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Abstract

In this paper, a HTLV-I infection model with CTL response is con-
sidered. To account for a series of events in infection process, we
incorporate a intracellular time delay in the model. We prove that
the global dynamics are determined by two threshold parameters
R0 and R1, basic reproduction numbers for viral infection and for
CTL response, respectively. If R0 < 1, the infection-free equi-
librium P0 is globally asymptotically stable. If R1 < 1 < R0, the
asymptomatic-carrier equilibrium P1 is globally asymptotically sta-
ble. If R1 > 1, there exists a unique HAM/TSP equilibrium P2,
and the equilibrium P2 is asymptotically stable under certain con-
ditions.
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1 Introduction

HTLV-I is an abbreviation for the human T-cell lymphotropic virus type 1, also
called the Adult T-cell lymphoma virus type 1, a virus that has been seriously impli-
cated in several kinds of diseases. The Human T-lymphotropic virus Type I (HTLV-I)
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is a human RNA retrovirus that is known to cause a type of cancer, referred to as
adult T-cell leukemia and lymphoma, and a demyelinating disease called HTLV-I as-
sociated myelopathy/Tropical spastic paraparesis (HAM/TSP). HTLV-I is one of a
group of closely related primate T lymphotropic viruses (PTLVs). Approximately 20
to 40 million people are infected by HTLV-I worldwide. The majority of HTLV-I in-
fected individuals remain lifelong asymptomatic carriers. Approximately 0.25%-3.8%
of individuals develop HAM/TSP, and another 2%-3% develop ATL [1]. HTLV-I
infection is achieved through cell-to-cell contact [2]. The immune system reacts to
HTLV-I infection with a strong cytotoxic T-lymphocyte (CTL) response. HTLV-
I infection models have been studied by many researchers [1,4,5]and mathematical
models have been developed to describe the interaction in vivo HTLV-I, the CD4+

target cells, and the CTL immune response.

In order to establish the model, we partition the CD4+ T-cell population into
uninfected and infected compartments, whose numbers at time t are denoted by
x(t), y(t), respectively. Let z(t) denote the number of HTLV-I-specific CD8+ CTLs
at time t. The production of health CD4+ T cells is assumed to at a constant rate
λ. Since HTLV-I infection occurs by cell-to-cell contact between infected cells and
uninfected cells, a bilinear incidence βxy is assumed. CTL-driven elimination of
infected CD4+ cells is assumed to be of the form γyz, where γ is the rate of CTL
elimination. The CTL response to the HTLV-I infection is modeled by a general
function f(y, z), dependent of the number of CTLs and infected CD4+ T cells. The
turnover rates of uninfected and infected CD4+ are d1 and d2, respectively, and the
turnover rate of CTLs is d3. All parameters are assumed to be positive. Based on
the preceding assumptions, we can obtain the following basic HTLV-I infection model
with CTL response

(1.1)


x′(t) = λ− d1x(t)− βx(t)y(t),
y′(t) = βx(t)y(t)− d2y(t)− γy(t)z(t),
z′(t) = f(y, z)− d3z(t).

This model with several forms of CTL response function f(y, z) have been considered
and analyzed by Nowak [13] and Wodarz, Nowak and Bangham [14], respectively.

However, there exist obvious delays in the infection process. We briefly summarize
the main stages following Li and Shu [6]. The first stage of infection is the period
between the viral entry of a target cell and integration of viral DNA into the host
genome. The second stage is the period from the integration of viral DNA to the
transcriptase of viral RNA and translation of viral proteins. The third stage is the
period between the transcription of viral RNA and the release and maturation of
virus. To account for these events in the infection process, we incorporate a time
delay in the model. Therefore, in the present paper, we consider the model in the
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following form:

(1.2)


x′(t) = λ− d1x(t)− βx(t)y(t),
y′(t) = βx(t− τ)y(t− τ)− d2y(t)− γy(t)z(t),
z′(t) = f(y, z)− d3z(t).

Here we use f(y, z) = µy(t)z(t).

The organization of this paper is as follows. In the next section, we discuss the
feasible region for system (1.2) and derive two threshold parameters R0 and R1, and
show existence of equilibria in relation to values of R0 and R1. In Section 3 and 4,
global stability of P0 when R0 < 1 and global stability of P1 when R1 < 1 < R0

are discussed. The stability of equilibrium P2 is investigated in Section 5. Numerical
simulations are presented in Section 6, to illustrate and support our analyzed results.
The paper ends with brief remarks.

2 Preliminaries

To investigate the dynamics of system (1.2), we need to consider a suitable
phase space and a feasible region. For τ > 0, we denote by C = C([−τ, 0],R)
the Banach space of continuous real-valued function on the interval [−τ, 0], with
norm ∥ϕ∥=sup−τ≤θ≤0|ϕ(θ)| for ϕ ∈ C. The nonnegative cone of C is defined as
C+ = C([−τ, 0],R+). Initial conditions for system (1.2) are chosen as

(2.1) φ ∈ C+ × C+ × R+, φ = (φ1, φ2, φ3) with φi(0) > 0, i = 1, 2 and φ3 > 0.

Proposition 2.1. Under initial condition (2.1), all solutions of system (1.2) are
positive and ultimately bounded in C × C × R. Furthermore, all solutions eventually
enter and remain in the following bounded and positively invariant region:

Γ = {(x, y, z) ∈ C+×C+×R+ :∥ x ∥≤ λ
d1
+ε, ∥ x+y ∥≤ λ

d̃
+ε, ∥ x+y+ γ

µ
z ∥≤ λ

d
+ε},

where d = min{d1, d2, d3} > 0, d̃ = min{d1, d2} > 0, ε is arbitrarily small positive
number.

Proof. First, we prove that x(t) is positive for t ≥ 0. Assuming the contrary and
letting t1 > 0 be the first time such that x(t1) = 0, by the first equation of system
(1.2), we have x′(t1) = λ > 0, and hence x(t) < 0 for t ∈ (t1 − η, t1) and sufficiently
small η. This contradicts x(t) > 0 for t ∈ [0, t1). It follows that x(t) > 0 for t > 0 as
long as x(t) exists. Similarly, we can show that y(t) > 0 for t > 0. From the third
equation of (1.2), we have

z(t) = z(0)e
∫ t
0 (µy(θ)−d3)dθ.
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It follows that z(t) > 0 for t > 0.

Next we show that positive solutions of (1.2) are ultimately bounded for t ≥ 0.
From the first equation of system (1.2), we obtain

x′(t) ≤ λ− d1x(t), t ≥ 0,

and thus

lim sup
t→∞

x(t) ≤ λ

d1
.

Adding the first two equations of (1.2), we get

(x(t) + y(t+ τ))′ ≤ λ− d̃(x(t) + y(t+ τ)), t ≥ 0,

where d̃ = min{d1, d2}. Thus

lim sup
t→∞

(x(t) + y(t+ τ)) ≤ λ

d̃
.

Adding all the equations of (1.2), we get

(x(t) + y(t+ τ) +
γ

µ
z(t+ τ))′ = λ− d1x(t)− d2y(t+ τ)− γ

µ
d3z(t+ τ)

≤ λ− d(x(t) + y(t+ τ) +
γ

µ
z(t+ τ)),

where d = min{d1, d2.d3}. Thus

lim sup
t→∞

(x(t) + y(t+ τ) +
γ

µ
z(t+ τ)) ≤ λ

d
.

Based on the discussion above, we have obtained that all solutions of system (1.2)
with initial condition (2.1) eventually enter and remain in the region Γ. Therefore,
the solutions of system (1.2) with initial condition (2.1) are ultimately uniformly
bounded in C × C × R by (λ/d) + ε. It is not difficult to verify that the region Γ is
positive invariant for system (1.2).

As a consequence of proposition 2.1, we know that the dynamics of system (1.2)
can be analyzed in the following bounded feasible region

Γ = {(x, y, z) ∈ C+×C+×R+ :∥ x ∥≤ λ
d1
+ε, ∥ x+y ∥≤ λ

d̃
+ε, ∥ x+y+ γ

µ
z ∥≤ λ

d
+ε}.

Furthermore, the region Γ is positively invariant with respect to system (1.2) and
the model is well posed.

System (1.2) always has an infection-free equilibrium P0 = (x0, 0, 0), x0 =
λ
d1
. In

addition to P0, the system can have two chronic-infection equilibria P1 = (x, y, 0)
and P2 = (x∗, y∗, z∗) in Γ, where x, y, x∗, y∗ and z∗ are all positive. At equilibrium
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P1, the HTLV-I infection is persistent with a constant proviral load y > 0, whereas
CTL response is absent, so is the risk for developing HAM/TSP. This corresponds
to the situation of an asymptotic carrier. At equilibrium P2, both the proviral load
and CTL response persist at a constant level. This corresponds to the situation of
a HAM/TSP patient. Which of the three steady-states is the final outcome of the
system will be determined by a combination of two threshold parameters.

(2.2) R0 =
λβ

d1d2
, R1 =

λβµ

d1d2µ+ βd2d3
.

They are called the basic reproduction numbers for viral infection and for CTL re-
sponse, respectively (Gomez-Acevedo et al. [4]). We note that R1 < R0 always
holds.

It can be verified that the carrier equilibrium P1 = (x, y, 0) exists if and only if
R0 > 1 and that

(2.3) x =
d2
β

=
λ

d1R0

, y =
λβ − d1d2

βd2
=

d1(R0 − 1)

β

The coordinates of the HAM/TSP equilibrium P2 = (x∗, y∗, z∗) are given by
(2.4)

x∗ =
λµ

d1µ+ βd3
=

d2R1

β
, y∗ =

d3
µ
, z∗ =

βλµ− d1d2µ− βd2d3
(d1µ+ βd3)γ

=
d1d2µ+ βd2d3
(d1µ+ βd3)γ

(R1−1).

Therefore, P2 exists in the interior of Γ if and only if R1 > 1. We thus have the
following result.

Proposition 2.2. If R0 < 1, P0 = ( λ
d1
, 0, 0) is the only equilibrium in Γ. If R1 <

1 < R0, the carrier equilibrium P1 = (x, y, 0) exists and is the only chronic-infection
equilibrium in Γ. If R1 > 1, both the carrier equilibrium P1 and the HAM/TSP
equilibrium P2 = (x∗, y∗, z∗) exist.

3 Global stability of P0 when R0 < 1

In this section, we rigorously show that when R0 < 1, the infection-free equilib-
rium P0 is globally asymptotically stable in Γ.

Theorem 3.1. If R0 < 1, then the infection-free equilibrium P0 of system (1.2) is
globally asymptotically stable in Γ. If R0 > 1, then P0 is unstable.

Proof. Firstly we prove P0 is globally attractive in Γ if R0 < 1. To prove this, we
consider a Lyapunov functional L : C × C × R → R given by

(3.1) L(xt, yt, z(t)) = x0g(
xt(0)

x0

) + yt(0) + β

∫ 0

−τ

xt(θ)yt(θ)dθ,
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where x0 is the first coordinate of P0, g(u) = u − lnu − 1, u > 0. Here xt(s) =
x(t + s), yt(s) = y(t + s) for s ∈ [−τ, 0], and thus x(t) = xt(0), y(t) = yt(0) in this
notation. Calculating the time derivative of L along the solution in Γ of system (1.2),
we obtain

L′|(1.2) = λ− d1x(t)−
x0λ

x(t)
+ d1x0 + x0βy(t)− d2y(t)− γy(t)z(t)

(
x0 =

λ

d1

)
= d1x0

(
2− x(t)

x0

− x0

x(t)

)
+ d2y(t)(R0 − 1)− γy(t)z(t).

Therefore, R0 < 1 ensures that L′|(1.2) ≤ 0 is satisfied in Γ. Clearly, for (xt, yt, z(t)) ∈
Γ satisfying L′ = 0 if and only if x(t) = x0, y(t) = 0 and z(t) ∈ R+. Clearly,
(x0, 0, z(t)) is a solution of (1.2) if and only if z(t) ≡ 0. This implies that the
maximal invariant set of system (1.2) in {L′|(2.1) = 0} is the set M = {(x0, 0, 0)}.
By the LaSalle-Lyapunov theorem (LaSalle and Lefschetz [15] theorem 3.4.7), we
conclude that M is globally attractive in Γ if R0 < 1. So P0 is globally attractive in
Γ.

Secondly we prove that P0 is locally asymptotically stable. The characteristic
equation associated with the linearization of system (1.2) at P0 is given by

(3.2) (ξ + d1)(ξ + d3)

(
ξ + d2 −

βλ

d1
e−ξτ

)
= 0.

Obviously we have ξ1 = −d1 < 0, ξ2 = −d3 < 0, and we can easily prove that all
roots of the equation ξ + d2 − βλ

d1
e−ξτ = 0 have negative real parts when R0 < 1 with

τ ≥ 0. So when R0 < 1, P0 is locally asymptotically stable.

From global attraction and locally asymptotical stability of P0 , we obtain that
P0 is globally asymptotically stable in Γ when R0 < 1.

Next, we show that P0 is unstable when R0 > 1. The characteristic equation
associated with the linearization of system (1.2) at P0 is

(ξ + d1)(ξ + d3)

(
ξ + d2 −

βλ

d1
e−ξτ

)
= 0.

Now we consider equation ξ + d2 − βλ
d1
e−ξτ = 0, τ ≥ 0. The curve w = ξ + d2 and the

curve w = βλ
d1
e−ξτ must have intersection point in the first quadrant when R0 > 1.

So the equation

(ξ + d1)(ξ + d3)

(
ξ + d2 −

βλ

d1
e−ξτ

)
= 0

has at least one positive root. Hence P0 is unstable when R0 > 1.
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4 Global stability of P1 when R1 < 1 < R0

In this section, we shall study the global stability of the fixed point P1 when
R1 < 1 < R0. The main result is the followings.

Theorem 4.1. If R1 < 1 < R0, then the equilibrium P1 is globally asymptotically
stable in Γ\{x− axis}. If R1 > 1, then P1 is unstable.

Proof. Let g(u) = u− lnu− 1, u > 0. P1 = (x, y, 0) is the carrier equilibrium.

Define a Lyapunov functional V : C × C × R → R
(4.1)

V (xt, yt, z(t)) = xg

(
xt(0)

x

)
+ yg

(
(yt(0))

y

)
+

γ

µ
z(t) + βxy

∫ 0

−τ

g

(
xt(θ)yt(θ)

xy

)
dθ.

Calculating the time derivative of V along solution of system (1.2), we obtain

V ′|(1.2) =λ− d1x(t)− βx(t)y(t)− x

(
λ

x(t)
− d1 − βy(t)

)
+ βx(t− τ)y(t− τ)− d2y(t)

− γy(t)z(t)− y

(
βx(t− τ)y(t− τ)

y(t)
− d2 − γz(t)

)
+ γy(t)z(t)− γ

µ
d3z(t)

+ βxy

(
x(t)y(t)− x(t− τ)y(t− τ)

xy
− ln

x(t)y(t)

xy
+ ln

x(t− τ)y(t− τ)

xy

)
.

Using λ = d1x+ βxy and d2 = βx, it follows that

V ′|(1.2) =d1x

(
2− x(t)

x
− x

x(t)

)
− βxy

(
x

x(t)
− 1− ln

x

x(t)

)
− βxy ln

x

x(t)

− βxy

(
x(t− τ)y(t− τ)

xy(t)
− 1− ln

x(t− τ)y(t− τ)

xy(t)

)
− βxy ln

x(t− τ)y(t− τ)

xy(t)
+ γyz(t)− γ

µ
d3z(t)

− βxy ln
x(t)y(t)

xy
+ βxy ln

x(t− τ)y(t− τ)

xy

=d1x

(
2− x(t)

x
− x

x(t)

)
− βxyg

(
x

x(t)

)
− βxyg

(
x(t− τ)y(t− τ)

xy(t)

)
+ γ

(
y − d3

µ

)
z(t)

=d1x

(
2− x(t)

x
− x

x(t)

)
− βxy

[
g

(
x

x(t)

)
+ g

(
x(t− τ)y(t− τ)

xy(t)

)]
+

γ(d1µ+ βd3)

βµ
(R1 − 1)z(t) ≤ 0,
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when R1 < 1. Furthermore, V ′ = 0 ⇔ x(t) = x, y(t) = y, z(t) = 0, and thus the
maximal invariant set in the set {V ′ = 0} is the singleton {P1}. Therefore, P1 is
globally attractive in Γ \ {x-axis} when R1 < 1. Along the invariant x-axis, solutions
converge to the infection-free equilibrium P0.

We investigate local stability of P1 in following. The characteristic equation
associated with the linearization of system (1.2) at P1 is

(4.2) (ξ + d3 − µy)(ξ2 + (d1 + d2 + βy)ξ + d1d2 + d2βy − (ξ + d1)βxe
−ξτ ) = 0.

We easily get ξ1 = µy−d3 < 0 when R1 < 1. Next we consider the following equation

(4.3) ξ2 + (d1 + d2 + βy)ξ + d1d2 + d2βy − (ξ + d1)βxe
−ξτ = 0.

Using y = λβ−d1d2
βd2

, x = d2
β
, we obtain

(4.4) ξ2 +
d22 + λβ

d2
ξ + λβ − d2(ξ + d1)e

−ξτ = 0.

The Eq. (4.4) with τ = 0 is ξ2 + λβ
d2
ξ+ λβ − d1d2 = 0, whose roots have negative real

parts if R1 < 1 < R0. Now we consider the roots of the equation (4.4) with τ > 0.

Denotes a1 =
d22+λβ

d2
, a2 = λβ, b1 = d2 and b2 = d1d2. Then Eq. (4.4) becomes

(4.5) ξ2 + a1ξ + a2 − (b1ξ + b2)e
−ξτ = 0.

Assuming ξ = iω(ω > 0) is a purely imaginary root of the equation (4.5) for τ > 0.
Substituting ξ = iω into the equation and separating the real and imaginary parts,
we obtain

(4.6)
a22 − ω2 = b1ω sinωτ + b2 cosωτ,
a1ω = b1ω cosωτ − b2 sinωτ.

Squaring and adding both equations of (4.6) leads to

F (ω) = ω4 + (a21 − 2a2 − b21)ω
2 + a22 − b22 = 0.

Let
G(u) = u2 + (a21 − 2a2 − b21)u+ a22 − b22 = 0.

We easily find that a21 − 2a2 − b21 = λ2β2

d2
> 0, and a22 − b22 = λ2β2 − d21d

2
2 > 0 for

R1 < 1 < R0. Therefore, the equation G(u) = 0 has no positive roots. Namely,
the equation F (ω) = 0 has no positive roots. Thus the equation (4.5) has no purely
imaginary roots. Notice that 0 is not the root of the equation (4.5). We obtain that
all roots of the characteristic equation (4.2) have negative real parts. So P1 is locally
asymptotically stable for R1 < 1 < R0.
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From global attraction and locally asymptotical stability of P1, the equilibrium
P1 is globally asymptotically stable in Γ\{x− axis}.

For R1 > 1, the characteristic equation has a positive root given by

ξ1 = µy − d3 > 0.

Thus P1 is unstable when R1 > 1.

5 Dynamics when R1 > 1

We have shown in above sections that, if R1 > 1 both the equilibrium P0 and the
carrier equilibrium P1 are unstable. And the HAM/TSP equilibrium P2 exists in the
interior of Γ. We will investigate the stability of P2 in this section.

The characteristic equation associated with the linearization of system (1.2) at
P2 is

ξ3 + (d1 + d2 + βy∗ + γz∗)ξ2 + (d1d2 + µγy∗z∗ + γd1z
∗ + βd2y

∗ + βγy∗z∗)ξ

+ d1d3γz
∗ + βγd3y

∗z∗ + e−ξτ (−βx∗ξ2 − βd1x
∗ξ) = 0.

(5.1)

Using γz∗ = βx∗ − d2 and the expression of x∗, y∗, z∗, we get

ξ3 + (d1 + βx∗ + βy∗)ξ2 + (βd1x
∗ + β2x∗y∗ + βd3x

∗ − d2d3)ξ

+ d1d3βx
∗ − d1d2d3 + β2d3x

∗y∗ − βd2d3y
∗ + e−ξτ (−βx∗ξ2 − βd1x

∗ξ) = 0.
(5.2)

Let

a2 = d1 + βx∗ + βy∗(> 0), a1 = βd1x
∗ + β2x∗y∗ + βd3x

∗ − d2d3,
a0 = d1d3βx

∗ − d1d2d3 + β2d3x
∗y∗ − βd2d3y

∗(> 0),
b2 = −βx∗(< 0), b1 = −βd1x

∗(< 0).
Then the equation (5.2) changes into

(5.3) ξ3 + a2ξ
2 + a1ξ + a0 + e−ξτ (b2ξ

2 + b1ξ) = 0.

When τ = 0, the equation (5.3) becomes

(5.4) ξ3 + (a2 + b2)ξ
2 + (a1 + b1)ξ + a0 = 0.

Noticing that
a2 + b2 = d1 + βy∗ > 0, a0 = d1d3γz

∗ + βd3γy
∗z∗ > 0,

(a2 + b2)(a1 + b1)− a0 = d1β
2x∗y∗ + β3x∗(y∗)2 > 0,

and by the Routh-Hurwitz criterion, we know that all roots of equation (5.4) have
negative real parts. Thus we obtain the following result.

Proposition 5.1. Suppose R1 > 1. Then the HAM/TSP equilibrium P2 is locally
asymptotically stable when τ = 0.
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Remark 5.2. Using a Lyapunov function
U(x, y, z) = (x− x∗ lnx) + (y − y∗ ln y) + γ

µ
(z − z∗ ln z),

we can show that, if R1 > 1, then the equilibrium P2 is globally asymptotically stable
in the interior of Γ when τ = 0.

Since when τ = 0, all roots of the characteristic equation (5.3) lie to the left
of the imaginary axis, a stability change at P2 can only happen when characteristic
roots cross the imaginary axis to the right. We thus consider the possibility of purely
imaginary roots ξ = iω(ω > 0) for τ > 0. Substituting ξ = iω into equation (5.3)
and separating the real and imaginary parts, we obtain

ω3 − a1ω = b1ω cosωτ + b2ω
2 sinωτ,

a2ω
2 − a0 = b1ω sinωτ − b2ω

2 cosωτ.
(5.5)

Squaring and adding both equations of (5.5) lead to

(5.6) F (ω) = ω6 + (a22 − 2a1 − b22)ω
4 + (a21 − 2a0a2 − b21)ω

2 + a20 = 0.

Let

(5.7) G(u) = u3 + (a22 − 2a1 − b22)u
2 + (a21 − 2a0a2 − b21)u+ a20 = 0.

Therefore, if ξ = iω(ω > 0) is a purely imaginary root of equation (5.6), then the
equation (5.7)

G(u) = 0
must has at least a positive root u = ω2. Notice that

G′(u) = 3u2 + 2(a22 − 2a1 − b22)u
2 + (a21 − 2a0a2 − b21).

Let
∆ = (a22 − 2a1 − b22)

2 − 3(a21 − 2a0a2 − b21).
Note that G(0) = a20 > 0. Then
(1) If ∆ ≤ 0, noticing G(0) = a20 > 0, and thus G(u) is monotonically increasing.
Therefore, equation G(u) = 0 has no positive roots, and all characteristic roots will
remain to the left of the imaginary axis for all τ > 0.
(2) If ∆ > 0, then the graph of G(u) has two critical points

(5.8) u∗ =
−(a22 − 2a1 − b22) +

√
∆

3
, u∗∗ =

−(a22 − 2a1 − b22)−
√
∆

3
.

Obviously u∗ > u∗∗,and if u∗ < 0 , then G(u) = 0 has no positive roots.
(3)If ∆ > 0,u∗ > 0 and G(u∗) > 0, then G(u) = 0 has no positive roots.

From (1), (2) and (3),We have the following theorem.

Theorem 5.3. If (1∗)∆ ≤ 0, or (2∗) ∆ > 0, u∗ < 0, or (3∗) ∆ > 0, u∗ > 0,
G(u∗) > 0. Then the HAM/TSP equilibrium P2 remains asymptotically stable for all
τ ≥ 0.
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6 Numerical simulations

In this section, we shall carry out some numerical simulations for supporting our
theoretical analysis. In the following, the data chosen are borrowed from Li and Shu
[5].

Firstly, we consider the following set of parameter values: λ = 160 cells/mm3/day,
β = 0.002 mm3/cells/day, d1 = 0.2 day−1, d2 = 1.8 day−1, d3 = 0.5 day−1, µ = 0.2
mm3/cells/day, γ = 0.2 mm3/cells/day, τ = 1 day. For the above parameter set, R0 =
0.8889 < 1, the system (1.2) has an unique infection-free equilibrium P0=(800,0,0).
Figure 1 shows P0 is globally asymptotically stable when R0 < 1.
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Figure 1: P0 is globally asymptotically stable. Here λ = 160, β = 0.002, d1 = 0, 2, d2 =
1.8, d3 = 0.5, µ = 0.2, γ = 0.2, τ = 1 and R0 = 0.8889 < 1.

Next, we use the following parameters: λ = 165 cells/mm3/day,
β = 0.002 mm3/cells/day, d1 = 0.2 day−1, d2 = 1.64 day−1, d3 = 0.3 day−1,
µ = 0.2 mm3/cells/day, γ = 0.2 mm3/cells/day, τ = 3 days. For those parameters,
R1 = 0.9912 < 1 < R0 = 1.0061., the system (1.2) has a chronic-infection equilib-
rium P1=(820,0.6098,0). Figure 2 demonstrates this chronic-infection equilibrium P1

is globally asymptotically stable when R1 < 1 < R0.

In figure 3, we adopt the following set of parameter values: λ = 160 cells/mm3/day,
β = 0.002 mm3/cells/day, d1 = 0.16 day−1, d2 = 1.9 day−1, d3 = 0.5 day−1, µ = 0.2
mm3/cells/day, γ = 0.2 mm3/cells/day, τ = 3 days. Thus R1 = 1.0207 > 1, the
system (1.2) has a chronic-infection equilibrium P2 = (969.6970, 2.5, 0.1970) and
∆ = −0.0161 < 0. Figure 3 demonstrates P2 is asymptotically stable when R1 > 1
and ∆ < 0.
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Figure 2: P1 is globally asymptotically stable. Here λ = 165, β = 0.002, d1 =
0.2day−1, d2 = 1.64, d3 = 0.3, µ = 0.2, γ = 0.2, τ = 3 and R1 = 0.9912 < 1 <
R0 = 1.0061.

In figure 4, we use the following parameters: λ = 160 cells/mm3/day, β = 0.002
mm3/cells/day, d1 = 0.16 day−1, d2 = 1.85 day−1, d3 = 0.02 day−1, µ = 0.2
mm3/cells/day, γ = 0.2 mm3/cells/day, τ = 3 days. Thus R1 = 1.0797 > 1, the
system (1.2) has a chronic-infection equilibrium P2 = (998.7516, 0.1, 0.7375) and
∆ = 0.0001 > 0, u∗ = −0.0042 < 0. Figure 4 demonstrates P2 is asymptotically
stable when R1 > 1 and ∆ > 0, u∗ < 0.

In figure 5, the following parameter values are employed: λ = 160 cells/mm3/day,
β = 0.002 mm3/cells/day, d1 = 0.16 day−1, d2 = 1.7 day−1, d3 = 0.5 day−1,
µ = 0.2 mm3/cells/day, γ = 0.2 mm3/cells/day, τ = 3 days. Thereby we ob-
tain R1 = 1.1408 > 1 and the system (1.2) has a chronic-infection equilibrium
P2 = (969.6970, 2.5000, 1.1970). Furthermore, ∆ = 0.0032 > 0, u∗ = 0.0897 >
0, G(u∗) = 0.007 > 0. Figure 4 shows P2 is asymptotically stable when R1 > 1
and ∆ > 0, u∗ > 0, G(u∗) > 0.
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Figure 3: P2 is asymptotically stable. Here λ = 165, β = 0.002, d1 = 0.16, d2 =
1.9, d3 = 0.5, µ = 0.2, γ = 0.2, τ = 3 and R1 = 1.0207 > 1,∆ = −0.0161 < 0.
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Figure 4: P2 is asymptotically stable. Here λ = 160, β = 0.002, d1 = 0.16, d2 =
1.85, d3 = 0.02, µ = 0.2, γ = 0.2, τ = 3 and R1 = 1.0797 > 1,∆ = 0.0001 > 0, u∗ =
−0.0042 < 0.

7 Conclusion

Based on the system (1.1), we propose the system (1.2) with delay, and investigate its
dynamics. We roughly prove that P0 is globally asymptotically stable when R0 < 1

EJQTDE, 2013 No. 40, p. 13



−200 0 200 400 600 800 1000 1200
969.5

969.55

969.6

969.65

969.7

969.75

969.8

969.85

969.9

969.95

970

(a)

−200 0 200 400 600 800 1000 1200
2.475

2.48

2.485

2.49

2.495

2.5

2.505

2.51

2.515

2.52

(b)

−200 0 200 400 600 800 1000 1200
1.15

1.2

1.25

(c)

969.5
969.6

969.7
969.8

969.9
970

2.46

2.48

2.5

2.52

2.54

1.16

1.18

1.2

1.22

1.24

1.26

(d)

Figure 5: P2 is asymptotically stable. Here λ = 160, β = 0.002, d1 = 0.16, d2 =
1.7, d3 = 0.5, µ = 0.2, γ = 0.2, τ = 3 and R1 = 1.0797 > 1,∆ = 0.0032 > 0, u∗ =
0.0897 > 0, G(u∗) = 0.007 > 0.

and P1 is globally asymptotically stable when R1 < 1 < R0 by Lyapunov functionals.
When R1 > 1, we obtain P2 is asymptotically stable under certain conditions. At
last, we carry out some numerical simulations to support the analysis results.
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