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Abstract
In this paper, we consider the system
—Ap@yu + |u|p(:” 2y = Aa(x)|u| @2y + a(x)ig(x) c(@)|u|*@=2ylv|f@  in Q
—Ay(ayv + 0|12y = pb(z) [o|2®) 20 4 - c(x)|v\ﬁ(x) plul*@®  in Q
g_: _ g_: -0 on OS2

where 2 C RY is a bounded domain with smooth boundary and A, > 0, v is the outer
unit normal to 0€2. Under suitable assumptions, we prove the existence of positive solutions
by using the Nehari manifold and some variational techniques.

Keywords: Nonstandard growth condition; p(x)-Laplacian problems; Nehari manifold; vari-
able exponent Sobolev space.
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1. Introduction

In this paper, we prove the existence of positive solutions for the following system

—Apayu + |u|p(:” u = a(z)|u[*@ "2y + a(x)i’g(x) c(@)|u|*@=2ylv|f@  in Q
—ADqgmv + V|20 = pb(x )\Ulm(” 20+ s @) 2olul 6@ in (1)
gx _ g_}; -0 on OS2

where 2 C R is a bounded domain, —A,,yu = —div(]Vu[P®~2Vy) is called p(x)-Laplacian,
A, it > 0, v is the outer unit normal to 0f2, the functions p, q,r1,72,a,b,¢c,a, 5 € C(Q).

*Corresponding author.
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In this paper, for any v: Q C RY — R, we denote

vt =esssupv(r), v~ =ess inf v(x).
zeQ xeQ)

Through the paper, we always assume that

(Ho) a(2),6) > 1, 2 < alz) + Az) < p(z) < n() < P E@)FHE) = 2200 N >
p(z),p*(z) = 00 if N < p(z)) and

2<a 4+ /4 <at+p8t<p <pt<r <rf

(Hy) 2 < a(z) + B(x) < q(z) < ra(x) < ¢*(2)(¢"(x) = ]\J[Vf(gg) if N > q(z),q¢"(z) = oo if
N < ¢(z)) and

2<a + 0B <at+pt<qg <qgt<ry <ry.

Hy) min{r{,ry} > max{p™,¢*}.

(
(Hs) a(x),b(x),c(z) > 0,a(z) € LM (Q),b(x) € LF2@(Q),c(z) € LFB@(Q),k; € C(Q) (i =
1,2,3) where

1 1 o 1 1 _ 1 1 1 _
R Tr@m® =l B T reme b B@ T reew T repe — L

The study of differential equations and variational problems with nonstandard p(z)-growth
conditions has been a new and interesting topic. Such problems arise from the study of
electrorheological fluids, image processing, and the theory of nonlinear elasticity (see [1, 2, 12-
15, 18, 19, 21]). When p(z) = p (a constant), p(z)-Laplacian is the usual p-Laplacian. There
have been a large number of papers on the existence of solutions for p-Laplace equations.(see
[3, 7]) However, the p(x)-Laplace operator possesses more complicated nonlinearity than p-
Laplace operator, due to the fact that —A,,) is not homogeneous. This fact implies some
difficulties; for example, we can not use the Lagrange Multiplier Theorem in many problems
involving this operator.

In recent years, several authors use the Nehari manifold and fibering maps to solve semilinear
and quasilinear problems (see [3-7, 14, 19]). Wu in [18] for the case p = 2,r(x) = r,a(x) =
a,fx) = fand 1 <r <2 < a+ [ < 2% proved that, there exists Cy > 0 such that
if the parameter A, pu satisfy 0 < |)\|ﬁ + |u|ﬁ < Cy, then problem (1) has at least two
solutions (ug,vg) and (ug,vy ) such that ui > 0,05 > 0in Q and uf # 0,vF # 0. By the
fibering method, Drabek and Pohozaev [7], Bozhkov and Mitidieri [5] studied respectively
the existence of multiple solutions to the following p-Laplacian single equation:

_Au($‘) = )\a($)|u(x)|p*2u(x) +C($)|u|a71u({[) re Q

u(z) =0 x e 00
and system

A = a(@) a2+ (o + De(@)ul* Ml e 0

—Av = pb(z) 0|72 + (B + Ve(z) o]’ Lojulett 2 € Q
u=v=0 xz € 0N
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In [6] Brown and Zhang used the relationship between the Nehari manifold and fibering
maps to show how existence and nonexistence results for positive solutions of the equation
are linked to properties of the Nehari manifold. In [3] Afrouzi and Rasouli for the case
p(z) = p,r(z) = r,a(x) = «a,F(x) = [ discussed the existence and multiplicity results of
nontrivial nonnegative solutions for the system. In [14] Mashiyev, Ogras, Yucedag and Avci
studied the multiplicity of positive solutions for the following elliptic equation

— Ayt = Aa(2)u| @2y + b(z)|u/"@ 20 in Q
u(r) =0 on O

where Q C RY is a bounded domain with smooth boundary in RY| p, ¢, h € C(Q) such that
L < q(z) < p(x) < hz) < p"(@)(p(x) = AL if N > p(x),p*(z) = o0 if N < p(x)),1 <

p~ = ess infreqp(z) < ess sup,eqp(e) <00, 1< ¢ <¢g" <p <pt<h  <ht,A>0€R

and a,b € C(Q) are non-negative weight functions with compact supports in 2.

In this paper, we have generalized the articles of Afrouzi-Rasouli [3] and Mashiyev, Ogras,
Yucedag and Avci [14], to the p(x)-Laplacian by using the Nehari manifold under the similar
conditions. We shall discuss the multiplicity of positive solutions for the problem (1) and
prove the existence of at least two positive solutions.

This paper is divided into three parts. In the second part we introduce some basic properties
of the variable exponent Sobolev spaces WP (Q), where Q C R" is an open domain, section
3 gives main results and proofs.

2. Preliminary knowledge

In order to deal with p(z)-Laplacian problem, we need some theories on spaces LP®) (Q), W1»(®)(Q)
and properties of p(z)-Laplacian which we will use later (see [6]). If Q@ C RY is an open
bounded domain, write

LE(Q) = {p e L*(Q) : ess ingfzp(x) > 1},

S

S(Q) = {u | u is a measurable real-valued function on Q}
For any p € L3°(2), we denote the variable exponent Lebesgue space by
LP@(Q) = {u e S(Q) | [olulfPdr < oo}.
We can introduce the norm on LP(®)(Q) by
[l = EA > 0 | [ [42p@d < 1},
and (LP@®) (), |.|p)) becomes a Banach space, we call it variable exponent Lebesgue space.

Proposition 2.1 (see [10]). The space (LP®)() , |.|,w) is a separable, reflexive and
uniformly convex Banach space, and its conjugate space is Lp/(x)(Q), where ﬁ + A =1,

P'(2)
For any u € LP@(Q) and v € LP®)(Q), we have
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| fquvdz| < (p% + p,%)|u|p(x)|v‘p’(:v)'

Proposition 2.2 (see [9]). If ﬁ S S

o) = 1, then for any u € LP®)(Q),v € LV ®)(Q)
and w € LP'@)(Q),

// (Z‘)

| Jo wvwdz| < (p% + pfl— + p/}— ) tlp@) vl @) | wlpr@) < 3lulp@) |v]y@) | wlp @)
Proposition 2.3 (see [10]). Set
p(u) = Jo [ulP®dz, Yu € L9(Q),

then
(i) [ulpe) < H(=1;>1) & p(u) < 1(= 1;> 1);
(i) ey > 1= [l < p(u) < Julpiy: ulpe < 1= full) 2 plu) = full;
(iii) [tlp@) = 0 & p(u) = 0; |ulp@) — 00 & pu) — oo.
Proposition 2.4 (see [10]). If u,u, € LP@(Q),n = 1,2, ..., then the following statements
are equivalent to each other:
(1) Tt [t — oy = O
(2) lim,, oo p(ty, — u) = 0;
(3) u, — u in measure in Q and lim,, . p(u,) = p(u).
The space W'P@)(Q) is defined by
W (Q) = {u € L'(Q) | [Vu| € L' (Q)},
and it can be equipped with the norm
[ullpe) = [tlp@) + [V, Yu € WHE(Q).
We denote by Wo7™ () the closure of C3°(€) in W@ (Q); then the Poincaré inequality
|tulp@) < [ Vulpe)
holds true. In this paper we will use the equivalent norm on W1P(®(Q):

w)|P(®) 4 |y [P(2)

[ullpe) = inf{A > 0 fo BT g < 1}

Proposition 2.5 (see [10]). The space W@ (Q) and W, "™ (Q) are separable and reflexive
Banach spaces.

Proposition 2.6 (see [9]). If we define I(u) = [o(|Vu(z)P® + |u(z)|P®)dz, then for
u, up € WHP@(Q):

(D) ullpe) < 1(=1>1) & I(u) < 1(=1;> 1);
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+
(2) I [l > 1, then [Julf,) < T(u) < Jlullyy);

p(x)
(3) lullp < 1, then [[ullp,) < I(u) < [Jull?,):

(4) [lurllp) = O(— o0) & I(ux) — O(— oo).

Proposition 2.7 (see [8]). If p : Q@ — R is Lipschitz continuous, and p™ < N, then for
q(z) € LY() with p(z) < g(x) < p*(x), there is a continuous embedding W@ (Q) —
L1@)(()).

Proposition 2.8 (see [8]). If s(z) € C(Q) and 1 < s(z) < p*(z) for all z € Q then the
embedding W@ (Q) — L*®)(Q) is compact.

Proposition 2.9 (see [9]). If |u|?®) ¢ L*@/1@)(Q), where s(x), q(z ) € LF(Q),q(x) < s(x),
then v € L*®(Q) and there is a number ¢ € [¢, ¢*] such that = (|uls@))?-

()/q()

In what follows, W will denote the Cartesian product of two Sobolev spaces W12 (())
and Wha@)(Q) ie., W = WHP@(Q) x Wha@)(Q). Let us choose on W the norm ||.|| defined
by

[, )| = max{{[ullp, [[v]l4},
where |||, is the norm of W@ (Q) and ||.||, is the norm of W@ ().

3. Main results and proofs

Definition 3.1. We say that (u,v) € W is a weak solution of problem (1) if for all (£,n) € W
we have

Jo |VulP@ =2V . Védr + [q [uP@2u Edx =
A Jo a(@)[ul 20 Ede + fo o550 o) [u] ) 2ulo @) ¢da,
Jo |V0|1®=2Vy . Vndx + [ |v]"®) 20 ndx =

o D(@) o220 nda + fo s (@) [0 @ u]ul ) .

It is clear that problem (1) has a variational structure. The energy functional corresponding
to problem (1) is defined as J, , : W — R,

JM(u,v) = L(|Vu\7’($) + uP@)dz + ﬁ(‘vv‘q(x) + |v]e@))da
Mo i@l e — o Ssb@)de — fo e ul*® o @ds.
Let
P(u,v) = [o(|VulP® + [u|pf@)de + [o(|Vo]?@ + |v]|1@)dz
Q(u,v) = A [y a(@)|u*@dz + p o, b(z)|v|>@ da,
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R(u,v) = Jo c(@)[ul*® |v|"@da.

It is well known that the weak solution of the problem (1) are the critical points of the
energy functional J, ,. Let I be the energy functional associated with an elliptic problem on
a Banach space X. If I is bounded below and I has a minimizer on X, then this minimizer
is a critical point of I. So it is a solution of the corresponding elliptic problem. However,
the energy functional J) , is not bounded below on the whole space W, but is bounded on
an appropriate subset, and a minimizer on this set (if it exists) gives rise to a solution to
(1). A good candidate for an appropriate subset of X is the Nehari manifold.

Then we introduce the following notation: for any functional f : W — R we denote by
f'(u,v)(hy, he) the Gateaux derivative of f at (u,v) € W in the direction of (hy, hy) € W,
and

SO (u,0)hy = f'(u+ ehy, v)|e—o,  f@(u,0)hy = f'(u, v+ 6ha)|s=0.
Consider the Nehari minimization problem for A, > 0,
aog(A, p) = inf{Jy u(u,v) : (u,v) € M, .},

where M), = {(u,v) € W\{(0,0)} : (J} ,(u,v), (u,v)) = (J)(jl)t(u,v)u, J)(\?;(u,v)w =0}. It
is clear that all critical points of Jy , must lie on M) , which is known as the Nehari manifold
and local minimizers on M) , are usually critical points of Jy ,.

Thus (u,v) € M, , if and only if
Du(u,v) i= (I3 (0, 0), (w,0)) = Jo(IVulP™ + [uP@)de + [o([Vo] 7@ + |v])dz
—AJpa(@)[u"@dz — p fo b(x)|v|> dz
= Jo (@) |u[*@ @ dz = 0. (2)
Then for (u,v) € M) ,, we have
(Tl (1,0, (1, )) = Jou @) (VP + [ufP@) iz + fy q(2) (V]9 + 0]z
—AJori(@)a(@)u|" @ de — p o ra(x)b(z) o] de
— Jala(@) + B(@))c(@)u|* v dz.
Now, we split M, ,, into three parts:
My, = {(u,v) € My, : (I} ,(u,v), (u,v)) > 0},
M3, = {(u,0) € My, : (14, (u,0), (u,0)) = O},
My, = {(u,v) € My, : (I} ,(u,v), (u,v)) < 0}.

Theorem 3.1. Suppose that (ug,vp) is a local maximum or minimum for J, , on M, ,. If
(uo,v0) & M3 ,, then (ug,vo) is a critical point of .Jy .

Proof. The proof of Theorem 3.1 can be obtained directly from the following lemmas.
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Lemma 3.2. There exists 6 > 0 such that for 0 < A+ p < §, we have M} , = ()
Proof. Suppose otherwise, then for
)

max{ri" Ty —min{p~ ,¢” }

(min{p~,g" }—at—p*) | (min{r] r; }—max{pt gt} | min{p=.¢"}-atT-pT .-
0= (e {r ot =555 | Calmin(re o —a—67) , where ('3, Cy are positive

constants and will specified later, there exists (A, ) with 0 < A+ p < § such that Mg,ﬂ # ().
Then for (u,v) € MY , we have

0= (I u(u, ), (u,v)) = Jo (@) (IVUP@ + [uP@)da + fo q(z)(|Vo]1@ + |v]1@))dz
X\ fqa(z)r (@) |u|"®dz — u [ b(z)rs(x)|v| 2@ d
— [ola(x) 4+ B(z))e(z) |u|*@ 0] @) dz
> min{p™.q7} [Jo([Vul"®) + [ul)dz + fo[To[) + [o]2)de |
—max{rl 1 N fo ()l + oo bl ]
—(at + 1) fo c(@)|u]*®|v]P@ dy
= (min{p~, ¢~ }—a" %) P(u, v)+ (" + 5" —max{r{, 5 })Q(u, v), (3)

and
0= (I} ,(w,v), (u,v)) = Jo (=) (VU™ + [u®)dz + [q q(2)(|V0][7) + |v])dz
—AJori(@)a(@)u|" @ dr — p o ra(x)b(z) o] de
= Jala(z) + B(2)b(@)[u|*® [v]* @ dz
< max{p*, ¢*} | fo (| VulP@ + [uf@)dz + fo(|Vo|"®) + [0]4))dx]
—min{ry, ry HA Jo a(@)|ul"Pdz + p o b(x)|v]>dx]
~(a= + B7) Jo b(@)ul*@ [0 @
— (max{p*, ¢ }—min{ri, 13 })P(u, v)+(min{ry, 13 }—a~—4") R(u, v). (4)
By Propositions 2.1, 2.2 , 2.7, 2.9 we have
Q(u,v) = A f a(@)[ul"@dz + pu fo b(z) |v|*®))dz
< 2Ma(@)ry@) | Ul oy + 2000(2) k(o)

'rl (z)

< 22 a() [k @) ([l @)™ + 20200(2) [k (@) ([0 g2 ()™

< 2Xenlfullyiy) + 2ucallvlige,

<G| (w, )|+ G| (u, v) |72
< (A4 ) Cs| (w, v) | maxtri s} (5)

o]+

q*(z)
ro(z)

and
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R(u,v) = Jo c(@)[u|*® |v|"@dx

< 3‘C<x>|k3($) p* () ‘U|ﬁ($) a* (@)
a(z B(x)

< 3Je(@) k(o) ( )*( )’

< callullZ vl

< Cy (u, ) |2+ (6)

By using (5), (6) in (3) and (4) we get
_ 1
min .9 —at—pt+ max 7‘+,7‘+ —min{p~,q—
O (e o S G

and

_ 1
Cy(min{r; r; }—a=—=B~) |min{p~,¢"}—at-—p+
< 1972
|| (u’ U) || - _(min{rl,TQ}max{p+,q+})] : (8)

This implies A + @ > § which is a contradiction. Thus we can conclude that there exists
6 > 0 such that for 0 < A+ p < §, we have M} , = 0.

Lemma 3.3.The energy functional Jy , is coercive and bounded below on M) ,,.

Proof. If (u,v) € M,, and |/(u,v)|| > 1. Without loss of generality, we may assume
1wl p)s [[V][g(z) > 1, we have

JA,M(u,v) = Jq L(|Vu|p(m) + |u|p(:v))d$ + fQ a(z) (|Vv|q + |,U|q(m))dx

M s a(@)]ul ) — pfy bl o @ de
()|l 0] dz

1
~ o Serm
> L oIV + |up@)do + & fo[ ol + [ofot)dz
=& Joa(@)u["@dz — 2 o b(w)|v|= dx

— ot Ja (@) |u]* 0P dz

v

mm{r S }) [fQ(WuV’ + [uP@)dz + [o(|Vo]9@ + ‘U|q(x)>dx}

max{zﬁ aty

(a +6- m1n{7‘ Ty }>IQ C( )|u|a(m)|v|6(m)dl’

L) G, vt

v

maX{p+ q*}  min{r_,r;}

i+
B (a—}rﬁ_ - min{Tll_J’Q_}) C4”<U7U>Ha T

Since p~, ¢~ > (a™ + B7) so, Jyu(u,v) — o0 as ||(u,v)|| — oo. This implies J ,(u,v) is
coercive and bounded below on M) ,.
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By Lemma 3.1, for 0 < X\ + p < 6, we can write My, = My, U M; , and define
ag (A p) = inf Ty u(u,v) and ag (N, p) = inf  Jyu(u,v)

(u,v)GMIH (u,v)GM/\’N
Lemma 3.4. If 0 < A+ p < 6, then for all (u,v) € My, Jx,.(u,v) <0.
Proof. Let (u,v) € My ,(Q). We have
max{p®, ¢} (Jo(IVul"® + [u@)de + [o(|Vo|1®) + [v]1®)dz)

—min{r,ry } (A fpa@)[ul"@dz + o fy b() o]0 de)

0"+ 5) fo )l Do O > 0 )
By definition of Jy ,(u,v) we can write
Tau(u,0) < (gmpeay — o) [Ua(IVulP@ + [up@)da + fo(|Vo|@ + o]1@)dz)
(et — ) (VMo a@P e + p bR 0d). (10
Now, if we multiply (2) by —(a~ + 7) and add with (9), we get
Q(u,v) < mexdpnalmar 28 p(yy ), (11)

min{r; ,ry }—a=—4~

and applying (11) in (10), it follows

at+B* —min{p~ g~} | max{pT,gt}-a”—f"
Drn:0) S im0 T maxtrr o ferren | £ 0)
_ | (min{p~ ¢~} —aF —pT) (max{r} r} —min{p~ ¢~ })
= [ max{rT 3 Hot +A+) min{p— g~} P(u,v) <0.
Thus af (A, ) = inf = Jy,(u,v) <0.
(u,v)eM;#

Lemma 3.5. If 0 < X\ + p < §, there exists a minimizer of Jy ,(u,v) on My .

Proof. Since J, , is bounded below on M, , and so on M/\+,w
sequence {(u,,v,)} € My, such that

ni’-n

then, there exists a minimizing

lim Jy,(ut,of) = inf = Jyu(u,0) = ag (A p) <0
n—eo (u,v)eM)t#

. v} is bounded below in W. Thus, we may assume that, without

loss of generality, (u},v) — (uf,vg) in W. Hence v}t — ugd in WH@(Q) vF — o in

W4 () and by the compact embeddings we have
ul — ug in L"®)(Q) and in L@+ (Q),
v — g in L®)(Q) and in L@@ (Q),

n

. . . + +
Since J) , is coercive, {(u;}, v

This implies
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Q(uy, vy) — Qu
R(uf,vi) — R(u

n»’n

,v5) as n — oo,

oS4+ o4

,v3) asmn — oo.

Now, we shall prove uf — ug in W@ (Q) v+ — of in WH4®)(Q). Suppose otherwise, then
either

lug ll, < liminf Juf]l, or [jogfly < liminf [[of ],

Using the fact that (J} ,(u;},v,)), (w),v;)) =0 and (5) we can write the followings

n’» n n’» n
+ o+ 1 _ 1 - T L
JA’M (un »Un ) = (max{p+,q+} min{rl,TQ}) P(un’ ’Un) (G_Jrﬁ_ min{rl,r2}) R(Un, Un),
- - L -
'I’LILHOlo J)"“ (un »Un ) . <maX{p+,q+} min{rl,r2}> TLILH()lO P(un’ Un)

1 1 :
- (a‘+5‘ N min{rfﬂ“{}) A B(tn, vn),

ag (A p) = inf  Jyu(u,v)

(u,v)EM;tH

~ (max{;+7q+} N min{r11_7r2_}) ”(uarjvar)Hmin{p*ﬂ*}

L 1 + . 4y[jat 8t
a <o¢+5 o min{rlﬂ“g}) H(UO » Vo )Ha A )
since min{p~, ¢~} > a* + 4%, for ||(ug,vd)]| > 1, we have

ag(\, pu) = inf . Dulu,v) > 0.

(wv)eMy

So that is a contradiction. Hence

ul — ug in WrE(Q),
vt — uf in WH@)(Q).
This implies

Dot of) = Dou(ud, o) = inf o Jyu(u,v) asn — oo.
u,vEM;\’:#

Thus, (ug,vg) is a minimizer for Jy, on My .
Lemma 3.6. If 0 < A+ p < §, then for all (u,v) € My ,, Jy.(u,v) > 0.
Proof. Let (u,v) € M):M. We have
min{p~, ¢~ Hfo(IVulP® + [ulP)dz + [o(|V0]9®) + [0]9)) dx]
—max{r", 73 A fo a(x)lu["Pdr + [ob(z)|v]?®dz]
—(at + 87 [o cl2)|u|*@ |[v]P@dr < 0. (12)
By definition of Jy ,(u,v) and (2), we have
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T, 0) > <max{$+,q+} _ min{;lm) P(u,v)—(a_iﬁ_ . >R(u,v). (13)

min{r] 75}
Now, if we multiply (2) by — max{r;",r; } and add with (12), we get
R(U, U) < (max{rf,r;r}—min{p*,q*})P

- max{r] rf}—at—pg+ (U, U)’

(14)
and applying (14) in (13), it follows

J)\“u(u, ’U) Z (min{r1_7r2_}—max{p+,q+}) P(U,, U) + (max{r?’,r;}—min{p_,q_}) P(U,, U)

min{r] ,r5 } max{pt,qt} min{r] 75 }(a=+57)

> (min{rf7T§}—maX{p+,q+})(a’+ﬁ’+maX{p+7q+})P

min{r; v, }max{pt,qt Ha+5) (u,v) > 0.

Theorem 3.7. If 0 < A+ p < 4, there exists a minimizer of Jy , on My ,.

Proof. Since J, , is bounded below on M) , and so on M,

0 Uhen there exists a minimizing
sequence{ (u,, ,v, )} € My , such that

lim Jy,(u,,v,) = inf Jy,.(u,v) =aq (X p).
n—oo (uv)eMy

Since J) ,, is coercive, {(u,,, v, )} is bounded below in W. Thus, we may assume that, without

loss of generality, (u,vy) — (ug,vy) in W. Hence u; — ug in W@ (Q) v- — vy in

ni»n

W4 (Q) and by the compact embeddings we have
u; — ug in L"®(Q) and in Le@+8@)(Q),
ve — vy in L2@)(Q) and in L¥®+A@)(Q).
This implies
QUug.v3) asm — o0,

R(u,, ,v

n?

R(ug,vy) asn — oo.

Moreover, if (ug, vy ) € My ,, then there is a constant ¢ > 0 such that (tug,tvy) € M, and
Iap(ug,vg) > Iy u(tug, tuy ). Indeed, since

I (u,v) = fop(@)(|VulP® + [uf@)dz + [o q(z) (V]9 + |0]1®))da
X [y (2)a(@)|ul"@dz — p fo,ra(z)b(x)]v]?® da
= Jolal@) + B(@)e(@) u]*@ o) dz,
then,
Bty t07) = Jop(a) (Vg ) + [t P+ o (o) (V05 7 + o 1))
X o ri(@)a(x)[tug | de — [o, ro(z)b(a) |tvy [ dx
— Jo(a(x) + B(2))c(x)|tug |*® |tvy |*@) da
< max{pt "} max{p*, ¢+ (fﬂ(\Vua|p(x) + g PO d + |V [96) + Iva|q(’”))d:c)
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—t" T A Jg a(@)|ug [P de — 72 r5 pu fo b(a) |vg ) d

—t* (@ + B7) Jo c(@) lug |* g [P dx

< (tmax{p+’q+} max{p*t, ¢t} — ™ min{r, 7’5}) P(ug,vy)

T (mntr s minry vy} — 97 (0" + 87)) R(ug )

< 2 (™ max{p*, g} — e b min{rr, vy }) || (ug, vp) [

+Cy (e min{ry vy} — 407 (a7 + 67)) (g )T
By (Ho) — (Hz) it follows I} (tug,tvy) < 0. Hence by the definition of My, (tuq,tvy ) €
My,

Now, we shall prove u;, — ug in W@ (Q) v- — vy in WH4@)(Q). Suppose otherwise, then
either

lug llp < Hminf fJu, [, or vy [y <lim inf [[o, [l

We have

— _ max { } _ _ mm{r r, } — 48— _ B
Saultug  tvg) < M’ﬁf)(uo Uy ) — ti@(uo V) — t:++5+ R(ug, vy )

max{r}

< Jim | S P o) — S Qi o) — S Rl ;)
< Jim (b to) < Jim ) = infJalao) = ag (1)
uv)EM;,
This implies that Jy ,(tugy,tvy ) < w v%?]fw’ Iau(u,v) = ag (A, ), which is a contradiction.
Hence | v
u; — ug in WHP@(Q),
v, — vy in WH@(Q).
This implies
Iy, vy) = Iau(ug,vg) = inf  Jy,(u,v) asn — oo.
(u,v)GM;M

Thus, (ug,vy) is a minimizer for Jy , on My .

Corollary 3.8. By Theorem 3.5 and 3.7 we conclude that there exist (uf,vy) € M ;r ., and
(ug, v ) € My, such that

Dplud,of) = inf Ty u(u,v) and Jyu(ug,vg) = inf Ty u(u,0).
(u,v)eM;L (u, v)GMA’H
Moreover, since Jy ,(ui,vy) = JAM(|u0| lvg]) and (Jug], jvi|) € Mf\fu, we may assume

(ug,vy) > 0. By Theorem 3.1, (ug,vi) are critical points of Jy, on W and hence are
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ii)

weak solutions. Finally, by the Harnack inequality due to [19 , 21], we obtain that (ug, vy
are positive solutions of (1).
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