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A NOTE ON THE THEOREM ON DIFFERENTIAL
INEQUALITIES

H. STEPANKOVA

Abstract. It is proved that if a linear operator ¢ : C([a,b;R) —
L([a,b]; R) is nonpositive and for the initial value problem

u'(t) = L(u)(t) +q(t), ula)=c1, u(a)=rcy

the theorem on differential inequalities is valid, then ¢ is an a—Volterra op-
erator.
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The following notation is used throughout the paper.

N is the set of natural numbers.

R is the set of real numbers, Ry = [0, 4o00].

C([a,b];R) is the Banach space of continuous functions u : [a,b] — R
with the norm ||u||c = max{|u(t)| : t € [a,b]}.

C(la,b; Ry) = {u € C([a,b]; R) : u(t) > 0 for t € [a, b]}.

C([a, b]; R) is the set of absolutely continuous functions u : [a, b] — R.

C'([a, b]; R) is the set of functions u € C([a, b]; R) such that v’ € C([a, b]; R).

Cl (Ja,b[;R) is the set of functions u € C([a,b];R) such that v’ €
C(la, B]; R) for every 8 €]a, b|.
Cl (Ja,b[;R) is the set of functions u € C([a,b];R) such that v’ €
C(Jov, B]; R) for every [a, 8] Cla,b[.

L([a, b]; R) is the Banach space of Lebesgue integrable functions p : [a, b] —

b
R with the norm ||p||;, = [ |p(s)|ds.
L(Ja,b; Ry ) = {p € L([a,b];R) : p(t) > 0 for almost all ¢ € [a, b]}.
Ly is the set of linear bounded operators ¢ : C([a, b]; R) — L([a, b]; R).
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P,y is the set of operators ¢ € L, transforming the set C([a, b]; R ) into
the set L([a,b];R,).

We will say that ¢ € L, is an a—Volterra operator if for arbitrary by €
Ja,b] and v € C([a, b]; R) satisfying the condition

v(t)=0 for t € [a,b]
we have
L(v)(t) =0 for almost all ¢ € [a, by).

We will say that an operator €2 : L([a, b]; R) — C(]a, b]; R) is an a—Volterra
operator, if for arbitrary by € ]a,b] and ¢ € L([a, b]; R) satisfying the condition
q(t) =0 for almost all ¢ € [a, by]

we have
Q(q)(t) =0 for te€ |a,by.

In what follows, the equalities and inequalities with integrable functions
are understood to hold almost everywhere.

Consider the problem on the existence and uniqueness of a solution of the
equation

u’(t) = L(u)(t) + q(t) (1)

satisfying the initial conditions
u(a) =co, u'(a) =c, (2)

where £ € Ly, g € L([a,b];R) and ¢y, ¢; € R. By a solution of the equation
(1) we understand a function u € C'([a, b]; R) satisfying this equation (almost
everywhere) in [a, b].

Along with the problem (1), (2) consider the corresponding homogeneous
problem

u’(t) = L(u)(t), (1o)
u(a) =0, u'(a)=0. (20)

The following result is well-known from the general theory of boundary
value problems for functional differential equations (see, e.g., [1,2,4,5,8]).
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Theorem 1. The problem (1), (2) is uniquely solvable iff the corresponding
homogeneous problem (1y), (20) has only the trivial solution.

Definition 1. We will say that an operator ¢ € L, belongs to the set I:Tab(a)
if for every function u € C'([a,b]; R) satisfying

u'(t) > l(u)(t) for t€ [a,b], (3)
and (2), the inequality
u(t) >0 for te€ la,b (4)
holds.

Remark 1. It follows from Definition 1 that if £ € Hgy(a), then the homoge-
neous problem (1y), (29) has only the trivial solution. Therefore, according
to Theorem 1 the problem (1), (2) is uniquely solvable. Moreover, the inclu-
sion ¢ € Hy(a) guarantees that if ¢ € L([a, b]; R, ), then the unique solution
of the problem (1), (2¢) is nonnegative.

Note also that £ € Hg(a) iff a certain theorem on differential inequalities
hold. More precisely, whenever u,v € C’([a, b]; R) satisfy the inequalities

u(t) < L(u)(t) + q(t), v"(t) > L(v)(t) +q(t) for t € [a,b],
u(a) =v(a),  u'(a) =1'(a),
then
u(t) <wo(t) for te€la,b].

In the paper [7], sufficient conditions are established guaranteeing the
inclusion ¢ € Hyy(a). In particular, in [7, Theorem 1.3] the following propo-
sition is proved.

Proposition 1. Let —¢ € Py, be an a—Volterra operator and let there erist
a function v € C},(]a,b]; R) satisfying

V') < L)) for t€[a,b], (5)
v({t) >0 for t€la,bl, (6)
1(a) + lim 7'(2) # 0. (7)

t—a+

Then € € Hyl(a).
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Below we will prove (see Theorem 3) that in Proposition 1 the condition
on ¢ to be a—Volterra operator is necessary. Analogous result for first order
functional differential equations is proved in [3].

Before we formulate the main results, let us introduce the following defi-
nition.

Definition 2. Let the problem (1), (2) have only the trivial solution. De-
note by €2 the operator, which assigns to every function ¢ € L([a, b]; R) the
solution of the problem (1), (2).

Remark 2. From Theorem 1 it follows that the operator €2 is well defined.
It is also clear that 2 is a linear operator which maps the set L([a, b]; R) into
the set C(a, b];R).

Remark 3. It follows from [5, Theorem 1.4.1] that the operator €2 is contin-
uous (bounded) (see also [1,4,6]).

Remark 4. It immediately follows from Definitions 1 and 2 that if ¢ €

Hy(a), then the operator € is nonnegative, i.e., it transforms the set L([a, b]; R )
into the set C([a, b];R,).

Theorem 2. Let —¢ € P, and ! € ﬁab(a). Then Q is an a— Volterra
operator.

Proof. Let ty €]a,b[ and let the function ¢ € L([a, b]; R) be such that
q(t) =0 for t€ [a,tgl. (8)
We will show that
Qg)(t) =0 for t € a,tol 9)

Denote by u the solution of the problem (1), (29) and by v the solution of
the problem

V(t) = L(v)(8) + lq (D), (10)
v(a) =0, '(a)=0. (11)

According to Remark 1 (see also Remark 4) and the assumption —¢ € Hgy(a),
we have
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Since —¢ € P, it follows from (10) and (12) that
V(1) < lg(@)] for t € [a,to]
Hence, on account of (8), (11) and (12), we obtain
v(t) =0 for t€ a,to. (14)

On the other hand, by virtue of (1), (10), (13), and the assumption —¢ € P,
we get

(u(t) = o(@))" = tu—v)(t) +q(t) = |g(t)| 2 q(t) = |q(t)] for ¢ € [a,b].
Hence in view of (8) and (14) we get
u'(t) >0"(t) =0 for tE€ a,to.
The latter inequality, together with (13), (14) and (2¢), implies
u(t) =0 for t € |a,tg).

Consequently (since u(t) = Q(q)(t) for t € [a, b]), the equality (9) is fulfilled.
U

Theorem 3. Let —¢ € Py, and { € ﬁab(a). Then (¢ is an a— Volterra opera-
tor.

Proof. Assume the contrary, let ¢ be not an a—Volterra operator. Then
there exist vy € C([a,b]; R) and by € |a, b| such that

U(](t) =0 for te [CL, bo]

and
mes{t € [a, bo| : €(vy)(t) # 0} > 0.

Without loss of generality we can assume that
mes{t € [a, bo] : €(vy)(t) <0} > 0. (15)
First we will show that

Q£(fvo])) () =0 for T € [a, bol, (16)
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where () is the operator introduced in Definition 2.
Choose a sequence of functions vy € C’'([a, b]; R), k € N, such that

Jmlox —fvollle =0 (17)
and
ve(t) =0 for t€la,by], keN. (18)

According to Remark 3 and (17), we get

Jim [€2(€wr)) — (o)) lle = 0. (19)
It is clear that
Wp(t) = 0(v)(t) + qu(t) for t€[ab), keN, (20)
where
a) o) — L)) for te[ab], keN. (21)
Consequently,
welt) = Qqe)(t) for telab], keN. (22)

It follows from (20)—(22) that
vr(t) = Q) (t) — Q(v))(t) for ¢ € a,b], keN. (23)

Hence, taking into account the fact that  is an a—Volterra operator (see
Theorem 2) and the condition (18), we obtain

Ql(v))(t) = —vg(t) =0 for te€a,by], keN.
Thus, in view of (19), we get the equality (16).

Let u be a solution of the problem (1), (2¢), where

[ —t(lwl)(®) for te [a b
at) = {o for ¢ € [bo, b (24)
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It is evident that

u(t) = Qq)(t) for t € a,b] (25)
and

q(t) >0 for t€ |a,b]. (26)
Moreover, on account of the assumption —¢ € P,;, the inequality
C(|vo|)(t) < L(vg)(t) for t € [a,b]

holds. Consequently, due to (15) and (24)

mes{t € [a, bo] : q(t) > 0} > 0. (27)

According to Theorem 2, ) is an a—Volterra operator. Hence by virtue of
(16) and (24) we get from (25) that

uw(t) =0 for t € [a,b. (28)
On the other hand, the inequality (26) and the assumption ¢ € ﬁab(a) imply
u(t) >0 for t€a,b]. (29)
In view of (29) and the assumption —¢ € P, it follows from (1) that
u’(t) < q(t) for t € [a,b].
Hence, on account of (24), we obtain
u'(t) <0 for t € [by,b]
The latter inequality, together with (28) and (29), yields
u(t) =0 for t€la,b.

Therefore, it follows from (1) that ¢ = 0, which contradicts (27).
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