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Abstract

In this paper, we investigate the existence of solutions and extremal solutions
for a first order impulsive dynamic inclusion on time scales. By using suitable
fixed point theorems, we study the case when the right hand side has convex as
well as nonconvex values.
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1 Introduction

This paper is concerned with the existence of solutions and extremal solutions for a
class of initial value problem for impulsive dynamic inclusions on time scales. More
precisely, in Section 3, we consider the following problem:

Yy () +Fp(t)y(t) € F(t,yt), te J:=[0,b]NT, t #ty, k=1,....,m, (1)

y(te) —y(ty) = L(y(ty), k=1....m, (2)

y(0) =, (3)

where T is a time scale, F': [0,b] x IR — P(IR) is a compact valued multi-valued map,

P(IR) is the family of all nonempty subsets of IR, I € C(IR,IR),n € IR, 0 = ¢, <
t < ..<tp, <tpy1 =0, and foreach k=1,...,m,

y(ty) = hh%l+ y(ty+h) and y(t, ) = hh%l, y(tp+ h) represent the right and left limits

of y(t) at t = ¢;, in the sense of time scales, that is, ¢, + h € [0,0] N T for each A in a

neighborhood of 0 and in addition, if #; is right scattered, then y(t) = y(¢), whereas,
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if ¢), is left scattered, then y(t, ) = y(tx), o is a function that will be defined later and
¥ (1) = y(o(t)).

Impulsive differential equations have become important in recent years in math-
ematical models of real processes and they arise in phenomena studied in physics,
chemical technology, population dynamics, biotechnology and economics. There has
been a significant development in impulse theory, in recent years, especially in the
area of impulsive differential equations with fixed moments; see the monographs of
Lakshmikantham et al [22]|, Samoilenko and Perestyuk [25] and the references therein.
In recent years dynamic equations on time scales have received much attention. We
refer to the books by Bohner and Peterson [9, 10|, Lakshmikantham et al [23]| and to
the references cited therein. The time scales calculus has tremendous potential for
applications in mathematical models of real processes and phenomena, for example in
physics, chemical technology, population dynamics, biotechnology and economics, neu-
ral networks, social sciences, see the monographs of Aulbach and Hilger 2], Bohner and
Peterson [9, 10|, Lakshmikantham et al [23] and to the references therein. Recently
Henderson [18] and Benchohra et al |1, 7, 8| have initiated the study of impulsive
dynamic equations on time scales. The first paper for impulsive dynamic inclusions
was proposed by Belarbi, Benchohra and Ouahab [4]. In this paper, we continue this
study by considering more general classes of impulsive dynamic inclusions on time
scales. We shall provide existence results for the problem (1)-(3). The first one relies
on the nonlinear alternative of Leray-Schauder type [16] when the right hand side is
convex valued, the second and the third rely also on the nonlinear alternative of Leray-
Schauder type but under weaker conditions on the functions I (k = 1,...,m) and the
mixed generalized Lipschitz and Carathéodory’s conditions and the last one on the
fixed point theorem for contraction multi-valued maps due to Covitz and Nadler [13]
when the right hand side is not necessarily convex valued. The last section is concerned
with the existence of extremal solutions of the above mentioned problem by using a
recent fixed point theorem due to Dhage [14] for the sum of a contraction multivalued
map and a completely continuous one defined on ordered Banach spaces. These results
complement the few existence results devoted to dynamic inclusions on time scales.

2 Preliminaries

We will briefly recall some basic definitions and facts from times scales calculus that
we will use in the sequel.

A time scale T is a nonempty closed subset of IR. It follows that the jump operators
o,p: T — T defined by

o(t)=inf{s € T:s >t} and p(t) =sup{s € T:s <t}

(supplemented by inf () := sup T and sup @) := inf T) are well defined. The point ¢t € T
is left-dense, left-scattered, right-dense, right-scattered if p(t) = t, p(t) < t, o(t) =
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t, o(t) > t respectively. If T has a right-scattered minimum m, define T := T — {m};
otherwise, set Ty = T. If T has a left-scattered maximum M, define T% := T — {M};
otherwise, set T = T. The notations [0,5],[0,b), and so on, will denote time scales
intervals

0,8 = {teT:a<t<b,
where 0,b € T with 0 < p(b).

Definition 2.1 Let X be a Banach space. The function f : T — X will be called
rd—continuous provided it is continuous at each right-dense point and has a left-sided
limit at each point, we write f € Cyq(T) = Crq(T, X).

Definition 2.2 Let t € T, the A derivative of f at t, denoted f>(t), be the num-
ber(provided it exists) if for all € > 0 there exists a neighborhood U of t such that

F(o(t) = £(s) — FA@lo(®) — 8] < elo(t) — o
forall s € U, at fixt.
A function F' is called antiderivative of f : T — X provided
FA(t) = f(t) for each t € T*.
Remark 2.3 (i) If f is continuous, then f rd— continuous.

(i1) If f is delta differentiable at t then f is continuous at t.

A function p : T — IR is called regressive if
14 u(t)p(t) #0 forall t €T,

where u(t) = o(t) — ¢, which is called the graininess function. We denote by R the
set of the regressive functions. The generalized exponential function e, is defined as
the unique solution of the initial value problem y® = p(t)y, y(0) = 1, where p is a
regressive function. An explicit formula for e,(¢,0) is given by

Log(1 + hz)

ep(t,s) = exp {/ fu(f)(p(T))AT} with &(2) = { o li Z f 87

For more details, see [9]. Clearly, e, (¢, s) never vanishes. We now give some fundamen-
tal properties of the exponential function. Let p,q : T — IR two regressive functions.
We define

p
L+ pp’

pPg=p+q+ppg, ©p:=-— PO q:=p®d(0q).
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Theorem 2.4 [9] Assume that p,q: T — IR are regressive functions, then the follow-
ing hold:

(i) eo(t,s) =1 and ey(t,t) = 1;

(it) ep(a(t), 5) = (1+ p(t)p(t))ep(t; s);
1

(ii1) e (is) = egp(t, s);

1
(iv) e,(t, S)ep(s,t) = egp($,1);
(v) ep(t, s)ep(s,m) = ep(t,7);

C([0,8],IR) is the Banach space of all continuous functions from [0, b] into IR with
the norm

[Ylloo = sup{ly(£)] - £ € [0,]}.
L'([0,b],IR) denote the space of functions from [0,5] into IR which are Lebesgue
integrable in the time scale sense normed by

b
lyll = / ly(t)|At for each y € L'([0,b], R)
0

AC((0,b),IR) is the space of differentiable functions y : (0, ) — IR whose first delta
derivative, y*, is absolutely continuous.

Let (X,|-|) be a normed space, P(X) ={Y C X : Y # 0}, Pu(X)={Y €
P(X):Y closed}, Py(X)={Y € P(X):Y bounded}, P.(X)={Y ePX):Y
convex}, Pq(X) ={Y € P(X) : Y compact}. A multivalued map N : [0,b] —
P.(IR) is said to be measurable, if for every y € IR, the function ¢ — d(y, N(t)) =
inf{|ly — z| : z € N(t)} is measurable where d is the metric induced by the Banach
space IR. In what follows, we will assume that the function F' : [0,b] x R — P(IR) is
Carathéodory, i.e.

(i) t — F(t, ) is measurable for each x € IR,
(ii) * — F(t,z) is upper semicontinuous for almost all ¢ € [0, b],
For each y € C([0,b],1R), let Sg,, the set of selections of F' defined by
Spy = {v e L'([0,b],R) : v(t) € F(t,y(t)), a.e. t € [0,]}.

The following Lemma is crucial in the proof of our main results when the multival-
ued map has convex values:
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Lemma 2.5 [24]. Let X be a Banach space. Let F' : J x X — P, .(X) be a
Carathéodory multivalued map and let T be a linear continuous mapping from L(J, X)
to C(J,X), then the operator

IoSp:C(J,X) — P,.(C(J, X)),
(y) :

y = [ oSk)(y) =T (Skry)
is a closed graph operator in C(J, X) x C(J, X).
3 Existence Results
We will assume for the remainder of this paper that, for each £ =1, ..., m, the points

of impulse ¢, are right dense. In order to define the solution of (1)—(3), we shall consider
the following space:

PC ={y:10,b) — R :y, € C(Jy,IR),k=0,...,m, and there exist y(¢,)
and y(¢)) with y(t;) =y(tx), k=1,...,m},
which is a Banach space with the norm
[yllpe = max{{|ylls,, k=0,...,m},
where y;. is the restriction of y to Ji, = (tg, trs1] C [0,0], k=1,...,m, and Jy = [to, t1].
Let us start by defining what we mean by a solution of problem (1)-(3).

Definition 3.1 A function y € PCNAC(J\{t1,...tn},IR) is said to be a solution of
(1)—(3) if there exists a function v € L'([0,b],IR) such that

yr) +pt)y(t) = v(t)  ae on I\{tx}, k=1,...,m,

and for each k = 1,...,m, the function y satisfies the condition y(t}) — y(t;) =
I(y(ty)), and the intial condition y(0) = 7.

We need the following auxiliary result (see [7]).

Lemma 3.2 Let p : T — IR be rd—continuous and regressive. Suppose f : T — IR
rd—continuous. Let tg € T, and yo € IR. Then, y is the unique solution of the initial
value problem

VA0 P (0) = F(0), 1€ 0.ENT, t £ fk=1,..m ()
y(tl—:) —y(ti) ka(y(ti)% k=1,...,m, (5)
y(0) = yo, (6)

if and only of

y(t) = eon(t, 0)yo + / et ) [()As+ 3 eopt ) Lly(t).  (7)

0<tp<t
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Let us introduce the following hypotheses which are assumed hereafter:
(H1) The function F : [0,b] x IR — P(IR) is Carathéodory.
(H2) There exist constants ¢, > 0 such that

|Ix(z)] < ¢ foreach k=1,...,m and for all x € IR.

(H3) There exist a continuous non-decreasing function 1 : [0,00) — (0, 00), a func-
tion p € L'([0,0],IR) and a constant M > 0 such that

|F(t,x)||p = sup{|v| : v € F(t,x)} < p(t)¥(|x|) for each (¢,z) € [0,b] X IR,

and

M
> 1.

m

b
0| sup ecyp(t,0) + ch sup egp(t,tx) +  sup  egp(t, s)w(M)/ p(s)As
t€[0,b] —1  t€[0.b] (t,5)€[0,b] x[0,b] 0

Theorem 3.3 Suppose that hypotheses (H1)-(H3) hold. Then the impulsive dynamic
inclusions (1)-(8) has at least one solution on [0, b].

Proof. Transform the problem (1)-(3) into a fixed point problem. Consider the
operator N : PC — P(PC) defined by

N(y) ={h e PC: h(t) =ecp(t,0)n+ /Ot eop(t, s)v(s)As
£ ot ) ), © € Sk

O<tp<t
Remark 3.4 Clearly, from Lemma 8.2, the fized points of N are solutions to (1)-(3).

We shall show that NV satisfies the assumptions of the nonlinear alternative of Leray-
Schauder type. The proof will be given in several steps.

Step 1: N(y) is convex for each y € PC.
Indeed, if hy, hy belong to N(y), then there exist vy, vo € Sp, such that for each
t € [0,b] we have

ha(t) = eop(t, 00 + / eop(tos)ui()As + 3 eoplt, ) Ily(t;)) (i = 1,2).

0 0<trp<t

Let 0 < d < 1. Then, for each ¢ € [0, b] we have

(dhy + (1 — d)ho)(t) = egp(t,0)n + /0 eop(t, s)[dvi(s) + (1 — d)va(s)]As
+ > eeplt ) ey (ty)-

O<tp<t
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Since Sp,, is convex (because F' has convex values), then

dhy + (1 — d)hy € N(y).

Step 2: N maps bounded sets into bounded sets in PC.

Let B, = {y € PC : ||y|lpc < q} be a bounded set in PC' and y € By, then for each
h € N(y), there exists v € Sp, such that for each ¢ € [0, ],

B(t) = eop(t, 0)n + / eop(t,5)0(5)Ds + S eyt te) u(y(ty)).

0<tp<t

From (H2) and (H3) we have

b
O] < Il sup eyt 0+ sup eoylts) [ lu(s)las
te(0,b] (t,8)€[0,b] x[0,b] 0

+3 " ecplt,ti)ck
k=0

b
<Inl stp cop(t.0) + S copft o) / B(@)p(s)As

te[0,0] (t,5)€[0,6]X[0,5
+Z sup €cp(t, tg)cr
o t€[0,0]
< [nl sup ecp(t,0) +  sup eqy(t, s)v(g)|pll e
t€[0,b] (t,s)€[0,b] x[0,b]
+Z sup egp(t, t)ck.
i—p t€10,]

Step 3: N maps bounded sets into equicontinuous sets of PC.

Let uy,us € J, u; < ug and B, be a bounded set of PC' as in Step 2 and y € B,.
For each h € N(y), there exists v € Sp,, such that for each ¢ € [0, 0],

B(t) = eop(t, 0)n + / eop(t () Ds + 3 eoplt ) Lu(u(ty)).

O<tp<t
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Then, we have
h(us) — hw)| < Jesp(uiz, 0) — eop(ur, 0)In]
ul
Fo(@)llpl / lcap(tia, 5) — cop(ur, )|As
0

(@)llpllzs / " eopltin, 5)As

u1

+ Z leep(ua, tr) — esp(ur, ti)|ck
0<tr<ui

+ Z eop(ua, tr)ck.

u1 <t <uz

The right hand side tends to zero as us — u; — 0. As a consequence of Steps 1 to 3
together with the Arzela-Ascoli Theorem, we can conclude that N : PC' — P(PC) is
completely continuous.

Step 4: N has a closed graph.

Let y, — ys, hn, € N(y,) and h,, — h,. We need to show that h, € N(y.).
h,, € N(y,) means that there exists v, € Sg,, such that for each ¢ € [0, 0],

ha(t) = (£, 00 + / eoplts S)0n(5)D5 + 3 eoplt ti) Te(walty).

O<tp<t

We must show that there exists h, € Sp,, such that for each ¢ € [0, 8],

belt) = cont, 0+ [ coplt (s + 3 eyt I (8)

0 0<tip<t
Clearly, since I, k =1,...,m, are continuous, we have
[ (ha= D2 econltt) I )) = (he= D2 ecplt td I — 0, a8 0 = o0.
0<tp<t 0<trp<t

Consider the continuous linear operator
I': L'([0,b],IR) — C([0,b], IR)
given by
v (To)(t) = /0 o (b 5)0(s)ds.

>From Lemma 2.5, it follows that I' o S is a closed graph operator. Moreover, we

have
(ha)) = D7 ecoptt)Iulun(t;) ) € TSy, ).

O<tp<t
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Since y,, — Y, it follows from Lemma 2.5 that for each t € [0, b],

t
hat) = ecplt, 0 + / eoplt, S0 ()0 + 3 eopt, ) Lu(ety).
0 0<tp<t
for some v, € Sp,.

Step 5: A priori bounds on solutions.

Let y be such that y € AN(y) for some X € (0,1). Then, there exists v € Sg,, such
that for each ¢ € [0, b],

y(t) = Xegp(t,0)n + A /Ot eop(t, s)u(s)As + A Z ecp(t, te) In(y(ty))-

O<tp<t
This implies by (H2) and (H3) that, for each ¢ € [0, b],
y() < |0l sup ecy(t,0) + Y cx sup ecy(t, tr)
te(0,b] 1 te(0,b]

b

Loswp eyt s) / p(s)(ly(s))As
(t,5)€[0,b] x[0,b] 0

< |n| sup esp(t,0) + ch sup ecy(t, tk)
te(0,b) =1 t€l0b]

s et (lyllre) / p(s)As.

(t,5)€[0,b] x[0,b]

Consequently
) Jullre B
1] sup ecp(t,0) + D cp sup eop(tty) +  sup  eqy(t, SW(Hprc)/ p(s)As
t€[0,0] " teloy) (t,5)€[0,b] % [0,b] 0

Then by (H3), there exists M such that ||y||pc # M.
Let
U={ye PC:|yllpc < M}.

The operator N : U — P(PC) is upper semicontinuous and completely continuous.
>From the choice of U, there is no y € OU such that y € AN(y) for some A\ € (0,1).
As a consequence of the nonlinear alternative of Leray-Schauder type [16], we deduce
that N has a fixed point y in U which is a solution of the problem (1)—(3).

We now present two other existence results for the problem (1)—(3) when the right
hand side has convex values under weaker conditions on the functions Iy (k = 1,...,m)
(as used in [11] for impulsive differential inclusions).
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Theorem 3.5 In addition to (H1), assume that the following conditions hold:
(H4) There exist constants ¢ > 0 such that

|Ix(2)| < cilz| for each k =1,...,m and all z € IR.

(H5) Hy(F(t,y), F(t,y)) < l(t)|ly — g| for each t € [0,b] and all y,y € IR where | €
LY[0,0],IR,) NR" and d(0, F(t,0)) <I(t) a.et € [0,b)].

If

sup  eqp(t, s) |||z + Z sup egp(t, tr)ex < 1,
(t,5)€[0,b] x[0,b] — tc[0b]

then the problem (1)-(3) has at least one solution on [0, b].

Proof. Let y be such that y € AN(y) for some A € (0,1). Then, there exist
v € Sp, such that for each ¢ € [0, 8],

t
y(t) = Aeop(t, 0)n + A / eoplt, ()05 + A S eyt t0) y(ty)).
0 0<tp<t
This implies by (H4) and (H5) that for each ¢ € [0, 0],

()] < Inl sup ecp(t,0) + > sup eqy(t, te)exly(ty)|
te(0,b] L—1 t€[0,]

b
£ enylts) [ fols)las
0

(t,s)€[0,b]x[0,b]

< |nl sup ecy(t,0) + Y sup ecp(t, ti)ely(y)|
t€[0,b] k=1 t€[0,b]

b
Loswp eyt s) / 1()y(s) + 1(s)| As
(t,5)€[0,b] x[0,b] 0

< Inl sup ecy(t,0) + Y sup ecp(t, ti)ellyllpe
t€[0,b] =1 t€[0,b]

+ o osupegy(t s)|[yllpelll]]e
(t,5)€[0,b]x[0,b]

+  sup  egp(t, 9| -
(t,5)€[0,b]x[0,b]

Consequently
In| sup exp(t,0) + sup  egp(t, s)|[1]| 2
||y||pc < t€[0,b] (t,s)€[0,b] x[0,b] —
1—  sup  egp(t,s)|ll||z — Z sup egy(t, tr)ck
(t,5)€[0,b] x[0,b] L—1 t€[0,0]
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Let

U={ye PC:|yllpc <M+ 1}.
The operator N : U — P(PC) is upper semicontinuous and completely continuous.
From the choice of U, there is no y € OU such that y € AN(y) for some A € (0,1). As

a consequence of the nonlinear alternative of Leray-Schauder type [16], we deduce that
N has a fixed point y in U which is a solution of the problem (1)—(3).

Theorem 3.6 In addition to (H1) and (H5), assume that the following conditions hold

1,
(H6) lim #(2) =0 for each k =1, ...,m.
x

|| =00

If
sup  ecp(t, s)||l]|pr + Z sup ey (t, tr)er < 1,
(t,s)€[0,b] x[0,b] —1 t€[0,0]
where €, k =1,...,m are positive constants that will specified later, then the problem

(1)-(3) has at least one solution on [0, b].

Proof. Let y be such that y € AN(y) for some A € (0,1). Then, there exist
v € Sp, such that for each ¢ € [0, 8],

y(t) = Aegp(t, 0)n + )\/0 eop(t, s)u(s)As + A Z ecp(t, te) In(y(ty))-

O<tp<t
(H6) implies that for each e, > 0, there exists a constant A > 0 such that
2] > A = | ()] < eyal.

Let
Ey={t;t€[0,b] : |z(t)] < A},

By={t:t€[0,]: |o(t)] = A}

and
Cy = max{|lx(z(t))|, t € E1}.
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By (H5) and (H6), for each ¢ € [0, 0],

ly(O] < Inl sup ecp(t,0) + D ecplt, i) Ialy(t;)))

t€[0,b] o

+ Z eop(t, te) [ Ik (y (1))

+ o sup egy(ts) [yl pollllle
(t,s)€[0,b] x[0,b]

+  sup  egp(t, 9)|||
(t,5)€[0,b]x[0,b]

< [0l sup ecy(t,0) +Cr D sup ecy(t, t)
te(0,b] 1 EEL

—+ Z sup e@p(ta tk)gk”yHPC
—1 teEs

+ o osupegy(t, )|yl pelll] e
(t,s)€[0,b]x[0,b]

+  sup  egp(t, )| -
(t,5)€[0,b]x[0,b]

Consequently
1l sup eep(t,0)+ Cr S supecy(tt) - sup eyt )l
te(0,b] =1 te kb (t,8)€[0,b] x[0,b] _
[yllpe < = =M
1-— sup  egp(t, s) ||l — Z sup ecp(t, tr)ek
(t,s)€[0,b]x[0,b] i L€E2
Let

U={ye PC:|yllpc < M+ 1}.

The operator N : U — P(PC) is upper semicontinuous and completely continuous.
>From the choice of U, there is no y € U such that y € AN(y) for some A € (0,1).
As a consequence of the nonlinear alternative of Leray-Schauder type [16], we deduce
that /N has a fixed point y in U which is a solution of the problem (1)—(3).

We present now a result for the problem (1)-(3) with a nonconvex valued right hand
side. Let (X, d) be a metric space induced from the normed space (X, |- |).
Consider Hy : P(X) x P(X) — TR, U {oc} given by
acA beB

Hy(A, B) = max {sup d(a, B),sup d(A, b)} ,

where d(A, b) = inf1 d(a,b), d(a,B) = gng d(a,b). Then (Py(X), Hy) is a metric space
ac €
and (P (X), Hy) is a generalized metric space (see [21]).
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Definition 3.7 A multivalued operator N : X — Py(X) is called
a) y-Lipschitz if and only if there exists v > 0 such that

Hy(N(x),N(y)) < ~d(z,y) for each x, y € X,

b) a contraction if and only if it is v-Lipschitz with v < 1.

N has a fized point if there is € X such that x € N(z). The fixed point set of
the multivalued operator N will be denoted by FixN. For more details on multivalued
maps we refer to the books of Deimling [15|, Gorniewicz [17], Hu and Papageorgiou
[20] and Tolstonogov [26].

Our considerations are based on the following fixed point theorem for contraction
multivalued operators given by Covitz and Nadler in 1970 [13] (see also Deimling, [15]
Theorem 11.1).

Lemma 3.8 Let (X, d) be a complete metric space. If N : X — Py(X) is a contrac-
tion, then FixN # ().

Let us introduce hypotheses which are assumed hereafter

(H8) F : [0,b] x R — P.(IR) has the property that F(-,y) : [0,0] — P,(IR) is
measurable for each y € IR;

(H9) There exist constants dj > 0 such that
|i(y) — Ix(7)| < dgly — 7| for each y,7 € IR.

Theorem 3.9 Assume that (H5), (H8)-(H9) are satisfied. Let T > 1. If

1 m
-+ Z G.dy <1, where G, = sup eop(t, s),
L (t,5)€[0,6] x [0,b]

then the IVP (1)-(8) has at least one solution on [0,b].

Remark 3.10 For each y € PC, the set Sg, is nonempty since by (H8), F has a
measurable selection (see [12], Theorem IIL.6).

Proof. We shall show that N satisfies the assumptions of Lemma 3.8. The proof
will be given in two steps.

Step 1: N(y) € Py(PC) for each y € PC.

Indeed, let (y,)n>0 € N(y) such that y, — 7 in PC. Then § € PC and there
exists v, € Sp, such that for each ¢ € [0, b]

Un(t) = ecplt, 0 + / eoplts $)0u(5)Ds + 3 eoplt t) Ty (1),

O<trp<t
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Using the fact that F" has compact values and from (H5), we may pass to a subsequence
if necessary to get that v, converges to v in L'([0, 5], IR) and hence v € Sg,. Then, for
each t € [0, 0],

yn(t) — 4(t) =eep(t,0)77+/0 cop(t, 8)0(s)As + Y eop(t, i) Iu(y(ty)).

0<tp<t
So, 7 € N(y).
Step 2: There exists v < 1 such that
Ha(N(y), N(@)) < ~lly — ¥l for each y,5 € PC.
Let [y,y]e PC and h; € N(y). Then, there exists vi(t) € F(t,y(t)) such that for each
t € 0,5,

ha(t) =6ep(t,0)n+/0 cop(ts s)ui()As + Y ecp(t, ti) In(y(ty))-

0<tp<t

From (H5) it follows that for each ¢ € [0, b],
Ha(F(t,y(t), F(£,5(t))) < 1(H)y(t) —g(t)].
Hence, there exists w € F(t,5(t)) such that for each ¢ € [0, ],
[on(8) = wll < 1By (E) —7(@)].
Consider U : [0,5] — P(IR) given by
U(t) ={w e R : o (t) —w| < U(E)|y(t) — ()]}

Since the multivalued operator V' (t) = U(t) N F'(t,y(t)) is measurable (see Proposition
II1.4 in [12]), there exists a function vy(f) which is a measurable selection for V. So,
vo(t) € F(t,y(t)) and for each t € [0, ],

[or(8) = v ()] < LBy (t) =T (@)].

Let us define for each ¢ € [0, b],

ha(t) = ecyp(t, 0)n + /0 cop(t: s)va(s)As + Y eap(t, ti) (U (1))

0<trp<t

We define on PC' an equivalent norm by

Iyl = sup eopra.n(t,0)|y(t)| for all y € PO,
S
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where eq(r¢,1)(t,0) is the unique solution of the problem
y2(t) = TGLI(t)y(t), y(0) =1,
where 7G.[ is a regressive function. >From (H5) and (H9), for each ¢ € [0, 0],
1
7 (t) = ha(t)] < / ecp(t; s)[[v1(s) — va(s)[| As
0
+ Y ety ) Iy (ty) — (@)
k=1

< / G.l(5)]y(s) — 7(s)| As

£ Gay(t) — ()

k=1

[era(s, 0)] eapa.n (s, 0)ly(s) — H(s)|As

dkGily(ty) — y(ty)|

—_

< ;GTG*l(t, 0)||y - @H* + Z de*erG’*l(tv O)Hy - g”*
k=1

Thus
1 & _
I = ol < (; +ZG*dk) Iy .
k=1

By an analogous relation, obtained by interchanging the roles of y and 7, it follows
that

Hy(N(y), N (7)) < G +) G*dk) ly — .

So, N is a contraction and thus, by Lemma 3.8, N has a fixed point y which is solution

to (1)-(3).
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4 Extremal Solutions

We equip the space PC with the order relation ” < ” defined by the cone K in PC),
that is

K={ye PC:y(t)>0,te]0,b]}.
It is known that the cone K is normal in PC. The details of cones and their properties
may be found in Heikkila and Lakshmikantham [19]. Let «, 5 € PC such that oo < f.
then by an order interval [«, 5] we mean a set of points in PC' given by

[a, 8] ={y € PC:a <y< G}

Let D,Q € P,y(PC). Then by D < @ we mean o < 3 for all &« € D and € ). Thus
a < D implies that o < y for all y € @) in particular, if D < D, then it follows that D
is a singleton set.

Definition 4.1 Let X be an ordered Banach space. A mapping N : X — Puy(X) is
called isotone increasing if x,y € X with x <y, then we have that N(z) < N(y).

Theorem 4.2 [1/] Let [a,b] be an order interval in a Banach space and let A, B :
[a,b] — Puy(X) be two multivalued operators satisfying

(i) A is multivalued contraction,

(ii) B is completely continuous,
(iii) A and B are isotone increasing, and
(iv) A(x) + B(z) C [a,b] for all x € [a,b].

Further if the cone K in X is normal, then the operator inclusion x € A(zx) + B(z)
has a least fized point x, and a greatest fixed point x* in |a,b]. Moreover x, = lim x,

n—oo

and xz* = limy,,, where {x,} and {y,} are the sequences in [a,b] defined by

Tnt1 € A(xn) + B(xn)u Tog =0 and Yn+1 € A(yn> + B(yn)u Yo = b.

The following concept of lower and upper solutions for (1)-(3) has been introduced
by Benchohra, Henderson, and Ntouyas [6] for periodic boundary value problems for
impulsive differential inclusions at fixed moments (see also [5]). It will be the basic
tool in the approach that follows.

Definition 4.3 A function o € PC is said to be a lower solution of (1)-(3) if there
exists vi € LY(J,TR) such that vi(t) € F(t,a(t)) a.e. on J, a®(t) + p(t)a’(t) < vy (t)
ae. on J, t #ty, a(tf) —a(ty) < L(alty)), t =t,, k=1,...,m, and a(0) < 7.
Similarly, a function 8 € PC is said to be an upper solution of (1)-(3) if there exists
vy € L'(J,IR) such that vy(t) € F(t,3(t)) a.e. on J, B2(t) +p(t)B°(t) > va(t) a.e. on
I, te # te, Bt) = B(ty) = L(B(ty), t =tk k=1,....m, and 5(0) > .

EJQTDE, 2005 No. 12, p. 16



The following hypotheses will be assumed hereafter:
(A1) The multifunction F'(¢,y) is nondecreasing in y almost everywhere for ¢ € [0, b];
(A2) The functions Iy, k= 1,...,m are continuous and nondecreasing.

(A3) There exist v and 3 € PC, respectively lower and upper solutions for the problem
(1)—(3) such that o < g.

Theorem 4.4 Suppose that hypotheses (h5), (H9), (A1)-(A3) are satisfied. Then the
impulsive IVP (1)-(3) has minimal and mazimal solutions on [0,].

Proof. Define two multivalued maps A, B : PC' — P(PC) by

A(y) ={h € PC: h(t) = egp(t,0)n + /Ot ecp(t, s)v(s)As, v e Spy},

and

B(y)={h e PC: h(t)= Y ecp(t,ti)x(y(t;))}.

0<tp<t

It can be shown, as in the proofs of Theorems 3.3 and 3.9, that A and B define the
multi-valued operators A : [, ] — Puwpa(PC) and B : [, ] — Pepe(PC). It
can be similarly shown that A and B are respectively multi-valued contraction and
completely continuous on [, ]. We shall show that A and B are isotone increasing
on [, 3]. Let xz,y € [, 8] be such that x < y. Then by (A1), for each ¢ € [0, ],

A(x) = {h e PC: h(t) =ecp(t,0)n+ /Ot eop(t, s)v(s)As, v € Sp,}

< {h e PC: h(t) =ecp(t,0)n+ /t ecp(t, s)v(s)As, v € Spy}
= A(y).

Hence A(z) < A(y). Similarly by (A2), for each t € [0,b], B(z) < B(y).

Thus A and B are isotone increasing on [a, 3]. Finally we prove that A(y) + B(y) C
[, 3] for each y € [a, 5]. Let h € A(y) + B(y) be any element. Then, there exists
v € Sy, such that for each ¢ € [0, b],

t
B(t) = ecp(t,0)n + / eop(t)0(5)As + 3 eoplt ) u(u(ty)).
0 0<tp<t
Let
t; = max{ty : t; <t}.
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By definition of the upper solution and the conditions (A1)-(A3), we get for each
t € 10,b],

W(t) < eop(t.0)5(0) + / coplt, 5)[F2(s) + p(1) 57 (5)|As
T / P15 (5)]As
o / ecp(t, )[F5(s) + p(t) 37 (5))]As

k=1

+26@pt tk Ik ))

k=1

Thus, for each t € [0, b

to

() < 60+ [ e, 081% 85+ [ e s 05125

+
1

+..F /t'+ [e,(5,0)3(s)]*As + i ep(tn, 0) Ik (B(ty))

= 5(0) + ety O)B(tf) —¢,(0,0)8(0) + ¢,(t5,0)58(t5)
(t+ 0)B(E) + ... +ep(t, 0)3(t) — eyt 0)B(L)
+ Z ep tk )
= —e,,(t1 0)[ﬁ(t+) ﬁ(h )] = ey(t2, 0)[B(t3) — B(t5)]
— .= ety 0)[B() — B(t)] + ep(t,0) (1)
—+ Z €p f}k )

—ep(tl 0) 11 (B(t)) — ep(ta, 0)12(5(L;))
— et 0)1¢(5(t2)) +ep(1,0)8(1)

k=1

+Zep(tka0)lk(ﬁ(tl;))

IN

Hence
h(t) < 3(t) for each ¢ € [0, b].

Similarly, by replacing 3 with « and reversing the order, we can prove that
h(t) > a(t), for each t € [0, 0].

Then
a< N(y) <pforally€ [a,pf].
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As a consequence of Theorem 4.2, we deduce that N has least and greatest fixed
point in [«, §]. This further implies that the problem (1)-(3) has minimal and maximal
solutions on [0, b].

5 Example:

Suppose T = [0,1]U[2,3]U[4, 5] and p a regressive function. We consider the equation

We can easily show that the unique solution of the above equation is given by
elo p(9)As if t € [0,1],
y(t) = e,(t,0) = { €xp fo $)As + [, p(s)As), ift € 2,3,

exp fo s)As + [ p( As—l—f4 s)As), ift e [4,5].

Also we consider the following dynamic inclusion of the form

y2 () + p(t)y’ () € Ft,y(t)), t €[0,1], t # % (8)
o(3 )z ) =1(:()) ©
y(0) =0, (10)

where F': [0,1] x IR — P(IR) is the multivalued map defined by

1’2 2

i
t, F(t, z) = [ t, t 1].

It is clear that Fis 2 compact convex valued multivalued map and of Carathéodory.

Let v € | 2+2+t, 2+1 +t + 1], then we have
z? z?
lv| < max <x2 2 + |t o + |t] + 1) < 3, for each (¢,z) € [0,1] x IR.
Hence

2 2

x
t
x2+1+ |

IF(t,z)| == sup{m ve [ e+ 1]} < 3= p(t)(2),

where p(t) = 1 and ¢(x) = 3. Assume that there exists ¢ > 0 such that

|I,(z)| < ¢, for each z € IR.
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We can find M > 0 such that

M
> 1.

1
¢ sup eg, (t, —) +3 sup eep(t; s)
te[0,1] 2 (t,5)€[0,1]x[0,1]

Consider the operator N : PC — P(PC') defined by

N(y) ={he PC: h(t)= /Ot eop(t, 8)0(8)As + eoplt, %)11 (y(%_>> veSe,).

Let y be such that y € AN(y) for some A € (0,1). Then, there exists v € Sg, such
that for each ¢ € [0, 1] we have

y(t) = A /Ot ecp(t, s)v(s)As + Aegy (t, %)Il (y(%_>>

This implies that for each ¢t € [0, 1] we have

1
ly(t)] < c sup eg, <t, 5) +3 sup ecp(t, s)
t€[0,1] (t,s)€[0,1]x[0,1]

Thus

1
Iylpe < sup eop(t5) +3  sup eoyltys).
t€[0,1] (t,5)€[0,1]x[0,1]

Then all the conditions of Theorem 3.3 hold and thus, the problem (8)-(10) has at least
one solution on [0,1].
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