and notation (2.73), equality (2.74) results in estimate (2.70). O
Lemma 2.9. Let 7; € M(Ja,b]), ao €|a,b[, by €lao,b], conditions (1.6), (1.9)- (1.11),
hold, where the functions h;, B; and the operators f; are given by equalities (1.7), (1.8),
and ly;, ij, i (k=0,1; j =1,...,m) are nonnegative numbers. Moreover, let the homo-
geneous problem (2.32,), (2.33¢) have only the trivial solution in the space C2™~1™(]a, b]).
Then there exist § €]0, %% and r > 0 such that for any ty €]a,a + 8], t; €]b+ 6,b], and

q € L2m 2.9m_2(]a, b)) problem (2.68), (2.69) is uniquely solvable in the space 6’2’”_1(]@, b)),
and its solution admits the estimate

/|u s)|? ds < r||q||Z%m7272m72. (2.79)

Proof. We first note that all the requirements of Lemmas 2.7 and 2.8 are fulfilled.
Let now ¢ €]0, min{b— by, ag — a}] be such as in Lemma 2.8 and assume that estimate
(2.79) is invalid. Then, for an arbitrary natural k, there exist

tok G]a, a—+ 5/]{?[, tlk G]b - 5/]{3, b[, (280)

and a function ¢, € z%mfzszz(]a,b[) such that problem (2.34), (2.35) has a solution
Uy, € C*™1(]a, b]) satisfying the inequality

1k ~(m) , 1/2
([ 1@ eras) >kl ., (2.81)
tok
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In the case when the homogeneous problem (2.34y), (2.35) has a nontrivial solution, in
(2.34) we put that () = 0 and assume that uy is that nontrivial solution of problem
(2.340), (2.35).

Let now
(t) = ( /lkr“”’( ds) ), ant) = ( /lkm;’”’(s)Pds)”qu(t). (2.82)

Then v}, is a solution of the problem

aem(E) =Y ()0 () +
j=1
b (2.83)
+po(t)/G(/~Lo(t0k,t1k7t), $)Xtontre (V) (8)ds + qor(t)  for tor <t <tyy,
7Y (tr) = 0, V() =0 (i=1,...,m).
Moreover, in view of (2.81), it is clear that
\ (s)Fds =1, laoellzz, ,, , <7 (FEN) (2.84)

On the other hand, in view of the fact that problem (2.32), (2.33) has only the trivial
solution in the space C*"~1™(]a, b[), by Lemmas 2.7, 2.8, and (2.84) we have
lim vy D) =0 uniformly in Ja,b[ (j =1,...n),
bo

1< 7«0(} /Ak(ﬁk)(s)ds} + k‘2> (k € N),

ag

(2.85)

where 7 is a positive constant independent of k. Now, if we pass to the limit in (2.85)
as k — +o00, by Lemma 2.6 we obtain the contradiction 1 < 0. Consequently, for any
solution of problem (2.68), (2.69), with arbitrary ¢ € L3, 5 5,,_5(la, b[), estimate (2.79)
holds. Thus, under conditions (2.69), the homogeneous equation

b
m

ﬂ(Qm) (t) = ij (t)ﬂ(jil)(/ij (to, ty, t)) + DPo (t) / G(,U] (t07 l1, t>7 S)Xtotl <ﬁ><s>d8 (2820)

J=1 °
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has only the trivial solution. However, for arbitrarily fixed ¢y €la,a + 6|, t; €]b — 4,],
and q € L([ty, t1]) problem (2.68), (2.69) is regular and has the Fredholm property in the
space C?™~1(Jtg, ¢1[). Thus, problem (2.68), (2.69) is uniquely solvable. O

Lemma 2.10. Let 7 € M(Ja,b]), a >0, 3> 0, and let there exist 6 €]0,b— a| such that
I7(t) —t| < ky(t —a)’ for a<t<a+d. (2.86)

Then

T(t

)
1 B—1a(+ _ ,\a+0 > 1
’/(S—a)o‘ds’ < ka[l + ki67%(t — a) for = |
ky[0778 4+ ko (t — a)*PTP for 0< B <1
t

fora<t<a-+).
Proof. We first note that

7(t)
’ /(s —a)%ds
¢

and max{7(t),t} <t +|r(t) —t| for a <t <a+J. Then, in view of condition (2.86),
we get

< (max{7(t),t} —a)*|7(t) —t| for a<t<a+}d,

7(t)
’ /(s —a)%ds
t

This inequality proves the validity of the lemma. O

<kt —a) +ki(t—a)’]*(t —a)’ for a<t<a+sé.

Analogously, one can prove

Lemma 2.11. Let 7; € M(]a,b]), a >0, >0 and let there exist 6 €]0,b— a[ such that
ITi(t) —t| <k (b—t)° for b—5<t<b (2.87)

Then

7(t)
o k[l + k10710 = )*+P for B >1
| [o-vra < {kl[w FRIG -0 for 0<f<1

forb—46 <t <b.
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3 Proofs

Proof of Theorem 1.1. Suppose that problem (1.1j), (1.2) has only the trivial solution.
Then, in view of Remark 2.1, it follows that problem (2.32;), (2.33¢) also has only the
trivial solution. Let now r and ¢ be the numbers appearing in Lemma 2.9 and

t0k:a+5//€ tlk:b—é//{? (k?GN) (31)

By Lemma 2.9, for every natural k, problem (2.34), (2.35) with ¢ = ¢, has a unique

solution @y in the space CZQOVC” Y(Ja, b) and

tik

—(m 1/2
([ra@eas) " < alz, (3.2

tok

where the constant r does not depend on ¢. by Lemma 2.7 with rq = T||Q||Zz s it

follows from (3.2) that problem (2.32), (2.33) has a unique solution & € C2™~ 1(]a b[) for

loc
an arbitrary ¢ € L3, 5 o,, »(]a, b[), where

khI-F ul(g Yoy=aD@) (j=1,...,2m) uniformly in ]a,b, (3.3)

and
a2 < rllallz

2m— 22m2

Thus problem (2.32), (2.33) has the Fredholm property and @ € C2™~1™(]a, b[) for any

qe L%m—2,2m—2(]a’7 b)).
Consequently, it follows from Remark 2.1 that problem (1.1), (1. 2) has the Fredholm

property in the space C2™m+(]q, b[), and its solution u, where u(t fG (t,s)u(s)ds,
i.e. u/(t) = u(t), admits estimate (1.12). O

Proof of Corollary 1.1. In view of conditions (1.15), there exists a number ¢ > 0 such
that

i — )2 ( AL ) <1(k=0,1) (3.4)
€ = . .
j:1 2m—1 N2m —25+ 1)1\2m — 5 '
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On the other hand, in view of conditions (1.16) and (1.17), we have

(t — a)Qm_jhj (t,s) <

a0 _ 2m ® )
+m1j/(z<f§;b—2)m+1]]d§+/(§ )™ po; (€)dE

for a<t<s<a,
b (3.5)

b
(b — 5)2mij _ o\2m—j,
oy [ e sgrrde [0 97 (€

bo bO
for bg<s<t<hb.

m—]

(b—t)*™ T h(t,s) <

m—]

Let 0 be the constant defined in Lemmas 2.10 and 2.11. Relation (1.16) implies the
existence of ag €]a,a + 0] and by €]b — 4, b[ such that

O] <
b1 =
[t = a)(b =)
On the other hand, by condition (1.14), it follows from Lemmas 2.10 and 2.11 that there
exists a constant kg such that
75 ()

. 1/2 .
’ / (s — a)2(m’”d5’ < ké/Z(s —a)"IHil2 for  a <t < a,

+por(t) for te a,ap])Ulbo,Dl. (3.6)

75 (1)

. 1/2 .
‘ / (b — 5)2(m_])ds‘ < K2(b— s)mitnl? for by <t <b.

Consequently, if poy € Ly—j om—j(Ja, b]), then, by (1.13) and (3.7), relations (1.16) and
(1.17) imply the existence of a nonnegative constant ks such that

ao

(t — a)™ fola, mo) (1) < / (€ — @)™ |poo(€)|dé+

1 (ag —a)™

+ + for a<t<s<ag
m— (b(]—a())m
: (35)
(b— 1™ fo(b, 70) (£, 5) / 1™ poo (€)dE+
bo
1 b—by)™
+ +( 0) for by <s<t<bh

m—1 (bo — a,o)m
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(t—a)" ' fi(a,m)(t,5) < kolag — a)® for a<t<s< a,

(b =) (b, )(t, 8) < ko(b—by)™® for by <s<t<b,
where 0 < gg = min{yp —4m — 2, v; —2 : k= 0,1; j = 1,...,m}. Now, from (3.5),
(3.8) and (3.9) it is clear that we can choose ; < § so that if max{b — by, ag — a} < i,
then

(3.9)

0j - +¢ for a<t<s<a,
m—=J
R1j
-+ for by <s<t<hb,
m-—=1]
j€A{1,...,m}. From (3.8), (3.9), the last inequalities and (3.4), it is clear that all the
assumptions of Theorem 1.1, with [;; = 54 8 ko = Vi = 1/2,(k =0,1, j =
1,...,m) and max{b — by, ag — a} < 0y, are fulfilled, and thus the corollary is valid. O

(t— )"y (t.s) <

(b—t)*" T h(t,s) <

Proof of Theorem 1.2. From Theorem 1.1 by conditions (1.18)-(1.21) it is obvious that
problem (1.1), (1.2) has the Fredholm property. Thus, to prove Theorem 1.2, it will suffice
to show that the homogeneous problem (1.1y), (1.2) has only the trivial solution in the
space C2mm+1(]a, b]). Suppose that u € C?™™*1(]a, b[) is a nonzero solution of problem
(1.1p), (1.2) and u = u/. Then, in view of the condition p(b) — ¢(a) # 0, it is clear that
u # Const, and it follows from Remark 2.1 that the function u is a nonzero solution of
problem (2.32), (2.33) such that

b
p= / 7™ (5)|2ds < +oo0. (3.10)

a

Multiplying both sides of (1.1y) by (—1)™u(t) and integrating by parts from s to ¢, we
obtain

Wan(£) = W (s / @€ g = ij / 79 (7€) (€ e+

(1) / /G £)déds,

with wy,, (t) = S (—1)™H~1gm=9) (¢)u(t), where, due Lemma 2.5, it is obvious that
=1

(3.11)

S—a

lim inf |we,,(s)| = 0, lirtn ibnf |wam (t)| = 0. (3.12)
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According to (1.20), (1.21) and (3.10), all the conditions of Lemmas 2.3 and 2.4 with
pi(t) = (=1)"p;(t), ap = by = t*, to = a, t; = b and p;(to,t1,t) = 7;(t) hold. Conse-
quently, due to the equalities py”* (r)o5* (%) < p, 5 (D)oo (1) < p, 01 (7)1 * (1) <,

pi’*(a)py*(t*) < p, we have

t b

(0" [ mlts) [ Gls, 6 deds <

S a

< looBo(t* — a,700)p + L1080 (b — t*, v10) p+
= 1/2 1/2 7 1/2 1/2
+ ao(loo, a0 — a;700) o’ " (b)po’ ~(s) + ao(lio, b — bo, Y10)po" “(a)py" " (t) (3.13)
fora<s<tr<t<band

t

(—1)" / P (€075 (7;(€)i(€) de <

S

E)
—iem —2j et

277’?, j22mfj+1

2m —j) o)+

2m — D)!'(2m — 25 + 1!

+ a(log, logs ao — a, yo5)p (%) 06 (5) + (L, Ty b — boy i) ey (m)py P (1) (3.14)

for a < s < t* <t < b. On the other hand, due to conditions (1.18) and (1.19), the
number v €]0, 1] can be chosen such that inequalities

< lo; B;(t* — a,v0;)p + loj om

+ 10 B5(b = 1%, m;)p + llj(

By = loofo(t* — a, vyoo)+

. (2m — j)22m—i*! - 1—v
lo; 1B (1 — A )
+;(OJ (2m — DN(2m — 25 + )N o7 —a, %) ) < ——
7 i ‘ (3.15)
By = 1iofBo(b — t*, 710)+

(2m — j)22m—itl 1—v

+Z<l“ DI (2m — 25 + 1)1 B = ’%j)>< 2

are satisfied. Thus if we pass to limit with s — s, ¢ — b, in (3.11), according to (3.12)-
(3.15), and the fact that py(a) = p1(b) = 0, we get the inequality p < (1 — v)p, and
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consequently, p = 0. Hence, by
|u(t) ol ‘/t—sml ™ (s)ds| < (t—a)""Y2p for a<t<Db,

we have the contradiction with the fact that u(¢) = 0. Therefore, our assumption is wrong

and, thus, problem (1.1), (1.2) has only the trivial solution in the space C?™ ™+ (]a, b]).
U

Proof of Remark 1.1. Let u be a solution of problem (1.1), (1.2). Then, by Remark 2.1,
the function u, where wu(t f G(t, s)u(s)ds, is a solution of problem (2.32), (2.33) and,

in view of Theorem 1.1, the 1nclu81on u e C2m-m+1(]a, b]) holds, i.c.

p_/\u (mH1)( 2dsp—/\u s)|?ds < +oo. (3.16)

Furthermore, if to, t15 are defined by equalities (3.1), it is clear from the proof of Theorem
1.1 that for any k € N problem (2.34), (2.35) has a unique solution @, € C?™™~1(]a, b])
such that (3.2) and (3.3) hold.

Multiplying equation (2.34) by (—1)™u; and then integrating by parts from ¢ to ¢y,
we obtain

t t

wmﬂw—wmﬂﬁ+/ﬁ$Wm%6=GD”/M@%@M%

S

Z/p] (7€) (§)dé+ (3.17)

t b

Hawfmmmm/b@amWﬂmmﬂm

for a < s <t < b, with wap x(t) = 3 (=1)™ 1G9 (£) 7, (1), where, due to (3.3), we
i=1
have

Lim inf [wz 1 (£)] = [wom(t)],  Um inf [wamk(t)] = |wam(t)], (3.18)
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and, therefore, it is obvious from Lemma 2.5 that equalities (3.12) hold. Furthermore, due
to conditions (1.18) and (1.19), the number v €]0, 1] can be chosen so that inequalities
(3.15) hold, and then

0 <v<1-—2max{By, B} (3.19)

It is obvious that the maximum of v depend only on the numbers [, ko, ij, Yio, Vej (k=
0,1;j=1,...,m), and a, b, t*. If we now put ¢ = (a + b)/2, then, by using Lemmas 2.1,
2.2, conditions (2.35), and the Young inequality, we get

]/qu)ak(w)dw} < ’/cq(w)ﬂk(w)dw’ +]/qu<w>ﬁk<w>dw} -

- )/ / €)de ) dv| +)/~’ >(/wq<s>df)dw\ <

5 (/ wiﬁ%d@”)m . (t / (v —a)=2( w/ a€)de) av) "+
+(7€(bﬁ%dw)m x (7@ =) /w a€)de) av) " <
= ﬁ”q”zamm( /b \ﬂé””<s>l2ds)1/2 < .
= 2/‘~ Sds + %(ﬁyllﬂ\%am,w- |

Using Lemmas 2.3 and 2.4 and conditions (1.20), (1.21), we get the inequalities (3.13)
and (3.14) with s = to, t = tyy.

Now if we pass to the limit as k — +ooin (3.17), according to (3.3), (3.12),(3.13), (3.14),
(3.18), (3.20), and equalities pg(a) = p1(a) = 0 we get

<0 o )
P_( _V)p+2p+2l/ (2m—1)!! ||q||zg'rn72,2m—2. ( )
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From (3.19) and (3.21) immediately follows that

1™ ||z < rllallz (3.22)

Y
2m—2,2m—2

with
2m

(1 — 2max{By, B1})(2m — 1)!IVV
where it is clear from definition of the numbers By, B; that r depend only on the numbers
Uiy Ukos Lkjs Ykos ks (K =10,1; 5 =0,...,m), and a, b, t*. by By virtue of (3.16), the last
inequality implies estimate (1.22). O

r =
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