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POSITIVE SOLUTIONS FOR A FOURTH ORDER BOUNDARY

VALUE PROBLEM

BO YANG

Abstract. We consider a boundary value problem for the beam equation, in
which the boundary conditions mean that the beam is embedded at one end
and free at the other end. Some new estimates to the positive solutions to
the boundary value problem are obtained. Some sufficient conditions for the
existence of at least one positive solution for the boundary value problem are
established. An example is given at the end of the paper to illustrate the main
results.

1. Introduction

In this paper, we consider the fourth order ordinary differential equation

u′′′′(t) = g(t)f(u(t)), 0 ≤ t ≤ 1, (1.1)

together with boundary conditions

u(0) = u′(0) = u′′(1) = u′′′(1) = 0. (1.2)

Throughout the paper, we assume that

(H1) f : [0,∞) → [0,∞) is continuous; and

(H2) g : [0, 1] → [0,∞) is a continuous function such that

∫ 1

0

g(t) dt > 0.

Eq.(1.1) and the boundary conditions (1.2) have definite physical meanings.

Eq.(1.1) is often referred to as the beam equation. It describes the deflection

of a beam under a certain force. The boundary conditions (1.2) mean that the

beam is embedded at the end t = 0, and free at the end t = 1. Eq.(1.1) has

been studied by many authors under various boundary conditions. For example,
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Ma [23] studied the existence of positive solutions for the fourth order boundary

value problem

u′′′′(x) = λf(x, u(x), u′(x)),

u(0) = u′(0) = u′′(1) = u′′′(1) = 0

under some superlinear semipositone condition. For some other results on bound-

ary value problems of the beam equation, we refer the reader to the papers of Bai

and Wang [7], Davis and Henderson [8], Elgindi and Guan [10], Eloe, Henderson,

and Kosmatov [11], Graef and Yang [13], Gupta [15], Kosmatov [21], Liu and Ge

[22], Ma [24], Ma and Wang [25], Yang [27], and Yao [28].

The boundary conditions (1.2) are a special case of the (p, n − p) right focal

boundary conditions, in which n = p = 2. Extensive research has been done

on focal boundary value problems. The reader is referred to the monograph [1]

by Agarwal for a systematic survey of this area. For some recent results on fo-

cal boundary value problems, we refer the reader to the papers by Agarwal and

O’Regan [2], Agarwal, O’Regan, and Lakshmikantham [4], Anderson [5], Ander-

son and Davis [6], Davis, Henderson, Prasad, and Yin [9], Harris, Henderson,

Lanz, and Yin [16], Henderson and Kaufmann[17], and Henderson and Yin [19].

In this paper, we will study the existence and nonexistence of positive solutions

of the problem (1.1)-(1.2). Note that if f(0) = 0, then u(t) ≡ 0 is a solution to

the problem (1.1)-(1.2). But in this paper, we are interested only in positive

solutions. By positive solution, we mean a solution u(t) such that u(t) > 0 for

t ∈ (0, 1). In this paper, we’ll concentrate on the existence of at least one positive

solution for the problem (1.1)-(1.2).

The Green’s function G : [0, 1] × [0, 1] → [0,∞) for the problem (1.1)-(1.2) is

given by

G(t, s) =

{

1
6
t2(3s − t), if 0 ≤ t ≤ s ≤ 1,

1
6
s2(3t − s), if 0 ≤ s ≤ t ≤ 1.
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And the problem (1.1)-(1.2) is equivalent to the integral equation

u(t) =

∫ 1

0

G(t, s)g(s)f(u(s)) ds, 0 ≤ t ≤ 1. (1.3)

To prove our results, we will use the following fixed point theorem, which is

due to Krasnosel’skii [20].

Theorem K. Let (X, ‖ · ‖) be a Banach space over the reals, and let P ⊂ X be

a cone in X. Let H1 and H2 be real numbers such that H2 > H1 > 0, and let

Ωi = {v ∈ X | ‖v‖ < Hi}, i = 1, 2.

If

L : P ∩ ( Ω2 − Ω1) → P

is a completely continuous operator such that, either

(K1) ‖Lv‖ ≤ ‖v‖ if v ∈ P ∩ ∂Ω1, and ‖Lv‖ ≥ ‖v‖ if v ∈ P ∩ ∂Ω2,

or

(K2) ‖Lv‖ ≥ ‖v‖ if v ∈ P ∩ ∂Ω1, and ‖Lv‖ ≤ ‖v‖ if v ∈ P ∩ ∂Ω2.

Then L has a fixed point in P ∩ ( Ω2 − Ω1).

One of the purposes of this paper is to establish some new estimates to the

positive solutions of the problem (1.1)-(1.2). These estimates are essential to the

main results of this paper. It is based on these estimates that we can define an

appropriate cone, and apply the Krasnosel’skii’s fixed point theorem to prove the

existence results.

This paper is organized as follows. In Section 2, we obtain some new estimates

to the positive solutions to the problem (1.1)-(1.2). In Sections 3 and 4, we

establish some existence and nonexistence results for positive solutions to the

problem (1.1)-(1.2). In Section 5, we give an example to illustrate the main

results of the paper.
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2. Estimates to Positive Solutions

In this section, we shall give some nice estimates to the positive solutions to the

problem (1.1)-(1.2). To this purpose, we define the functions a : [0, 1] → [0, +∞)

and b1 : [0, 1] → [0, +∞) by

a(t) =
3

2
t2 −

1

2
t3, 0 ≤ t ≤ 1,

b1(t) = 2t2 −
4t3

3
+

t4

3
, 0 ≤ t ≤ 1.

The functions a(t) and b1(t) will be used to estimate the positive solutions of the

problem (1.1)-(1.2). It’s easy to see that t ≥ b1(t) ≥ a(t) ≥ t2 for t ∈ [0, 1].

Lemma 2.1. If u ∈ C4[0, 1] satisfies the boundary conditions (1.2), and such

that

u′′′′(t) ≥ 0 for 0 ≤ t ≤ 1, (2.1)

then

u′′′(t) ≤ 0, u′′(t) ≥ 0, u′(t) ≥ 0, u(t) ≥ 0 for t ∈ [0, 1]. (2.2)

The proof of Lemma 2.1 is very straightforward and therefore omitted.

Lemma 2.2. If u ∈ C4[0, 1] satisfies (1.2) and (2.1), then

a(t)u(1) ≤ u(t) ≤ tu(1) for t ∈ [0, 1]. (2.3)

Proof. If u(1) = 0, then because u′(t) ≥ 0 for t ∈ [0, 1] and u(0) = 0, we have

u(t) ≡ 0. And it is easy to see that (2.3) is true in this case.

Now let us prove (2.3) when u(1) > 0. Without loss of generality, we assume

that u(1) = 1. If we define

h(t) = u(t) − a(t)u(1) = u(t) −
3

2
t2 +

t3

2
, 0 ≤ t ≤ 1,

then we have

h′(t) = u′(t) − 3t +
3

2
t2, h′′(t) = u′′(t) − 3 + 3t,

h′′′(t) = u′′′(t) + 3,
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h′′′′(t) = u′′′′(t) ≥ 0 for t ∈ [0, 1]. (2.4)

It’s easy to see, from the above equations and (1.2), that

h(0) = h(1) = h′(0) = h′′(1) = 0.

By mean value theorem, because h(0) = h(1) = 0, there exists r1 ∈ (0, 1) such

that h′(r1) = 0. Since h′(0) = h′(r1) = 0, there exists r2 ∈ (0, r1) such that

h′′(r2) = 0. From (2.4) we see that h′′(t) is concave upward on the interval (0, 1).

Since h′′(r2) = h′′(1) = 0, we have

h′′(t) ≥ 0 for t ∈ (0, r2) and h′′(t) ≤ 0 for t ∈ (r2, 1).

So h′ is nondecreasing on the interval (0, r2), and is nonincreasing on the intervals

(r2, r1) and (r1, 1). Because h′(0) = h′(r1) = 0, we have

h′(t) ≥ 0 for t ∈ (0, r1) and h′(t) ≤ 0 for t ∈ (r1, 1).

These, together with the fact that h(0) = h(1) = 0, imply that

h(t) ≥ 0 on (0, 1).

Thus we proved the left half of (2.3) when u(1) > 0.

To prove the right half of (2.3) when u(1) > 0, we assume u(1) = 1, and define

y(t) = t − u(t), 0 ≤ t ≤ 1,

then

y′(t) = 1 − u′(t), y′′(t) = −u′′(t) ≤ 0 for t ∈ (0, 1). (2.5)

It’s easy to see that

y(0) = y(1) = 0. (2.6)

From (2.5) we see that y(t) is concave downward. So (2.6) implies that y(t) ≥ 0

for t ∈ [0, 1]. The proof is complete.

Lemma 2.3. If u ∈ C4[0, 1] satisfies (1.2) and (2.1), and u′′′′(t) is nondecreasing

on [0, 1], then

a(t)u(1) ≤ u(t) ≤ b1(t)u(1) for t ∈ [0, 1]. (2.7)
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Proof. The left half of (2.7) is already proved in Lemma 2.1. Therefore we need

only to prove the right half of (2.7). Without loss of generality, we assume that

u(1) = 1. If we define

y(t) = b1(t) − u(t) = 2t2 −
4t3

3
+

t4

3
− u(t), 0 ≤ t ≤ 1,

then we have

y′(t) = 4t − 4t2 +
4t3

3
− u′(t), y′′(t) = 4 − 8t + 4t2 − u′′(t),

y′′′(t) = −8 + 8t − u′′′(t),

y′′′′(t) = 8 − u′′′′(t), for t ∈ [0, 1]. (2.8)

It’s easy to see, from the above equations and (1.2), that

y(0) = y(1) = y′(0) = y′′(1) = 0.

By mean value theorem, because y(0) = y(1) = 0, there exists r1 ∈ (0, 1) such that

y′(r1) = 0. Since y′(0) = y′(r1) = 0, there exists r2 ∈ (0, r1) such that y′′(r2) = 0.

Since y′′(r2) = y′′(1) = 0, there exists r3 ∈ (r2, 1) such that y′′′(r3) = 0. It is easy

to verify that y′′′(1) = 0. Because y′′′(r3) = y′′′(1) = 0, there exists r4 ∈ (r3, 1)

such that

y′′′′(r4) = 0. (2.9)

Note that u′′′′(t) is nondecreasing on [0, 1]. From (2.8), we see that y ′′′′(t) is

nonincreasing on [0, 1]. This, together with (2.9), imply that

y′′′′(t) ≥ 0 for t ∈ (0, r4) and y′′′′(t) ≤ 0 for t ∈ (r4, 1).

Because y′′′(r3) = y′′′(1) = 0, we have

y′′′(t) ≤ 0 for t ∈ (0, r3) and y′′′(t) ≥ 0 for t ∈ (r3, 1).

Because y′′(r2) = y′′(1) = 0, we have

y′′(t) ≥ 0 for t ∈ (0, r2) and y′′(t) ≤ 0 for t ∈ (r2, 1).
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Because y′(0) = y′(r1) = 0, we have

y′(t) ≥ 0 for t ∈ (0, r1) and y′(t) ≤ 0 for t ∈ (r1, 1).

These, together with the fact that y(0) = y(1) = 0 imply that

y(t) ≥ 0 for 0 ≤ t ≤ 1.

The proof is complete.

Lemma 2.4. Suppose that (H1) and (H2) hold. If u(t) is a nonnegative solution

to the problem (1.1)-(1.2), then u(t) satisfies (2.2) and (2.3).

Proof. If u(t) is a nonnegative solution to the problem (1.1)-(1.2), then u(t)

satisfies the boundary conditions (1.2), and

u′′′′(t) = g(t)f(u(t)) ≥ 0, 0 ≤ t ≤ 1.

Now Lemma 2.4 follows directly from Lemmas 2.1 and 2.2. The proof is complete.

Lemma 2.5. Suppose that (H1), (H2), and the following condition hold.

(H3) Both f and g are nondecreasing functions.

If u(t) is a nonnegative solution to the problem (1.1)-(1.2), then u(t) satisfies

(2.2) and (2.7).

Proof. From Lemma 2.1 we see that u(t) satisfies (2.2), therefore u(t) is nonde-

creasing. From (H3), we see that u′′′′(t) = g(t)f(u(t)) ≥ 0, and u′′′′(t) is non-

decreasing on the interval [0, 1]. Now from Lemma 2.3 we see that u(t) satisfies

(2.7). The proof is complete.

3. Main Results

First, we define some important constants:

A =

∫ 1

0

G(1, s)g(s)a(s) ds, B =

∫ 1

0

G(1, s)g(s)s ds,

F0 = lim sup
x→0+

f(x)

x
, f0 = lim inf

x→0+

f(x)

x
,
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F∞ = lim sup
x→+∞

f(x)

x
, f∞ = lim inf

x→+∞

f(x)

x
.

Throughout the rest of the paper, we let X = C[0, 1] be with norm

‖v‖ = max
t∈[0,1]

|v(t)|, v ∈ X,

and let

P = {v ∈ X | v(1) ≥ 0, a(t)v(1) ≤ v(t) ≤ tv(1) for t ∈ [0, 1]}.

Clearly X is a Banach space, and P is a positive cone in X. We can restate

Lemma 2.4 as follows.

Lemma 3.1. If u(t) is a nonnegative solution to the problem (1.1)-(1.2), then

u ∈ P .

The next lemma shows that if u ∈ P , then u(t) achieves its maximum at t = 1.

Lemma 3.2. If u ∈ P , then u(1) = ‖u‖.

Proof. If u ∈ P , then we have

0 ≤ u(t) ≤ tu(1) ≤ u(1), for each t ∈ [0, 1].

The proof is complete.

Define the operator T : P → X by

(Tu)(t) =

∫ 1

0

G(t, s)g(s)f(u(s)) ds, 0 ≤ t ≤ 1. (3.1)

It is well known that T : P → X is a completely continuous operator.

Lemma 3.3. T (P ) ⊂ P .

Proof. If u ∈ P , then (3.1) implies that Tu(t) satisfies the boundary conditions

(1.2), and

(Tu)′′′′(t) = g(t)f(u(t)) ≥ 0, 0 ≤ t ≤ 1.

Now the lemma follows immediately from Lemma 2.2. The proof is complete.
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It is clear that the integral equation (1.3) is equivalent to the equality

Tu = u, u ∈ P.

In order to find a positive solution to the problem (1.1)-(1.2), we need only to

find a fixed point u of T such that u ∈ P and u(1) = ‖u‖ > 0.

Now we are ready to prove the main results on the existence of at least one

positive solution to the problem (1.1)-(1.2).

Theorem 3.4. Suppose that (H1) and (H2) hold. If BF0 < 1 < Af∞, then the

problem (1.1)-(1.2) has at least one positive solution.

Proof. First, we choose ε > 0 such that (F0 + ε)B ≤ 1. From the definition of F0

we see that there exists H1 > 0 such that

f(x) ≤ (F0 + ε)x for 0 < x ≤ H1.

For each u ∈ P with ‖u‖ = H1, we have

(Tu)(1) =

∫ 1

0

G(1, s)g(s)f(u(s)) ds

≤

∫ 1

0

G(1, s)g(s)(F0 + ε)u(s) ds

≤ (F0 + ε)‖u‖

∫ 1

0

G(1, s)g(s)s ds

= (F0 + ε)‖u‖B

≤ ‖u‖,

which means ‖Tu‖ ≤ ‖u‖. Thus, if we let Ω1 = {u ∈ X | ‖u‖ < H1}, then

‖Tu‖ ≤ ‖u‖ for u ∈ P ∩ ∂Ω1.

To construct Ω2, we choose δ > 0 and c ∈ (0, 1/4) such that
∫ 1

c

G(1, s)g(s)a(s) ds · (f∞ − δ) ≥ 1.
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There exists H3 > 0 such that

f(x) ≥ (f∞ − δ)x for x ≥ H3.

Let H2 = max{H3c
−2, 2H1}. If u ∈ P such that ‖u‖ = H2, then for each t ∈ [c, 1],

we have

u(t) ≥ H2a(t) ≥ H2t
2 ≥ H2c

2 ≥ H3.

Therefore, for each u ∈ P with ‖u‖ = H2, we have

(Tu)(1) =

∫ 1

0

G(1, s)g(s)f(u(s)) ds

≥

∫ 1

c

G(1, s)g(s)f(u(s)) ds

≥

∫ 1

c

G(1, s)g(s)(f∞ − δ)u(s) ds

≥

∫ 1

c

G(1, s)g(s)a(s) ds · (f∞ − δ)‖u‖

≥ ‖u‖,

which means ‖Tu‖ ≥ ‖u‖. Thus, if we let Ω2 = {u ∈ X | ‖u‖ < H2}, then

Ω1 ⊂ Ω2, and

‖Tu‖ ≥ ‖u‖ for u ∈ P ∩ ∂Ω2.

Now that the condition (K1) of Theorem K is satisfied, there exists a fixed point

of T in P ∩ ( Ω2 − Ω1). The proof is now complete.

Theorem 3.5. Suppose that (H1) and (H2) hold. If BF∞ < 1 < Af0, then the

problem (1.1)-(1.2) has at least one positive solution.

Proof. First, we choose ε > 0 such that (f0 − ε)A ≥ 1. There exists H1 > 0 such

that

f(x) ≥ (f0 − ε)x for 0 < x ≤ H1.
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For each u ∈ P with ‖u‖ = H1, we have

(Tu)(1) =

∫ 1

0

G(1, s)g(s)f(u(s)) ds

≥

∫ 1

0

G(1, s)g(s)u(s) ds · (f0 − ε)

≥

∫ 1

0

G(1, s)g(s)a(s) ds · (f0 − ε)‖u‖

= A(f0 − ε)‖u‖

≥ ‖u‖,

which means ‖Tu‖ ≥ ‖u‖. Thus, if we let Ω1 = {u ∈ X | ‖u‖ < H1}, then

‖Tu‖ ≥ ‖u‖ for u ∈ P ∩ ∂Ω1.

To construct Ω2, we choose δ ∈ (0, 1) such that (F∞ + δ)B < 1. There exists

H3 > 0 such that

f(x) ≤ (F∞ + δ)x for x ≥ H3.

If we let M = max
0≤x≤H3

f(x), then

f(x) ≤ M + (F∞ + δ)x for x ≥ 0.

Let

K = M

∫ 1

0

G(1, s)g(s) ds,

and let

H2 = max{2H1, K(1 − (F∞ + δ)B)−1}. (3.2)

Note that (3.2) implies that

K + (F∞ + δ)BH2 ≤ H2.
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For each u ∈ P with ‖u‖ = H2, we have

(Tu)(1) =

∫ 1

0

G(1, s)g(s)f(u(s)) ds

≤

∫ 1

0

G(1, s)g(s)(M + (F∞ + δ)u(s)) ds

≤ K + (F∞ + δ)

∫ 1

0

G(1, s)g(s)u(s) ds

≤ K + (F∞ + δ)H2

∫ 1

0

G(1, s)g(s)s ds

= K + (F∞ + δ)H2B

≤ H2,

which means ‖Tu‖ ≤ ‖u‖. Thus, if we let Ω2 = {u ∈ X | ‖u‖ < H2}, then

Ω1 ⊂ Ω2, and

‖Tu‖ ≤ ‖u‖ for u ∈ P ∩ ∂Ω2.

Hence, the condition (K2) of Theorem K is satisfied, so T has at least one fixed

point in P ∩ ( Ω2 − Ω1), which implies that the problem (1.1)-(1.2) has at least

one positive solution. The proof is complete.

The next two lemmas provide sufficient conditions for the nonexsitence of pos-

itive solutions to the problem (1.1)-(1.2).

Theorem 3.6. If (H1), (H2), and the following condition hold.

(H4) Bf(x) < x for all x ∈ (0, +∞).

Then the problem (1.1)-(1.2) has no positive solutions.
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Proof. Assume the contrary that u(t) is a positive solution of the problem (1.1)-

(1.2). Then u ∈ P , u(t) > 0 for 0 < t ≤ 1, and

u(1) =

∫ 1

0

G(1, s)g(s)f(u(s)) ds

< B−1

∫ 1

0

G(1, s)g(s)u(s) ds

≤ B−1

∫ 1

0

G(1, s)g(s)s ds · u(1)

= B−1Bu(1)

= u(1),

which is a contradiction. The proof is complete.

Theorem 3.7. If (H1), (H2), and the following condition hold.

(H5) Af(x) > x for all x ∈ (0, +∞).

Then the problem (1.1)-(1.2) has no positive solutions.

The proof of Theorem 3.7 is quite similar to that of Theorem 3.6 and therefore

omitted.

4. More Results

Throughout this section, we assume that (H1), (H2), and (H3) hold, and we define

the Banach space X, the constants A, F0, F∞, f0 and f∞, and the operator T

the same way as in Section 3. In this section, we define a new constant B1 by

B1 =

∫ 1

0

G(1, s)g(s)b1(s) ds,

and the positive cone P1 of X by

P1 =

{

v ∈ X

∣

∣

∣

∣

v(1) ≥ 0, v(t) is nondecreasing on [0, 1],
a(t)v(1) ≤ v(t) ≤ b1(t)v(1) on [0, 1].

}

.

We can restate Lemma 2.5 as follows.
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Lemma 4.1. If u(t) is a nonnegative solution to the problem (1.1)-(1.2), then

u ∈ P1.

Lemma 4.2. If u ∈ P1, then u(1) = ‖u‖.

The proof is similar to that of Lemma 3.2 and therefore omitted.

Lemma 4.3. If (H1), (H2), and (H3) hold, then T (P1) ⊂ P1.

Proof. If u ∈ P1, then u(t) is nondecreasing. Now (3.1) implies that Tu(t)

satisfies the boundary conditions (1.2), and

(Tu)′′′′(t) = g(t)f(u(t)) ≥ 0, 0 ≤ t ≤ 1.

From (H3) we see that (Tu)′′′′(t) is nondecreasing. Now the lemma follows im-

mediately from Lemma 2.3.

Theorem 4.4. Suppose that (H1), (H2), and (H3) hold. If B1F0 < 1 < Af∞,

then the problem (1.1)-(1.2) has at least one positive solution.

Theorem 4.5. Suppose that (H1), (H2), and (H3) hold. If B1F∞ < 1 < Af0,

then the problem (1.1)-(1.2) has at least one positive solution.

The proofs of Theorems 4.4 and 4.5 are very similar to those of Theorems 3.4

and 3.5. The only difference is that we use the positive cone P1, instead of P ,

in the proofs of Theorems 4.4 and 4.5. The proofs of Theorems 4.4 and 4.5 are

omitted.

Theorem 4.6. If (H1), (H2), (H3) and the following condition hold.

(H6) B1f(x) < x for all x ∈ (0, +∞).

Then the problem (1.1)-(1.2) has no positive solutions.

The proof of Theorem 4.6 is quite similar to that of Theorem 3.6 and therefore

omitted.
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5. Example

Example 5.1. Consider the problem

u′′′′(t) = g(t)f(u(t)), 0 ≤ t ≤ 1, (5.1)

u(0) = u′(0) = u′′(1) = u′′′(1) = 0, (5.2)

where

g(t) = 1 + 3t, 0 ≤ t ≤ 1, (5.3)

f(u) =
λu(1 + 2u)

1 + u
, u ≥ 0, (5.4)

and λ > 0 is a parameter. It is easy to see that f0 = F0 = λ, f∞ = F∞ = 2λ, and

λu < f(u) < 2λu, for u > 0.

It is also easy to verify, by direct calculation, that

A =
303

1120
and B =

37

120
.

From Theorem 3.4 we see that if

1.848 ≈
1

2A
< λ <

1

B
≈ 3.243,

then the problem (5.1)-(5.2) has at least one positive solution. From Theorem

3.6 we see that if

λ ≤
1

2B
≈ 1.622,

then the problem (5.1)-(5.2) has no positive solutions. From Theorem 3.7 we see

that if

λ ≥
1

A
≈ 3.696,

then the problem (5.1)-(5.2) has no positive solutions.

Note that the functions g and f given by (5.3) and (5.4) are increasing func-

tions. Therefore Theorems 4.4 and 4.6 apply. It is easy to verify that

B1 =
1061

3780
.
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From Theorem 4.4 we see that if

1.848 ≈
1

2A
< λ <

1

B1
≈ 3.5627,

then the problem (5.1)-(5.2) has at least one positive solution. From Theorem

4.6 we see that if

λ ≤
1

2B1
≈ 1.7813,

then the problem (5.1)-(5.2) has no positive solutions.

Acknowlegement

The author is very grateful to the referee for his or her valuable suggestions.

References

[1] R.P. Agarwal, Focal boundary value problems for differential and difference equations,
Mathematics and its Applications, #436, Kluwer Academic Publishers, Dordrecht, 1998.

[2] R.P. Agarwal and D. O’Regan, Multiplicity results for singular conjugate, focal, and (n, p)
problems, J. Differential Equations, 170 (2001), no. 1, 142–156.

[3] R.P. Agarwal, D. O’Regan, and P.J.Y. Wong, Positive Solutions of Differential, Difference,
and Integral Equations, Kluwer Academic, Dordrecht, 1998.

[4] P.R. Agarwal, D. O’Regan, and V. Lakshmikantham, Singular (p, n − p) focal and (n, p)
higher order boundary value problems, Nonlinear Anal., 42 (2000), no. 2, Ser. A: Theory
Methods, 215–228.

[5] D.R. Anderson, Green’s function for a third-order generalized right focal problem, J. Math.
Anal. Appl., 288 (2003), no. 1, 1–14.

[6] D.R. Anderson and J. Davis, Multiple solutions and eigenvalues for third-order right focal
boundary value problems, J. Math. Anal. Appl., 267 (2002), no. 1, 135–157.

[7] Z. Bai and H. Wang, On positive solutions of some nonlinear fourth-order beam equations,
J. Math. Anal. Appl., 270 (2002), no. 2, 357–368.

[8] J.M. Davis and J. Henderson, Uniqueness implies existence for fourth-order Lidstone
boundary value problems, Panamer. Math. J., 8 (1998), no. 4, 23–35.

[9] J.M. Davis, J. Henderson, K.R. Prasad, and W.K.C. Yin, Eigenvalue intervals for nonlinear
right focal problems, Appl. Anal., 74 (2000), no. 1-2, 215–231.

[10] M.B.M. Elgindi and Z. Guan, On the global solvability of a class of fourth-order nonlinear
boundary value problems, Internat. J. Math. Math. Sci., 20 (1997), no. 2, 257-262.

[11] P.W. Eloe, J.L. Henderson, and N. Kosmatov, Countable positive solutions of a conjugate
type boundary value problem, Commun. Appl. Nonlinear Anal. 7 (2000), 47–55.

[12] J.R. Graef, C. Qian, and B. Yang, Multiple symmetric positive solutions of a class of
boundary value problems for higher order ordinary differential equations, Proc. Amer.
Math. Soc., 131 (2003), no. 2, 577–585.

EJQTDE, 2005 No. 3, p. 16



[13] J.R. Graef and B. Yang, On a nonlinear boundary value problem for fourth order equations,
Appl. Anal., 72 (1999), no.3 -4, 439–448.

[14] M.D. Greenberg, Application of Green’s Functions in Science and Engineering, Prentice-
Hall, 1971.

[15] C.P. Gupta, Existence and uniqueness theorems for the bending of an elastics beam equa-
tion, Appl. Anal., 26 (1988), no. 4, 289–304.

[16] G. Harris, J. Henderson, A. Lanz, and W.K.C. Yin, Second order right focal boundary
value problems on a time scale, Comm. Appl. Nonlinear Anal., 11 (2004), no. 4, 57–62.

[17] J. Henderson and E.R. Kaufmann, Multiple positive solutions for focal boundary value
problems, Commun. Appl. Anal., 1 (1997), no. 1, 53–60.

[18] J. Henderson and H. Wang, Positive solutions for nonlinear eigenvalue problems, J. Math.
Anal. Appl., 208 (1997), no. 1, 252–259.

[19] J. Henderson and W. Yin, Singular (k, n− k) boundary value problems between conjugate
and right focal, Positive solutions of nonlinear problems, J. Comput. Appl. Math., 88
(1998), no. 1, 57–69.

[20] M.A. Krasnosel’skii, Positive Solutions of Operator Equations, Noordhoff, Groningen,
1964.

[21] N. Kosmatov, Countably many solutions of a fourth order boundary value problem, Elec-
tronic J. of Qualitative Theory of Differential Equations, 2004, no. 12, 1–15.

[22] Y. Liu and W. Ge, Solvability of two-point boundary value problems for fourth-order
nonlinear differential equations at resonance, Z. Anal. Anwendungen, 22 (2003), no. 4,
977–989.

[23] R. Ma, Multiple positive solutions for a semipositone fourth-order bounadry value problem,
Hiroshima Math. J., 33 (2003), 217–227.

[24] R. Ma, Existence and uniqueness theorems for some fourth-order nonlinear boundary value
problems, Int. J. Math. Math. Sci., 23 (2000), no. 11, 783–788.

[25] R. Ma and H. Wang, On the existence of positive solutions of fourth-order ordinary differ-
ential equations, Appl. Anal., 59 (1995), no. 1-4, 225–231.

[26] H. Wang, On the existence of positive solutions for semilinear elliptic equation in the
annulus, J. Differential Equations, 109 (1994), no. 1, 1–7.

[27] Y. Yang, Fourth-order two-point boundary value problems, Proc. Amer. Math. Soc., 104
(1988), no. 1, 175–180.

[28] Q. Yao, Positive solutions for eigenvalue problems of fourth-order elastic beam equations,
Appl. Math. Lett. 17 (2004), 237–243.

(Received November 15, 2004)

Department of Mathematics, Kennesaw State University, Kennesaw, GA 30144,

USA

E-mail address : byang@kennesaw.edu

EJQTDE, 2005 No. 3, p. 17


