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1. INTRODUCTION

The aim of this paper is to prove existence and uniqueness theorems for the

nonlinear double delay integral equation

)+ [ k(L 8)f (s, 2(s)) ds, t € [, +00),
2(t) = (1.1)

where the constant delays » > 7 > 0.

Equations of the type are typical in the mathematical modeling of age struc-
tured populations in which, for example, the growth of two sizes of the same popu-
lation is considered (see [1L 2, [5L [6]). In this case 71 and 79 represent the maturation

and the maximal age, respectively.

* Corresponding author.
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Problem (1.1]) represents an integral formulation of the following nonlinear Gurtin—

MacCamy model (see, for instance, [5l [§]).
¢
B(t) = / K (Lt —0,8) B(o)do + F(t,9),
0
¢
S(t) = / H(t,t — 0,5)B(o)do + G(t,5),
0
where
K(t,0,5) = p(o,5)(o,t,0,5),H(t,0,5) =~(0)ll(o,t,0,95),

(0,t,2,5) = exp (- /Ox pla—o,8(t— 0))da) ,

+oo
F(t,S) = Bla, S)(a,t,t, S)po(a — t)da,

t

+oo
G(t, S) = /t ~(@)T(a, 4,1, S)pola — )da.

We refer to [5 [8] for the meaning of all the data functions.
The unknown S in (1.2)) can be transformed, under some initial conditions (see [8])

to a solution of the following double delay integral equation

S(t) = RoC /ta ~v(t — o) exp <_/0 N pla—t+o, S(a))da) @ (S(0)) S(o)do,
(1.3)

where ¢ is a nonnegative decreasing function which is responsible for the reduction
of fertility by crowding effect, a; and a™ are the maximum and the maturation
age of the considered population.

On the other hand, J. Diblik and M. Ruzickové [4] studied the exponential solutions

of the following differential equation containing two delays 7 > § > 0

y'(t) = Bt) (y(t —8) —y(t —7)). (1.4)
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We note that if y is a solution of (1.4), then z(t) = y(t) — y(t — (7 — §)) is a solution
of the following double delay integral equation
t—6
x(t) = B(s+0)x(s)ds. (1.5)
t—7
Also, if 8 is periodic with period 7 — 4, then y is a solution of .
To our knowledge, there are a few papers concerning the existence and the unique-
ness of the solution of (L.I)). E. Messina et al. (see [7, 8 [0]) studied the existence
and the uniqueness of the continuous solution of the following integral equation

o) + / Rt — )b (a(s)) ds, € [T,

—T2

z(t) =
o(t), tel0,m),

where the functions g and k are continuous and the function h satisfies the Lipschitz
condition.

However, many physical and biological models include data functions, which are
discontinuous. For this reason, we devote our investigations, here, to extend the
theory developed in [7,[8, @] to study the existence and the uniqueness of a solution
of , under simple and convenient conditions on the data functions, in more
general spaces.

The paper is organized as follows. In Section 3, we prove a general existence
principle. Section 4 is devoted to proving existence and uniqueness of a locally
bounded solution, an exponentially stable solution and a bounded solution. In
Section 5, we show existence and uniqueness of a locally integrable solution and
an integrable solution. Finally, existence and uniqueness results of the solution of

double delay convolution integral equations are discussed in Section 6.
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2. NOTATIONS AND SOME AUXILIARY FACTS

In this section, we provide some notations, definitions and auxiliary facts which
will be needed for stating our results.
Denote by L'(RT) the set of all Lebesgue integrable functions on R*, endowed
with the standard norm ||z z1(g+) = /+00 |z(t)|dt and by L>(RT) the set of all
bounded functions on RT, endowed Witi)l the norm ||| o gr+) = ess sup{|z(t)|,t €
R*}. Also, denote by L}, .(RT) the set of all Lebesgue integrable functions on
any compact set of RT and by L3 (R*) the set of all bounded functions on any
compact set of RT.
Let §(RT,R) be the set of all measurable functions from a subset of RT to R.
Let f : Rt x R — R be a measurable function. We define the operator Ny
on F(RT,R) by Nsz(t) = f(t,z(t)),t € RT. The operator Ny is said to be the
Nemytskii operator associated to the function f.
Let k : [12, +00) x Rt — R be a given measurable function. We define the linear
operator K on F(RT,R) by the formula

t—7
/t ) k(t, s)x(s)ds, t € [T2, +0),

(Rz) (t) = 2

0, te [0,’7’2).

Let F C §(RT,R) be a vectorial space satisfying the following property:

If fe Fand 0 # A C D(f), D(f) is the domain of f, then the function: f/4 (the
restriction of f on A) belongs to E and if fi, fo € E such that D(f1) N D(f2) = 0,
then the function f : D(f1) U D(f2) — R defined by

f1(t), t € D(f1),
f(t) = (%)
f2(t), t € D(f2),
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belongs also to E.

Remark 2.1. If f € E, then the function

f@t), t e D(f),

0, t e R* — D(f)

belongs to E.

We note that the spaces L>(RT), L% (RT), LY(R™), L} .(RT) satisfy the prop-

erty ().

3. EXISTENCE OF A MEASURABLE SOLUTION

Let F C F(RT,R) be a vectorial space satisfying the property ().

Theorem 3.1. Suppose that the following conditions are satisfied:

(i) g: [r2,+00) — R and ® : [0, 72) — R are measurable functions such that
®,gec E.
(i) f: Rt xR — R is a measurable function such that the Nemytskii operator
Ny transforms the space E into itself.
(iii) k : [r2,+00) x Rt — R is a measurable function and the linear integral

operator K generated by the function k transforms the space E into itself.

Then Problem (1.1)) has a unique measurable solution defined on R .

Proof. 1t is clear that there exists a unique integer r > 1 such that rm < 7 <

(r + 1)71. We define the function z : RT — R as follows: 2 = z,, on the interval
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[0, (r +n)1) for n > 1 such that

(1), if te0,m)
xl(t) = t—7;
g(t)+/ k(t, 8)f (s, B(s))ds, if t€ [ra,(r+ 1)7)
o (3.1)
. q)(t)a Zf te [0;7_2)
g(t) + (KNs®) (t), if te€[m, (r+1)m),

and for n > 2

(t) B I]L‘n_l(t), Zf te [O, (7" +n — 1)7’1)
' g(t) + t__ﬁ k(t,s)f(s,xn—1(s))ds, if te€[(r+n—1)m,(r+n)m)
B Tn_1(t), if te0,(r+n—1)7)
g(t) + (Ffon_l) (t)ds, if tel(r+n—1)1,(r+n)m).

(3.2)

We will prove that the sequence (z,,) is well defined and «,, € E for all n > 1.

1) Wehavez; = ® € Eon [0, 72), and on [72, (r+1)71) we have z; = g+ KN;® € E.
Then, by the property (x), we deduce that z; € E.

2) Assume that z,_; € E for n > 2, hence by the definition of ,,, we get z,, € F
on [0, (r+n—1)7;). Moreover, by the assumptions of Theorem [3.1] we deduce that
=g+ KNz, 1 € Eon|[(r+n—1)7,(r+n)n).

Then, by the property (x), we get x,, € E.

Thus the sequence (z,,) is well defined and z,, € E for all n > 1, therefore the
function z is measurable and defined on R*.

Now, we will prove that x is a solution of .

Step 1 : z is a solution on [0, (r + 1)71). By definition, x is a solution of on

[0,72). Moreover, for t € [12,(r+ 1)) wehave 0 <t — 1 <t —71 <r7; <79
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which implies that

Then z is a solution on [0, (r + 1)7).
Step 2 : x is a solution on [(r + 1)7y, +00). For ¢ € [(r + 1)71, +0), there exists a
unique integer n > 1 such that (r +n)m <¢ < (r +n+ 1)7, hence

——

o(6) =2 (6) =g0)+ [ klt9)f(s,0(5))ds

t—7o

o)+ [ Kt f(sal)ds

-T2

Thus z is a solution on [(r + 1)7y, +00).

For the uniqueness, let y be a solution of on RT, we will prove that = = y by
the following induction.

1) z=yon [0, (r+1)m).

We have z =y = ® on [0, 72) and for ¢ € [12, (r + 1)71) we have

t—71

0<t—m <t—m <rn <o, then y(t) = g(t) —|—/ k(t,s)f(s, ®(s))ds = x(t),
we deduce that x =y on [0, (r + 1)7y). o

2) Assume that = y on [0,(r + n)7y) for n > 1, and show that = y on
0,(r+n+1)m).

Let t € [(r+n)m, (r+n+ 1)), hence 0 <t —m <t —7 < (r +n)7y.

Then,
w0 =a0)+ [ Koo
— a0+ [ R ()
= zalt) = 2(0),
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which implies that x =y on [0, (r +n + 1)71).
Then Problem ([1.1)) has a unique measurable solution defined on R™.
O

Remark 3.2. Under the conditions of Theorem[31}, the solution x need not be in

the space E as in the following counterexample.

Example 3.3. Consider the following double delay integral equation

t—Tl
1 +/ z(s) ds, t € [12,400),
t—Tz
x(t) = (3.3)
07 te [07 TQ)a

such that o — 11 > 1, we have ®(t) =0,9(t) = 1,k(t,s) =1 and f(t,z) = x.

Let E = L>®(R"), it is clear that E satisfies the property (x) and contains the
functions ® and g. Moreover, the operators K and Ny transform the space E into
itself. Then, by Theorem (3.1, Problem has a unique measurable solution x
defined on Rt by and (3.2). Hence, for allt € [, (r+1)m), z(t) = z1(t) =1
and for allt € [(r + 1)1y, (r + 2)11), x(t) = 22(t) = 1 + (72 — 71). So, by using the

iteration, we deduce that forn > 2 and t € [(r +n — 1)1y, (r +n)m1),

This implies that ||z| e ®+y > n for alln > 1.

Consequently, we obtain ||z e @+) = +o0 and x ¢ E.
4. EXISTENCE OF AN EXPONENTIALLY STABLE SOLUTION
We will need the following lemma.

Lemma 4.1. Suppose that the following conditions are satisfied:

(i) g: [r2,+00) — R and ® : [0, 72) — R are measurable functions such that

® € L>([0,72)) and g € L ([12, +00)).
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(ii) f:R* xR — R is a measurable function and there exist a constant b and
a function a € LY (RT) such that |f(t,z)] < a(t) +blz| for allt € RT and
r e R.

(iii) k : [r2,+00) x RT — R is a measurable function and the linear integral

operator K transforms the space LY (RY) into itself.

Then Problem (1.1)) has a unique solution in L (RT).

Proof. We have the vectorial space L3 (R*) verifies the property (x) and the
functions ®,g € L% .(RT). Moreover, the assumption (ii) guarantees that the
Nemytskii operator N transforms the space L3 (R') into itself. Additionally
to the assumption (iii), we deduce, by Theorem that Problem has a
unique measurable solution z on R defined by x = z,, on [0, (r + n)7y) for n > 1,
where the sequence () is defined by and . Moreover, the sequence
(zn) € LY, (RT), hence for all n > 2, we have z € L> ([0, (r +n — 1)71]), which
implies that z € L3° (RY).

Thus Problem (I.1]) has a unique solution in L$° (R™). O

The following result gives a sufficient condition on k so that the operator K

transforms the space L2 (R™) into itself.

T2
Proposition 4.2. Assume that the function t — / |k(t,t — s)|ds belongs to
T1

L3 ([r2,+00)), then the operator K transforms the space L3, (RT) into itself.

Proof. The operator K transforms the space L3° (R™) into itself if and only if, for
all @ > 75 and for all z € LY (RT), we have Kz € L*®([r2, a]).

We have for all ¢ € [1q, ]

t—Tl

Te(t)] < / Ik(t, )l (s) ds

—T2

T2
:/ e(t,t — 8)|2(t — s)|ds
" EJQTDE, 2013 No. 56, p. 9



T2
< laloa-ry [ Kt~ 5)lds

T1

and since / |k(t,t — s)|ds € L=([r2,q]), then Kz € L*®([r2,q]).

Thus, K transforms the space L3 (RT) into itself. O

Example 4.3. Consider Problem (1.1) with g, ® and f fulfilling the assumptions
(i) and (ii) of Lemma and k(t,s) = H2e®. Since
T2 T2 t e}
|k(t,t — s)|ds = [2tIn — )= (o —m1)| e € LT, ([T, +0)),
- 1

1

then, by Proposition and Lemma Problem (L.1) has a unique solution x €
L35, (R).

In the sequel, we will utilize the following definition.

Definition 4.4. A measurable function h : R™ — R is called exponentially stable,

if there are M > 0 and v > 0 such that ¥Vt € R, |h(t)] < Me .

The following result gives the existence of an exponentially stable solution of

Problem (1.1)).

Theorem 4.5. Suppose that the following conditions are satisfied:
(i) g: [r2,4+00) — R is exponentially stable and ® € L>([0, 12)).
(ii) f:R* xR — R is a measurable function and there exist a constant b and
an exponentially stable function a : RY — R such that |f(t, z)| < a(t)+b|z|
for allt € RT and z € R.

(iii) % : [12,+00) x RT — R is a measurable function such that the function

tn—)/ k(t,t — s)|ds € LT, .([12, +00)).

(iv) There exists ¢ > o such that ba =b (css sup/ |k(t,t — s)|ds> <1

t>c

Then Problem (1.1 has a unique exponentially stable solution.
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Proof. By Proposition the assumption (iii) guarantees that the operator K
transforms L$° (R™) into itself, then from the above assumptions, we deduce by
Lemma that Problem has a unique solution = € L3 (R'). Moreover,
there exist 1,72 > 0 such that |g(t)]e™? € L>®(RT) and a(t)e??t € L>®°(R™).
Now, let 0 < v < min(y1,72), we have for all ¢ > ¢

t—71

O <lgle + [ (e ) F (s a(s)]ds

t—T1o

t—T1
<|g(t)|e" + er2™ / |k(t, s)|a(s)e™?%ds

t—72
t—T1
+ e””b/ |k(t, s)||x(s)|e? ds
t—T7o
T2

S‘g(t)|e’ht + 272 / |k(t,t — s)|a(t — S)evz(t—s)ds

T1

+ b / e(t, £ — )|t — s)[e ) ds

T1

<llg(2)e™* || oo (m+) + €™ [|a(2)e7*|| oo r+)
+ bae?™||2(2)e"* || Loo (je—ra 1))
<[lg(2)e™ || oo (rt+) + 2™ [|a(2)€7** || oo (m+)

+ bae™™? ||z(2) €| oo ([e—rp,e)) + b€ 2 ||2(2)€7 || oo (1,4
hence, for all t > ¢

(1~ bae”™) [a(2)e* [ 1 resty <920 e ) + €™ Ja(2)e™ | o ey
+ bae”™ HI(Z)S’YZ”LOO([C—TQJZ])'
Since ba < 1, then there exists 0 < v < min (v1,72) such that (1 — bae?™2) >
0, which implies from the above estimate that z(t)e?* € L* ([¢,+00]), moreover

z(t)ert € L> ([0, c]), it follows that z(t)e?* € L> ([0, +00)).
Thus Problem ((1.1)) has a unique exponentially stable solution on R¥. O
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Example 4.6. Consider Problem (1.1) with g, ® and f fulfilling the assumptions
(i) and (ii) of Theorem and k(t,s) = t—l%e’ hence

2 2t —T1 00
/ k(t,t—s)|ds:1n(2t > € LY ([r2, +00)).

1 77—2

Since, lim In (2%71) = 0, then there exists ¢ > 1o such that
t—+oo

2t—To
T2
b (ess sup/ |k(t,t — s)|ds> < 1.
t>c T1

Thus, by Theorem Problem (1.1)) has a unique exponentially stable solution.

Remark 4.7. If we replace the expression “exponentially stable” by “bounded” in
the assumptions (i) and (ii) of Theorem[{.5 and by setting v =v1 =2 = 0 in the
proof, we obtain a unique bounded solution of (1.1]).

Before state the second result, we need the following lemma.

Lemma 4.8. [3](Discrete Gronwall’s inequality) Assume that (cn)n>1 and (qn)n>1
are given non-negative sequences and the sequence (€n)n>1 satisfies

e1 < B and

n—1 n—1
En<B+D g+ Y aj, n>2,

j=1 j=1
then

n—1 n—1
en < BJquj exp Zaj , n>2.
j=1 j=1

Theorem 4.9. Suppose that the following conditions are satisfied:
(i) g: [r2,4+00) — R is exponentially stable and ® € L>([0, 72)).
(ii) f:R* xR — R is a measurable function and there exist a constant b and
an exponentially stable function a : RY — R such that | f(t, z)| < a(t)+b|z|
for allt e RT and z € R.
(iii) % : [12, +00) x RT — R is a measurable function and |k(t,s)| < h(s) such

that h € Ly ,.(R").
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Then Problem (1.1) has a unique solution x € LY (RT). Moreover, there exist

v>0,\>0 and 3 > 0 such that for all t € RT,

(b)) < (5+ A /O t h(s)ds> exp (bew /O t h(s)ds> . (4.1)

Proof. We have, by the assumption (iii), for all @ > 75 and for all ¢t € |79, @]

T2 T2 a—T1
/ le(t,t — 5)|ds < / Wt — )ds < / h(s)ds < +oc.
T 0

1 T1
Then, by Proposition the operator K transforms L% (RT) into itself, hence
from the above assumptions, we deduce by Lemma that Problem has a
unique solution z € L9 (R"). Moreover, the solution is given by the following

iteration: « = x,, on the interval [0, (r +n)7),n > 1 such that

(I)(t), if te [0,7’2)
g(t)—l—/t T 8) f(s, ®(s))ds, i £ € [ra, (r + 1))

and for n > 2

l'nfl(t), if te [0, (?"+TL—1)7'1)
ZEn(t) = t—71
g(t) + /t k(t,s)f(s,xn—1(s))ds, if te[(r+n—1)m,(r+n)m)

On the other hand, there exist 71,72 > 0 such that |g(t)[e"! € L*°(R*) and
a(t)ert € L=(RT).

Let v = min (y1,72) and define the sequence (e,,)n>1 as follows: for n > 2
e, = ess sup {|z(t)[e?, t € [(r+n— 17, (r+n)m1)}

and €, = ess sup {|z(t)[e?*,t € [0, (r + 1)71)}.
Now, for n > 2 and t € [(r + n — 1)1, (r + n)71), we have

t—71

|z (t)]e" <[g(t)]e™" +/ 1T k(t, 5)[(a(s) + bl (s)])ds

t—T7o
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(r+n—1)7
<G Lo rartocy) + €2 1a(2)67 [ oy / h(s)ds
0

(r+n—1)m1
+ be™™ / h(s)|z(s)|e"*ds
0

(r+1)71
<9 1 raroon + € ()™ ey [ hls)ds
0
nola(rtg)m
+€72Tz||a(z)e“’22HLoo(R+)Z/ h(s)ds
j=2 (r+j—1)71
(r+j5)m

(r+1)71 n—1
+ be™? / h(s)|z(s)|e*ds + be?™ Z/ h(s)|z(s)|e?*ds
0 j=2/ (r+ji—1)m

n—1 n—1
<lg(2)e" 2 Lo (ravtooy + DG+ D j€j
j=1 j=1

where

(r4+1)71
q1 = €727 [|a(2)e7??|| oo (r+)€72 72 / h(s)ds and for j > 2
0

(r+35)m

¢ = 67272||a(z)672z||Lm(R+)/ h(s)ds
(r+7—1)m1

(r+1)71
a1 = be' / h(s)ds and for j > 2
0

(r+3)m1
a; = be“’”/ h(s)ds.
(r4+j—1)m1

On the other hand, for ¢t € [0,72), we have |z(t)|e? < €7™2||®| Lo (jo,r,)), and for

t € [r2, (r+ 1)11), we have

lz(t)]e™ <||lg(2)e"*|| Lo ([ray(r+1)m)) + €I L1 ([0,rm))

x (la(2)e™ o (po.rr) + b ™ [ @l (o,rm))) »

hence,

€1 < max{e"™[|®|| oo ((0,r2)), [19(2)€" * || Loo ([ra, (rr1)m))

+ Ml o,rm)) (la(2)€72%] Lo f0,rry)) + 0 @ Lo ((0,0m1))) } = -
EJQTDE, 2013 No. 56, p. 14



Let 8 = max {p, [|g(2)€”*|| Lo ([rs,+o0)) } » then for all n > 2

n—1 n—1
€n S/B+ZQi+Zai€i
i=1 i=1

with €; < 3, we deduce, by Lemma [£.8] that for all n > 2
n—1 n—1
€n < (ﬂ +> Qi> exp <Z ai>
i1 i1
(r+n—1)7m
= (8 + ™ lae e [ h(s)ds
0

(r+n—1)7m
X exp be'm/ h(s)ds | .
0

Then, for A = €272 ||a(2)e??*|| poo (r+) and t € [(r +n — 1)71, (r +n)71), We obtain

(r+n—1)71 (r+n—1)71
lz(t)]e <€, < (6 + )\/ h(s)ds) exp (be'm / h(s)ds)
0 0

< <ﬂ+/\ /0 th(s)ds) exp <bew /0 th(s)ds) .

Moreover, for t € [0, (r + 1)71), we obtain

e(t)]e™ < B < (5 I\ Ot h(s)ds) exp <be"”2 / t h(s)ds) .

0

This completes the proof of the theorem. O

Remark 4.10. 1) If h € L*(R*") we deduce, by the inequality , that the solu-
tion is exponentially stable.

2) If we replace the expression “exponentially stable” by “bounded” in the assump-
tions (i) and (i) of Theorem then, by setting v = 1 = v2 = 0 in the proof, we
obtain the inequality with v = 0. Moreover, if h € L*(R"), then the solution

is bounded.
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Example 4.11. Consider Problem (L.1) with g, ® and f fulfilling the assumptions
(i) and (ii) of Theorem and k(t,s) = ts e~ (%), Since

|k(t,s)| < se™® = h(s) € LY(RY),
then, by Theorem Problem (L.1) has a unique exponentially stable solution.

5. EXISTENCE OF AN INTEGRABLE SOLUTION

Arguing as in Lemma we deduce the following result.

Lemma 5.1. Suppose that the following conditions are satisfied:

(i) g: [r2,+00) — R and ® : [0, 72) — R are measurable functions such that
® € L'([0,72)) and g € L}, ([12, +00)).
(ii) f:R* xR — R is a measurable function and there exist a constant b and
a function a € L}, .(RT) such that |f(t,z)| < a(t) +blz| for all t € RT and
z e R.
(iii) & : [r2,+00) x RT — R is a measurable function and the operator K

transforms the space L} ,.(RT) into itself.

Then Problem (1.1 has a unique solution in L} (RT).

The following result gives a sufficient condition on k so that the operator K
transforms the space L}  (R™) into itself.
Proposition 5.2. Let k be the function defined on RY by k(s) = / |k(t+s,s)|dt

0(s)
such that

T, 8§ 2 T2 —T1,
0(s) =
T2—8, 0<s<m—m.
If the function k € L3 (R"), then the operator K transforms the space L%, (RY)

into itself.
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Proof. The operator K transforms the space L} oo(RT) into itself if and only if, for

all a > 219 — 71 and z € L} (RT), we have Kz € L'([r2, o).

Assume that k € L5° (R"), then for a > 2m5 — 7 and z € L}, (R'), we have

t‘l’l
/ RKalt |dt<// k(t, 5)[|2(s)|dsdt
t
27’2 T1
/ / k(t, 8)||2(s)|dsdt
t—11
/ / k(t, 5)]|2(s)|dsdt
279—71 Jt
27’2 T1 T2—T1
<[ [ me sl dsde
T t—To
270 —T1 t—11
+/ / |k(t, s)||x(s)|dsdt
t—11
/ / k(t, 8)]|2(s)|dsdt
2T9—T1 Jt
To—T1 S+T2
</ / Ik(t, )l[(s) dtds
0
27’2 27’1 27‘2 T1
/ / k(t, 5)||2(s)|dtds
T2 +71

a—T1 s+7'2
/ k(t, 8)[|2(s)|dtds

+71

T2—T1
g/ |/ k(t+ s, s)|dtds
27’2 27’1
+/ |/ k(t+ s, s)|dtds
T2—T1
+/ |/ k(t+ s, s)|dtds
T2—T1

<[kl oo ((0,7s = 12l 21 (j0,72=m1])
+ &l Loo (fra—m1.20ra—rD 12 L1 ((ra =71, 2(ra—71)])

+ [kl oo (fro—m1,a—m ) 12 L1 (ro =71 0—71) -
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This shows that Kz € L*([r2,a]).

Thus, K transforms the space L}__(R7T) into itself. O

Loc

Example 5.3. Consider Problem with g, ® and f fulfilling the assumptions
(i) and (ii) of Lemma[5.1] and k(t,s) = (t — s)e®. Since

(T2 —T1)e’, s> 10—,
k(s) =

Sesv OSSSTQ_TD

then k € L3 (RY), this implies, by Pmposition and Lemma that Problem
(1.1) has a unique solution x € L1 (RT).

Loc

The following result gives the existence of an integrable solution of (1.1)).

Theorem 5.4. Suppose that the following conditions are satisfied:

(i) g : [r2,400) — R and ® : [0, 2) — R are measurable functions such that
g € L'([r2,00)) and ® € L'([0,72)).
(ii) f:R* xR — R is a measurable function and there exist a constant b and
a function a € L*(RY) such that |f(t,z)| < a(t) + blz| for all t € RY and
z € R.
(iii) & : [r2, +00) x RY —» R is a measurable function such that k € L>(RT).

(iv) There exists ¢ > 1o — 11 such that b||%||LW([c,+w)) <1

Then Problem (L.1)) has a unique solution x € L*(RT).

Proof. By Proposition the assumption (iii) guarantees that the operator K
transforms L} .(R™) into itself, then from the above assumptions, we deduce by
Lemma that Problem (1.1)) has a unique solution z € L} __(R¥).

Loc

We will show that z € L*(R™"). We have for all t > ¢+ 7

t t t s$—T1
[ las< [ lgolas+ [ [ ks nllat)drds
c+72 c+T2 c+72 Js—T2
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+b/+72/s (s,m)||x(r)|dr
g/m |ds+/ / r+ s, 8)|a(s)drds
+b/ / k(r + s, 8)||z(s)|drds

<|lgllzr @+ + ||kHL°°(R+)”aHL1(R+) + bllkl Lo (je,y 1] L1 ([,
<lgllzr @ty + 1kllzoe ®iyllall Lt @+y + blIE] Loo (je,+00)) 1] L1 (e,c42))

+ OlIE[ Loo ([, 400 1] L1 ([et7a,t1) 5

hence, for all t > c+ 1
~ t ~
(1= R o) [ (0lds < Dol ey + IBllmee ol ey
CTT2

+ OlIE[ Loo ([, 400 121 L ([e,cra]) -

This shows that € L!([r2, +00)), moreover ® € L1([0,72)) and = € L!([r2, c+72]).

Then Problem ([1.1)) has a unique integrable solution on R*. (]

Example 5.5. Consider Problem (1.1) with g, ® and f fulfilling the assumptions
(i) and (ii) of Theorem and k(t,s) = (t + s)e™t, hence

(mm+1De ™ —(re+ e e ?+2(e ™ —e™)se® s> —T1,
k(s) =

e ts+l—me® —e*=25¢7], 0<s < — 71

We have, k is continuous and lirll %(s) =0, then k is bounded and there exists
S—r+00

¢ > 7o such that b||%||Lw([c,+m)) <1l

Thus, by Theorem Problem (L.1]) has a unique solution x € L*(RT).
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6. DOUBLE DELAY CONVOLUTION INTEGRAL EQUATIONS

Consider the following nonlinear double delay integral equation:

gw+[qﬁwﬂﬁ@ﬂmw»emﬁw»

—T2

a(t) = (6.1)

where h : RT — R is a measurable function.

We have (6.1)) is of the form (1.1) such that k(¢,s) = h(t — s).
T2 T2

Then / |k(t, t — s)|ds = / |h(s)|ds and

1 T1

T2
/ h(ldt, s > 7 — 7,
T1

k(s) =

T2
[l 0<s<n-n.
T2—S

The following result is directly yielded by applying Theorem and by using
Remark 7]

Theorem 6.1. Suppose that the following conditions are satisfied:

(i) g : [m2,+00) — R is exponentially stable (resp. bounded) and
® € L*([0,72)).

(ii) f: RT x R — R is a measurable function and there ewist a constant b
and an exponentially stable function (resp. bounded) a such that |f(t,z)| <
a(t) + blz| for allt € RT and z € R.

T2
(iii) h : RT — R 4s a measurable function such that / |h(t)|dt < +o0 and

T2
b/ Ih(t)]dt < 1.

1

T1

Then Problem (6.1) has a unique exponentially stable (resp. bounded) solution.

Also, by applying Theorem the following result takes place.
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Theorem 6.2. Suppose that the following conditions are satisfied:

(i) g: [r2,+00) — R and ® : [0, 72) —> R are measurable functions such that
g € LY([r2,0)) and ® € L(]0,72)).

(i) f:R* xR — R is a measurable function and there exist a constant b and
a function a € L*(RT) such that |f(t,z)| < a(t) + blz| for all t € RT and
z cR.

(iii) h : RTY — R 4s a measurable function such that / |h(t)|dt < +o0 and

b/ Ih(t)]dt < 1.

Then Problem (6.1) has a unique solution x € L'(RT).

Finally, we consider the following double delay integral equations of the form

(L.3)

t—71

RyC ~v(t — o) exp <— /Ot_a pla—t+o, x(a))da) ¢ (z(0)) z(0)do,

t—To

te [TQa +OO)7

O(t), tel0,7).

Problem (6.2) will be studied under the following assumptions:

1 RQ,C€R+

2 is a nonnegative function on RT.
4

¢ is a nonnegative decreasing function on R¥.

(1)
(2) v
(3) u(a,b) = a(a) such that « is a nonnegative function.
4) o
(5) ® is a nonnegative function on [0, 72).

Then Problem (6.2]) is a double delay convolution integral equation of the form
(6.1) such that

h(s) = RoC~(s) exp ( /S ala — s)da) , f(s,2) = o(z)x.
’ EJQTDE, 2013 No. 56, p. 21



Moreover; it is clear, by the above assumptions, that if (6.2) has a measurable
solution  on RT, then z is nonnegative.
The following corollaries are directly yielded by applying Theorem [6.1| (resp. The-

orem [6.2)).

Corollary 6.3. Suppose that the following conditions are satisfied:
(i) ® € L=([0,72)).
(ii) v,a: Rt — RT are measurable functions such that

T2

RoC¢(0) /

T1

t

~(t) exp </ ala — t)da) dt < 1.
0

Then Problem (6.1)) has a unique nonnegative bounded solution.

Corollary 6.4. Suppose that the following conditions are satisfied:
(i) ® € LY([0,72)).
(ii) v, : RT — R are measurable functions such that

T2

ROC¢(0)/ ~(t) exp <— /Ota(a—t)da) dt < 1.

T1

Then Problem (6.1) has a unique nonnegative solution x € L*(R™).
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