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DICHOTOMY AND ALMOST AUTOMORPHIC SOLUTION OF

DIFFERENCE SYSTEM

SAMUEL CASTILLO† AND MANUEL PINTO‡

Abstract. We study almost automorphic solutions of recurrence relations
with values in a Banach space V for quasilinear almost automorphic difference
systems. Its linear part is a constant bounded linear operator Λ defined on
V satisfying an exponential dichotomy. We study the existence of almost
automorphic solutions of the non-homogeneous linear difference equation and
to quasilinear difference equation. Assuming global Lipschitz type conditions,
we obtain Massera type results for these abstract systems. The case where
the eigenvalues λ verify |λ| = 1 is also treated. An application to differential
equations with piecewise constant argument is given.

1. Introduction

Almost automorphic sequences are natural extensions of almost periodic se-
quences. Almost periodic sequence was first introduced by Walther [43, 44] and
then by Halanay [21] and Corduneanu [14]. See [4, 17]. Recently, several papers
[5, 23, 25, 38, 39, 40] are devoted to study existence of almost periodic solutions
of difference equations, see also [18, 27, 28]. However in very few papers [1, 2, 6],
the concept of almost automorphic type sequence has been treated in the theory of
difference equations. Abbas [1, 2] introduced pseudo almost periodic and weighted
pseudo almost automorphic sequence and Araya et al. [6] almost automorphic ones.

The theory of difference equations:

y (n + 1) = A (n) y (n) , n ∈ Z,(1.1)

y (n + 1) = A (n) y (n) + f (n) , n ∈ Z,(1.2)

y (n + 1) = A (n) y (n) + f (n) + g (n, y (n)) , n ∈ Z,(1.3)

has gained a lot of attention from researchers. Difference equations play an im-
portant role in numerical analysis, dynamical system, control theory, etc. See
[1, 2, 5, 6, 14, 16, 21, 25, 28], [31]-[40], [45]-[55].
One more time the convolution operator

(1.4) C (f) (n) =

∞∑

k=−∞

e−α|k|f (n − k) , n ∈ Z, α > 0,
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defined for bounded sequences, is fundamental. The spaces l∞, c0, l1 of bounded,
convergent to zero at ±∞ and summable sequences on Z, respectively, will be used
in this work.

When system (1.2) has a summable dichotomy (see [35, 36]) with Green function
G, then:

(1.5) y (n) =

∞∑

k=−∞

G (n − 1, k) f (k)

is the unique bounded solution of (1.2). Thus (1.5) could be the unique almost
automorphic solutions of (1.2). We would like to exploit this point.

For f : Z → V almost automorphic sequence, perhaps the more simple equation
(1.2), that is, with A = I identity:

(1.6) y (n + 1) − y (n) = f (n) ,

can have no solution y : Z → V almost automorphic sequence. If f : Z → V is an
almost automorphic sequence, the solution of (1.6) F (n) =

∑n

k=0 f (k) : Z → V is
an almost automorphic sequence, by the following result of Basit ([7, Theorem 1])
(see also [27, Lemma 2.8]).

Theorem 1. (Basit [7]) Let V be a Banach space that does not contain any subspace
isomorphic to c0. If f : Z → V is an almost automorphic sequence, then every
bounded solution y : Z → V of equation (1.6) is an almost automorphic sequence.

As it is well known a uniformly convex Banach space, every finite-dimensional
normed space and a Hilbert space does not contain any subspace isomorphic to c0.

About introduction of theory of continuous almost authomorphic functions can
be found in [8, 11]. Contributions on this theory can be found, for example in
[6, 20], [43]-[51], [19, 42], [29, Chapter 4]. Those contributions include topics like
almost automorphic functions with values in Banach spaces, with values in fuzzy-
number-type and on groups. Applications cover, studies in linear and nonlinear
evolution equations, integro-differential, functional-differential equations and dy-
namical systems.

There are several types of differential equations, as those with impulsive effect,
which connect sequences and functions, see Perestyuk-Samoilenko [32], Halanay-
Wexler [22]. An other important class is the differential equations with piecewise
constant argument as:

y′ (t) = Ay (t) + g ([t] , y ([t])) ,

where [·] is the integer part function. For these equations it holds that y : R → V is
almost automorphic if and only if the sequence y : Z → V is almost automorphic,
see section 5 and Huang et al. [24]. Recently this has been established for an
abstract situation by Ming-Dat [28].
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In this paper, we first review some important properties of almost automorphic
sequences, and then we study the existence of almost automorphic solutions of linear
difference equations (1.2) and (1.3). In section 2, we expose some basic and related
properties about the theory of almost automorphic functions. In section 3, we
establish the existence of almost automorphic solutions of non-homogeneous linear
difference equation. In section 4, we discuss the existence of almost automorphic
solutions of nonlinear difference equations (1.3), where A is a bounded operator
defined on a Banach space V . In Section 5, we show an application to

(1.7) y′ (t) = Ay (t) + By ([t]) + h ([t]) ,

where A and B are constant p × p complex matrices and h : R → V p is an almost
automorphic function.

2. Preliminaries

Let V be a real or complex Banach space. We recall that function f : Z → V is
said to be Bochner almost periodic sequence if and only if for any integer sequence
(k′

n), there exists a subsequence (kn) such that f (k + kn) converges uniformly on
Z as n → ∞. Furthermore, the limit sequence is also an almost periodic sequence.
We denote by AP (Z, V ) the set of almost periodic sequences. See [4, 15].

The pointwise convergence motivates the following definition.

Definition 1. Let V be a (real or complex) Banach space. A function f : Z → V

is said to be almost automorphic sequence if for every integer sequence (k′
n), there

exists a subsequence (kn) such that

(2.1) lim
n→∞

f (k + kn) =: f̃ (k) and lim
n→∞

f̃ (k − kn) = f (k)

are well defined for each k ∈ Z.

As in the continuous case we have that f ∈ AA (Z, V ) implies that f is a bounded

function and supk∈Z

∥∥∥f̃ (k)
∥∥∥ = supk∈Z

‖f (k)‖ and for fixed li (i = 1, 2) in Z, the

function u : Z → V defined by u (k) = f (l1k + l2) is in AA (Z, V ). Examples of
almost automorphic sequences which are not almost periodic sequences were firstly
constructed by Veech [41], the examples are not on the additive group R but on
its discrete subgroup Z. A concrete example of an almost automorphic function,
provided later in [11, Theorem 1] by Bochner, is:

f (n) = sign (cos (nα)) , n ∈ Z, α ∈ R − Q.

We denote by AA (Z, V ) the vectorial space of almost automorphic sequence in
V . Clearly AP (Z, V ) ⊂ AA(Z, V ) and the norm:

‖f‖∞ := sup
k∈Z

‖f (k)‖V

becomes AA (Z, V ) into the Banach space.
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The following is a fundamental Lemma

Lemma 1. Let B(V ) the Banach space of linear bounded functions of V into V

and v ∈ l1 (Z, B (V )), i.e. an operator valued sequence v : Z → B (V ) such that

(2.2) ‖v‖1 :=
∑

k∈Z

‖v (k)‖
V

< ∞.

For f ∈ AA (Z, V ) the convolution sequence defined by

(2.3) Lf (k) =
∑

k∈Z

v (k − l) f (l) , k ∈ Z

is also in AA (Z, V ) . Then, the useful convolutions φ ∈ AA (Z, V ), where

φ (k) =

k∑

l=−∞

v (k − l) f (l) , k ∈ Z, or(2.4)

φ (k) =

∞∑

l=k

v (k − l) f (l) , k ∈ Z.(2.5)

In particular; this is the case for A, P ∈ B (V ) and v (k) = AkP , when ‖A‖ < 1.

Proof. Let (k′
n) be an arbitrary sequence of integers numbers. Since f ∈ AA (Z, V ),

there exists a subsequence (kn) of (k′
n) such that

lim
n→∞

f (k + kn) = f̃ (k)

is well defined for each k ∈ Z and

lim
n→∞

f̃ (k − kn) = f (k)

for each k ∈ Z. As ‖v (l)‖ ‖f (k − l)‖ ≤ ‖v (l)‖ ‖f‖∞, Lebesgue’s dominated conver-
gence theorem, implies

lim
n→∞

φ (k + kn) =
∑

l∈Z

v (l) lim
n→∞

f (k + kn − l) =
∑

l∈Z

v (l) f̃ (k − l) =: φ̃ (k)

In similar way, we prove

lim
n→∞

φ̃ (k − kn) = φ (k) ,

and then φ ∈ AA(Z, V ). �

Remark 1. For m, n ∈ Z fixed and f ∈ AA(Z, V ), the sequences

φ (k) =

k∑

l=n

v (k − l) f (l) and φ (k) =

m∑

l=k

v (k − l) f (l) , k ∈ Z,

are not almost automorphic (they are asymptotically almost automorphic, i.e. φ =
φAA + c, where φAA ∈ AA(Z, V ) and c ∈ c0(Z, V )).
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For applications to nonlinear difference equations the following definition, of
almost automorphic sequences depending on one parameter, will be useful.

Definition 2. A function g : Z×V → V is said to be almost automorphic sequence
in k for each x ∈ V if for every sequence of integers numbers (k′

n) there exist a
subsequence (kn) such that

(2.6) lim
n→∞

g (k + kn, x) =: g̃ (k, x) and lim
n→∞

g̃ (k − kn, x) = g (k, x)

are well defined for each k ∈ Z, x ∈ V .

We will denote AA (Z × V, V ) the vectorial space of the almost automorphic
sequences in k ∈ Z for each x ∈ V .

Important composition results are

Theorem 2. Let V , W be Banach spaces, and let g : V → W is a continuous
function, if L ∈ AA (Z, C) and φ ∈ AA (Z, V ) then the composite L (·) g (φ (·)) ∈
AA (Z, W ).

Proof. Firstly, if φ ∈ AA(Z, V ) then the product L (·) g (·) ∈ AA (Z, V ). Indeed,
given (k′

n) ⊂ Z it is possible to have a subsequence (kn) ⊂ (k′
n) such that the trans-

lation limits in (2.1) exists for both L and φ simultaneously. On the other hand g

is continuous, we have limn→∞ g (φ (k + kn)) = g (limn→∞ φ (k + kn)) = g
(
φ̃ (k)

)
.

In similar way, we have limn→∞ g
(
φ̃ (k − kn)

)
= g

(
limn→∞ φ̃ (k − kn)

)
= g (φ (k)),

therefore g ◦ f ∈ AA (Z, W ) . Finally, L (·) g (φ (·)) ∈ AA(Z, W ). �

Corollary 1. If A is a bounded linear operator on V, L ∈ AA (Z, C) and φ ∈
AA (Z, V ) then L (·) Aφ (·) ∈ AA (Z, V ).

Theorem 3. Let g ∈ AA (Z × V, V ) and L ∈ AA(Z, R≥0) such that

(2.7) ‖g (k, x) − g (k, y)‖ ≤ L (k) ‖x − y‖ , k ∈ Z; x, y ∈ V.

Suppose φ ∈ AA (Z, V ), then g (·, φ (·)) ∈ AA (Z, V ).

Proof. Let (k′
n)be sequence in Z. Since L ∈ AA (Z, R≥0), φ ∈ AA (Z, V ) and

g ∈ AA(Z × V, V ), it is possible to have a subsequence {kn} ⊂ {k′
n} such that

the translations limits in (2.6) exists, for every x ∈ V , for the function g and also
the translation limits in (2.1) exists for both L and φ simultaneously (see proof of
Theorem 1). Then, applying (2.7) and those limits (2.6) for g (·, φ (·)) ∈ AA (Z, V ),
from

g (k + kn, φ (k + kn)) − g̃
(
k, φ̃ (k)

)
= g (k + kn, φ (k + kn)) − g

(
k + kn, φ̃ (k)

)

+g
(
k + kn, φ̃ (k)

)
− g̃

(
k, φ̃ (k)

)
,

g̃
(
k − kn, φ̃ (k − kn)

)
− g (k, φ (k)) = g̃

(
k − kn, φ̃ (k − kn)

)
− g̃ (k − kn, φ (k))

+g̃ (k − kn, φ (k)) − g (k, φ (k)) .
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The conclusion follows. �

3. Almost Automorphic Solutions of Non-Homogueneous Difference

Systems

Difference equations usually describe the evolution of certain phenomena over
the course of the time. In this section we deal with those equations known as the
first-order difference equations. These equations naturally apply to various fields,
like biology (the study of competitive species in population dynamics), physics (the
study of motion of interacting bodies), the study of control systems, neurology, and
electricity: see [4, 17],[21]-[25],[31]-[40]. Consider the following system of first order
linear difference equations

(3.1) y (n + 1) = Ay (n) + f (n)

where A is a complex matrix or, more generally, a bounded linear operator defined
on a Banach space V and f ∈ AA(Z, V ). We wish to obtain several Massera types
theorems under dichotomy conditions. Moreover, the case where the eigenvalues λ

satisfying |λ| = 1 is also considered.

Definition 3. We will say that a constant p× p-complex matrix A has a (µ1, µ2)-
exponential dichotomy if there exist a projection matrix P which commutes with A,
constants k ≥ 1, µ1, µ2 with 0 < µ1 < 1, µ2 > 1 such that

∥∥An−kP
∥∥ ≤ Kµn−k

1 for k ≤ n
∥∥An−k (I − P )

∥∥ ≤ Kµn−k
2 , for k > n.

Let P be a projection matrix and define G the Green matrix associate to P by

G (n, k) =

{
G1 (n, k) = An−kP for n ≥ k

G2 (n, k) = An−k (I − P ) for n < k.

We have
∥∥∥∥∥

n−1∑

k=−∞

G1 (n − 1, k)

∥∥∥∥∥ ≤
n−1∑

k=−∞

Kµn−1−k
1 = K

∞∑

k=0

µk
1 =

K

1 − µ1

and
∥∥∥∥∥

∞∑

k=n

G2 (n − 1, k)

∥∥∥∥∥ ≤
K

µ2 − 1
.

‖G‖ := sup
n∈Z

∞∑

k=−∞

‖G (n, k)‖ ≤ K

(
1

1 − µ1
+

1

µ2 − 1

)
.(3.2)
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Lemma 2. If the constant p × p- matrix A has a (µ1, µ2)-exponential dichotomy
and f ∈ B (Z, V p) then the linear non-homogeneous system (3.2) has the unique
solution y ∈ B (Z, V p) given by
(3.3)

y (n) =

∞∑

k=−∞

G (n − 1, k) f (k) =

n−1∑

k=−∞

An−k−1Pf (k)−

∞∑

k=n

An−k−1 (I − P ) f (k) .

Moreover,

(3.4) ‖y‖∞ ≤ ‖G‖ ‖f‖∞ .

Proof. The sequence y given by (3.3) is bounded satisfying (3.4) and (3.1). Indeed

y (n + 1) =
∞∑

k=−∞

G (n, k) f (k)

=

n∑

k=−∞

An−k−1Pf (k) −

∞∑

k=n+1

An−k−1 (I − P ) f (k)

= APy (n) + Pf (n) + A (I − P ) y (n) + (I − P ) f (n)

= Ay (n) + f (n) .

�

Theorem 4. If the constant p × p matrix A has a (µ1, µ2) exponential dichotomy
and f ∈ AA (Z, V p), then the solution y in (3.3) is the unique AA (Z, V p) of the
linear non-homogeneous system (3.1). Moreover,

‖y‖∞ ≤ ‖G‖ ‖f‖∞ .

Proof. Let Γf = Γ1f + Γ2f, with

(Γ1f) (n) =

n−1∑

k=−∞

G1 (n − 1, k) f (k)

and

(Γ2f) (n) = −
∞∑

k=n

G1 (n − 1, k) f (k) .

We will prove that Γ1f and Γ2f belongs to AA (Z, V p) .

Let y = Γ1f and (m̃n) a sequence in Z. f ∈ AA(Z, V p) implies that there exists

a subsequence (mn) ⊂ (m̃n) such that f̃ (k) = limn→∞ f (k + mn) exists for k ∈ Z
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and f (k) = limn→∞ f̃ (k − mn) pointwise. Then,

y (k + mn) =

k+mn−1∑

l=−∞

G1 (k + mn − 1, l) f (l)

=

k+mn−1∑

l=−∞

G1 (k + mn − 1, k + mn − 1 − l) f (k + mn − 1 − l)

=
∞∑

l=0

AlPf (k + mn − 1 − l) .

Since the
(
AlP

)∞
l=0

∈ l1 (Z, B (V p)), by using Lebesgue’s domination theorem

y (k + mn) → ỹ (k) as n → ∞, where

ỹ (k) =

k−1∑

l=−∞

G1 (k − 1, l) f̃ (l) .

Similarly,
lim

n→∞
ỹ (l − mn) = y (l) , l ∈ Z.

So, y ∈ AA(Z, V p). Similarly Γ2f ∈ AA(Z, V p) and hence Γf ∈ (Z, V p). �

As a consequence, we have for the scalar abstract case:

(3.5) y (n + 1) = λy (n) + f (n)

Theorem 5. Let V be a Banach space and f ∈ AA (Z, V ), then there exists a
unique solution y ∈ AA (Z, V ) of (3.5) given by

y (n) =

n−1∑

k=−∞

λn−1−kf (k) , in case |λ| < 1, or

y (n) = −
∞∑

k=n

λn−1−kf (k) , in case |λ| > 1.

For |λ| = 1 we have:

Theorem 6. Let V be a Banach space which does not contain any subspace isomor-
phic to c0. Let f ∈ AA (Z, V ) and |λ| = 1. Then a solution y of (3.5) is bounded
if and only if y ∈ AA (Z, V ). If F (n) =

∑n

k=0 λ−kf (k) is bounded then every
solution y of (3.5) ∈ AA (Z, V ) are given by

y (n) = λn−1 (v + F (n − 1)) , n ∈ Z.

Proof. Let λ = eiα and f ∈ AA(Z, V ) then λ−kf (k) ∈ AA (Z, V ) then λ−kf (k) ∈
AA(Z, V ) and by Basit’s Theorem A, F ∈ AA(Z, V ) if and only if it is bounded.
So, in this case every solution y of (3.5) is in AA (Z, V ). �
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Remark 2. Even in V = C, a system (1.2) or (3.5) with f ∈ B (Z, V ) can have
no bounded solution as shows:

y (n + 1) = λy (n) + cλn, |λ| = 1, c constant

with solutions
y (n) = λn−1 [v + cn] , v ∈ C.

Note that if |λi| 6= 1 (i = 1, 2, · · · , p) there exists a unique bounded solution,
namely that corresponding to (3.6)

v =

−1∑

k=−∞

λkf (k) , if |λi| > 1, and

v = −

∞∑

k=0

λkf (k) , if |λi| < 1.

If A ∈ B (V ) is a general bounded operator, Lemma 1 implies:

Theorem 7. Let V be a Banach space, and let A ∈ B (V ) such that ‖A‖ 6= 1 and
f ∈ AA (Z, V ). Then there is a solution y ∈ AA (Z, V ) of (3.1) given by:

y (n) =

n−1∑

k=−∞

An−1−kf (k) , n ∈ Z, if ‖A‖ < 1,

and

y (n) = −
∞∑

k=n

An−1−kf (k) , n ∈ Z, if ‖A‖ > 1.

For any constant matrix A, there exists a nonsingular matrix T such that
TAT−1 = B is an upper triangular matrix. This procedure, called “Method of
Reduction”, was used in the discrete case earlier by Agarwal (cf. [4, Theorem
2.10.1]). In the continuous case, Corduneanu [15, Theorem 6.2.2] used it in the ex-
istence of AP (R, Cp) solutions and N’Guerekata [30, Remark 6.2.2] with AA (R, Cp)
solutions. See also [26].

Theorem 8. Suppose A is a constant p × p complex matrix with eigenvalues λ

such as |λ| 6= 1. Then for any function f ∈ AA (Z, V p) there is a unique solution
y ∈ AA (Z, V p)of (3.1).

Proof. f ∈ AA(Z, V p) implies f ∈ AA(Z, V p), f = T−1f and v = T−1y satisfy

(3.6)

v1 (n + 1) = λ1v1 (n) + b12v2 (n) + · · · + b1pvp (n) + f
1
(n)

v2 (n + 1) = λ2v2 (n) + · · · + b2pvp (n) + f
2
(n)

· · · = · · · · · · · · · · · · · · ·

vp (n + 1) = λpvp (n) + f
p
(n) .

Theorem 5 implies that the pth component vp (n) of the solution v (n) satisfies
an equation as (3.5) and hence any bounded solution vp ∈ AA(Z, Cp). Then
substituting vp (n) in the (p − 1)th equation of (3.6) we obtain again an equation
of the form (3.5) for vp−1 (n), and so on. The proof is completed. �
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Now, we study the case when all the eigenvalues {λi}
p

i=1 satisfies |λi| = 1. Denote

Fl (ϕ) (n) =
n−1∑

k=0

λ−k
l ϕ (k) , n ∈ Z.

Assume that v satisfies the upper triangular system (3.6). So, by Theorem 7 the
p-th coordinate vp ∈ AA(Z, V ) and it is given by

(3.7) vp (n + 1) = λn
p

[
ηp + Fp

(
fp

)
(n)

]

for some ηp ∈ V . Replacing this expression in the (p − 1)th equation in (3.6), we
have vp−1 ∈ AA(Z, V ) and for some ηp−1 ∈ V :

vp−1 (n) = λn−1
p−1

[
ηp−1 + Fp−1

(
bp−1pvp + fp−1

)
(n)

]
.

However,

Fp−1 (vp) = ηpFp−1 (λp) + Fp−1

(
Fp

(
fp

))

and Fp−1 (λp) ∈ B (Z, V ) if and only if λp 6= λp−1. Indeed

Fp−1 (λp) (n) =
n−1∑

k=0

λ−k
p−1λ

k−1
p .

Then Fp−1 (vp) ∈ B (Z, V ) if and only if ηp = 0 and hence

(3.8) vp−1 (n) = λn−1
p−1

[
ηp−1 + Fp−1

(
bp−1pFp

(
fp

)
+ fp−1

)
(n)

]
.

So, when the eigenvalues {λi}
p

i=1 of a matrix A satisfy |λi| = 1, 1 ≤ i ≤ p we have

Theorem 9. Let V be a Banach space with does not contain any subspace iso-
morphic to c0. Let {λi}

p

i=1 be the eigenvalues of A satisfying |λi| = 1. Then every
bounded solution of (3.4) y ∈ AA (Z, V ). When all these λi are distinct, these
solutions have the form:

(3.9) y (n) = An−1

[
v +

n−1∑

k=0

A−kf (k)

]
, v ∈ V p.

In the general case, a formula for the bounded solutions can be also obtained with an
infinity of solutions, so much as V r, where r is the number of different eigenvalues
λi.

Proof. If {λi}
p

i=1 are distinct, the transformed system (3.6) is now diagonal and
by Theorem 6 and (3.7) we obtain (3.9) . In the general case, we use the previous
analysis and the solutions of the form (3.8). �

So, it is possible to combine |λi| 6= 1 and |λi| = 1 without condition on the
multiplicity.
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Theorem 10. Let V be a Banach space with does not contain any subspace iso-
morphic to c0 and let {λi}

p

i=1 the eigenvalues of the p×p constant matrix A. Then
every bounded solution y of (3.4) satisfies y ∈ AA (Z, V p). Moreover, a formula
for the almost automorphic solutions can be explicated with an infinity of solutions
so much as V r, where r is the number of different eigenvalues λi with λi = 1.

Finally, we can also prove the following result.

Theorem 11. Let V be a Banach space. Suppose f ∈ AA (Z, V ) and A =∑N

k=1 λkPk where the complex numbers λk are mutually distinct with |λk| 6= 1, and

(Pk)1≤k≤N forms a complex system
∑N

k=1 Pk = I of mutually disjoint projections

on V. Then the unique bounded solution y of (3.1) is in AA (Z, V ) .

Proof. Let k ∈ {1, . . . , N} be fixed. By Corollary 1 we have Pkf ∈ AA (Z, V ), since
Pk is bounded. Applying the projection Pk to (3.1) we obtain

(3.10) Pky (n + 1) = PkAy (n) + Pkf (n) .

Therefore, by Theorem 8, we get Pky ∈ AA(Z, V ) we conclude that y (n) =∑N

k=1 Pky (n) ∈ AA(Z, V ) as a finite sum of almost automorphic sequences. �

This is an explicit result of the general theorem obtained by Minh et al. [27,
Theorem 2.4] for every Banach space.

Theorem 12. Let V be a Banach space that does not contain any subspace iso-
morphic to c0. Assume that the set formed by λ in the spectrum of A with |λ| = 1
is countable. If f ∈ AA (Z, V ) , then each bounded solution of (3.5) y ∈ AA (Z, V ).

4. Almost Automorphic Solutions of Nonlinear Difference Systems

Now we study the existence of almost automorphic solutions to the equation

(4.1) y (n + 1) = Ay (n) + g (n, y (n)) , n ∈ Z,

where A is a bounded linear operator defined on a Banach space V and g ∈
AA(Z × V, V ).
One of the main results in this section is the following theorem for the quasilinear
case:

Theorem 13. Assume that the constant p× p matrix A has a (µ1, µ2)-exponential
dichotomy and g = g (k, y) ∈ AA (Z × V p, V p) satisfies the Lipschitz condition

(4.2) ‖g (k, y1) − g (k, y2)‖ ≤ L ‖y1 − y2‖ , yi ∈ V p, k ∈ Z, i = 1, 2.

Then the semilinear system (4.1) has a unique solution y ∈ AA (Z, V p) satisfying

(4.3) y (n) =

∞∑

k=−∞

G (n − 1, k) g (k, y (k))
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if

(4.4) KL

(
1

1 − µ1
+

1

µ2 − 1

)
< 1.

Proof. By (3.2) we have

(4.5) ‖G‖ := sup
n∈Z

∞∑

k=−∞

‖G (n, k)‖ ≤ K

(
1

1 − µ1
+

1

µ2 − 1

)
.

For φ ∈ AA(Z, V p) since g (k, x) satisfies (4.2), we obtain by Theorem 3 that
g (·, φ (·)) ∈ AA(Z, V p) .

Define the operator Γ : AA (Z, V p) → AA (Z, V p) by

(4.6) Γ (φ) (n) =

∞∑

k=−∞

G (n − 1, k) g (k, φ (k)) , n ∈ Z.

So Γ is well defined thanks to Theorem 4. Now given φ1, φ2 ∈ AA(Z, V p), we have

‖Γ (φ1) − Γ (φ2)‖∞ ≤ sup
n∈Z

∞∑

k=−∞

‖G (n − 1, k)‖ ‖g (k, φ1 (k)) − g (k, φ2 (k))‖

≤ sup
n∈Z

∞∑

k=−∞

‖G (n − 1, k)‖L ‖φ1 (k) − φ2 (k)‖

≤ L ‖φ1 − φ2‖∞ sup
n∈Z

∞∑

k=−∞

‖G (n − 1, k)‖

≤ KL ‖φ1 − φ2‖∞

(
1

1 − µ1
+

1

µ2 − 1

)
(4.7)

then by (4.4) the function Γ is a contraction. Then there exist a unique y ∈
AA(Z, V p) such that Γy = y. That is, y satisfies (4.3) and hence y is solution of
(4.1). �

Then in the scalar abstract case:

(4.8) y (n + 1) = λy (n) + g (n, y (n)) , n ∈ Z.

Theorem 14. Let |λ| 6= 1 and g : Z×V → V be almost automorphic in k for each
x ∈ V . Suppose that g satisfies the following Lipschitz type condition

(4.9) ‖g (k, y1) − g (k, y2)‖ ≤ L ‖y1 − y2‖ , yi ∈ V, k ∈ Z, i = 1, 2.

Then (4.8) has a unique solution y ∈ AA (Z, V ) satisfying

(i) y (n) =
∑n−1

k=−∞ λn−1−kg (k, y (k)) in case |λ| < 1, L < 1 − |λ| and

(ii) y (n) =
∑∞

k=n λn−1−kg (k, y (k)) in case |λ| > 1, L < |λ| − 1 .

In the particular case g (k, x) = L (k) g1 (x) we obtain the following Corollary.
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Corollary 2. Let |λ| 6= 1. Suppose g1 satisfies a Lipschitz condition

(4.10) ‖g1 (x) − g1 (y)‖ ≤ θ ‖x − y‖ , x, y ∈ V.

Then for each L ∈ AA (Z, C), (4.1) has a unique solution y ∈ AA (Z, V ) whenever
|λ| < 1, θ ‖L‖ < 1 − |λ| or |λ| > 1, θ ‖L‖ < |λ| − 1.

Theorem 15. Let g (k, y) = L (k) g1 (y) satisfying Theorem 3 and assume A has a
(µ1, µ2)-exponential dichotomy and:

sup
n∈Z

∞∑

k=−∞

‖G (n, k)L (k)‖ < θ−1.

Then the semilinear system (4.1) has a unique solution y ∈ AA (Z, V ) satisfying

y (n) =

∞∑

k=−∞

G (n − 1, k) [f (k) + L (k) g1 (y (k))] .

The case of a bounded operator A can be treated assuming extra conditions on
the operator. The proof of the next result follows the same lines of the first part in
the proof of Theorem 13, using (3.2).

Theorem 16. Let A ∈ B (V ) having a (µ1, µ2) exponential dichotomy and g ∈
AA (Z × V, V ) is such that:

(4.11) ‖g (k, x) − g (k, y)‖ ≤ L ‖x − y‖ , x, y ∈ V, k ∈ Z.

Then the conclusion of Theorem 13 holds.

Corollary 3. Let A ∈ B (V ) with ‖A‖ 6= 1 and suppose that g ∈ AA (Z × V, V ) is
such that

‖g (k, x) − g (k, y)‖ ≤ L ‖x − y‖ , x, y ∈ V, k ∈ Z.

Then (4.1) has a unique solution y ∈ AA (Z, V ), satisfying

y (n) =
n−1∑

k=−∞

An−1−kg (k, y (k)) , if ‖A‖ < 1 and L < 1 − ‖A‖ ,

and

y (n) = −

∞∑

k=n

An−1−kg (k, y (k)) , if ‖A‖ > 1 and L < ‖A‖ − 1.

5. Applications

Consider the differential equation with piecewise constant argument (1.7), where
A and B are constant p× p complex matrices and h ∈ AA (R, V p) the solutions are
taken continuous. The variation of constants formula gives

y (t) = eA(t−n)y (n) +

∫ t

n

eA(t−s)By (n) ds +

∫ t

n

eA(t−s)h (s) ds,
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then, if A−1 exists,

y (n) =
[
eA(t−n) + A−1

(
eA(t−n) − I

)
B

]
y (n) +

∫ t

n

eA(t−s)h (s) ds.

So, the continuity condition of y (t) in t = n + 1 establishes

y (n + 1) = Cy (n) + f (n)

where

C = eA + A−1
(
eA − I

)
B, f (n) =

∫ n+1

n

eA(n+1−s)h (s) ds.

It is not difficult to show, see [56]

Lemma 3. h ∈ AA (R, Cp) implies f ∈ AA (Z, Cp) .

Lemma 4. y ∈ AA (Z, Cp) if and only if y ∈ AA (R, Cp).

Then we have:

Theorem 17. Let A and B be constants p × p complex matrices, A an invertible
matrix and h ∈ AA (R, Cp). Then every bounded solution y of system (1.7) is in
AA (R, Cp). More precisely, y (n) ∈ B (Z, Cp) implies y ∈ AA (R, Cp) .

Theorem 18. For the simplest case A = 0:

y′ (t) = By ([t]) + h ([t])

the above conclusion is also true.

The last result has been studied by Minh-Dat [28] in the abstract situation.
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[12] J. Blot, G. Mophou, G. M. N’Guérékata and D. Pennequin. Weighted pseudo almost auto-
morphic functions and applications to abstract differential equations. Nonlinear Analysis, 71

(2009), 903-909.
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