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COMPARISON OF EIGENVALUES FOR A FOURTH-ORDER

FOUR-POINT BOUNDARY VALUE PROBLEM

BASANT K. KARNA†, ERIC R. KAUFMANN‡ AND JASON NOBLES‡

Abstract. We establish the existence of a smallest eigenvalue for the fourth-
order four-point boundary value problem (φp(u′′(t)))′′ = λh(t)u(t), u′(0) =
0, β0u(η0) = u(1), φ′

p
(u′′(0)) = 0, β1φp(u′′(η1)) = φp(u′′(1)), p > 2, 0 <

η1, η0 < 1, 0 < β1, β0 < 1, using the theory of u0-positive operators with
respect to a cone in a Banach space. We then obtain a comparison theorem
for the smallest positive eigenvalues, λ1 and λ2, for the differential equations
(φp(u′′(t)))′′ = λ1f(t)u(t) and (φp(u′′(t)))′′ = λ2g(t)u(t) where 0 ≤ f(t) ≤

g(t), t ∈ [0, 1].

1. Introduction

In this paper, we will compare the smallest eigenvalues for the eigenvalue prob-
lems,

(φp(u
′′(t)))

′′
= λ1f(t)u(t), (1.1)

(φp(u
′′(t)))

′′
= λ2g(t)u(t), (1.2)

t ∈ [0, 1], with eigenvectors satisfying the nonlocal boundary conditions,

u′(0) = 0, β0u(η0) = u(1), (1.3)

φ′
p(u

′′(0)) = 0, β1φp(u
′′(η1)) = φp(u

′′(1)). (1.4)

Throughout this paper we assume that 0 < η0, η1 < 1, 0 < β0, β1 < 1, p > 2,
φp(z) = z|z|p−2, and f, g : [0, 1] → [0, +∞) are continuous and do not vanish on
any nontrivial compact subsets of [0, 1].

We use sign properties of Green’s functions and the theory of u0-positive op-
erators with respect to a cone in a Banach space to establish our results. The
theory of u0-positive operators is developed in the books by Krasnosel’skĭı [9] and
Deimling [2] as well as in the manuscript by Keener and Travis [8]. Many authors
have used cone theoretic techniques to compare smallest eigenvalues for a pair of
differential equations; see, for example [1, 3, 4, 5, 6, 7, 8, 10] and references therein.
In particular, Eloe and Henderson [3] compared smallest eigenvalues for a class of
multi-point boundary value problems while Karna [5, 6] considered the compari-
son of smallest eigenvalues for nonlocal three-point and m-point boundary value
problems. Finally, we mention the paper by Lui and Ge [12] who considered the
p-Laplacian differential equation

(φp(u
′′(t)))′′ = a(t)f(u(t)), t ∈ (0, 1),
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with solutions satisfying one of the following two sets of boundary conditions

u(0) − λu′(η) = u′(1) = 0, u′′′(0) = α1u
′′′(ξ), u′′(1) = β1u

′′(ξ),

or
u(1) + λu′(η) = u′(0) = 0, u′′′(0) = α1u

′′′(ξ), u′′(1) = β1u
′′(ξ).

In section 2, we present preliminary definitions and fundamental results from
the theory of u0-positive operators with respect to a cone in a Banach space. In
section 3, we apply the theorems in section 2 to obtain a comparison theorem for
the smallest eigenvalues, λ1 andλ2 of (1.1), (1.3), (1.4) and (1.2), (1.3), (1.4), when
0 ≤ f(t) ≤ g(t). In section 4, we compare eigenvalues for the 2m+2 order problem.

2. Banach Spaces, Cones and Preliminary Results

In this section, we state some definitions and theorems from the theory of
u0−positive operators that we will apply in the next sections to obtain our com-
parison theorems. Most of the discussion of this section, involving the theory of
cones in a Banach space, can be found in [9].

Let B be a Banach space over the reals. A closed, nonempty set P ⊂ B is said
to be a cone provided, (i) αu + βv ∈ P , for all u, v ∈ P and all α, β ≥ 0, and,
(ii) u,−u ∈ P implies u ≡ 0. A cone, P , is said to be reproducing, if, for each
w ∈ B, there exists u, v ∈ P such that w = u − v. A cone, P , is said to be solid, if
P◦ 6= ∅, where P◦ is the interior of P .

Remark: Krasnosel’skĭı [9] proved that every solid cone is reproducing.
A Banach space B is called a partially ordered Banach space, if there exists a

partial ordering, �, on B such that, (i) u � v, for all u, v ∈ B, implies tu � tv, for
all t ≥ 0, and tv � tu, for all t < 0, where tv ≺ tu means tv � tu and, tv 6= tu, and
(ii) u1 � v1 and u2 � v2, for all u1, u2, v1, v2 ∈ B, imply that u1 + u2 � v1 + v2.

Let P ⊂ B be a cone and define u � v if, and only if, v − u ∈ P . Then � is
a partial ordering on B, and we say that � is the partial ordering induced by P .
Moreover, B is a partially ordered Banach space with respect to �.

Let M, N : B → B be bounded, linear operators. We say that M � N with

respect to P , if Mu � Nu for all u ∈ P . A bounded, linear operator M : B → B, is
said to be u0−positive with respect to P , if there exists a u0 ∈ P , u0 6= 0, such that
for every nonzero u ∈ P , there exist positive constants, k1(u), k2(u) ∈ R, such that
k1u0 � Mu � k2u0.

Of the next two results, the first can be found in Krasnosel’skĭı [9] and the second
was proved by Keener and Travis [8] as an extension of results from [9].

Theorem 2.1. Let B be a Banach space over the reals and let P ⊂ B be a repro-

ducing cone. Let M : B → B be a compact, linear operator which is u0−positive

with respect to P. Then M has an essentially unique eigenvector in P, and the

corresponding eigenvalue is simple, positive, and larger than the absolute value of

any other eigenvalue.

Theorem 2.2. Let B be a Banach space over the reals and let P ⊂ B be a cone.

Let M, N : B → B be bounded, linear operators, and assume that at least one of

the operators is u0−positive with respect to P. If M � N with respect to P, and

if there exists nonzero u1, u2 ∈ P and positive real numbers λ1 and λ2, such that
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λ1u1 � Mu1 and Nu2 � λ2u2, then λ1 ≤ λ2. Moreover, if λ1 = λ2, then u1 is a

scalar multiple of u2.

Remark: It is well known that the function φp is invertible and that its inverse
is φq where p and q satisfy 1

p
+ 1

q
= 1. Furthermore both φp and φq are increasing

function.

3. Comparison of Eigenvalues

In this section, we apply the results in section 2 to compare the smallest positive
eigenvalues of (1.1), (1.3), (1.4) and (1.2), (1.3), (1.4). We do so by defining
Hammerstien integral operators, M and N , associated with (1.1), (1.3), (1.4) and
(1.2), (1.3), (1.4). Let α 6= 1 and consider the second order linear eigenvalue
problem,

−y′′ = λh(t), (3.1)

y′(0) = 0, αy(ξ) = y(1). (3.2)

It is well known that y is a solution of (3.1), (3.2) if, and only if, y is a solution of

y(t) = λ

∫ 1

0

G(t, s; α, ξ)h(s) ds, (3.3)

where G(t, s; α, ξ) is the Green’s function for −y′′ = 0, (3.2) and is given by

G(t, s; α, ξ) =
1− s

1 − α
−

{

α(ξ−s)
1−α

, s ≤ ξ

0, s > ξ
−

{

t − s, s ≤ t

0, s > t.
(3.4)

Note that if 0 ≤ α < 1 then

G(t, s; α, ξ) > 0

for all (t, s) ∈ (0, 1) × (0, 1). As noted in Karna [5],

∂

∂t
G(t, s; α, ξ) = −1 < 0 for s < t, and

∂

∂t
G(t, s; α, ξ) = 0 for s > t.

Let y = −φp(u
′′(t)) in (3.3) and (3.2), and set α = β1, ξ = η1 to obtain,

−φp(u
′′(t)) = λ

∫ 1

0

G(t, s; β1, η1)h(s) ds,

φ′
p(u

′′(0)) = 0, β1φp(u
′′(η1)) = φp(u

′′(1)).

Rewrite the differential equation as

−u′′(t) = φq

(

λ

∫ 1

0

G(t, s; β1, η1)h(s) ds

)

. (3.5)

We now consider the second order linear boundary value problem (3.5), (1.3).
Again, we see that u is a solution of (3.5), (1.3) if, and only if, u satisfies

u(t) = φq(λ)

∫ 1

0

G(t, s; β0, η0) φq

(
∫ 1

0

G(s, τ ; β1, η1)h(s) dτ

)

ds.
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We define, for our Banach space,

B =
{

u ∈ C3[0, 1] : u satisfies the boundary conditions (1.3), (1.4)
}

with norm

‖u‖ = max
0≤i≤3

{

sup
t∈[0,1]

|u(i)(t)|

}

.

Define P ⊂ B by

P =
{

u ∈ B : u(t) ≥ 0 and u′(t) ≤ 0 for t ∈ [0, 1]
}

.

Then P is a cone in B. To prove that P is solid we employ an auxiliary set, Θ,
defined as follows,

Θ =
{

u ∈ B : u(t) > 0 for t ∈ [0, 1] and u′(t) < 0 for t ∈ (0, 1]
}

.

Lemma 3.1. The cone P is solid and hence reproducing.

Proof. We show that Θ ⊂ P◦ from which we have P◦ 6= ∅.
Clearly, Θ ⊂ P . Let u ∈ Θ. Then u(t) > 0 on [0, 1] and u′(t) < 0 on (0, 1].

Consider the open ball Bε = {v ∈ B : ‖v − u‖ < ε}. Let v ∈ Bε. Since ‖v − u‖ < ε

then |v′(t)−u′(t)| < ε for all t ∈ (0, 1]. Hence u′(t)− ε < v′(t) < u′(t) + ε < 0 for ε

sufficiently small. Likewise ‖v − u‖ < ε implies u(t) + ε > v(t) > u(t)− ε > 0 for ε

sufficiently small. Consequently, for ε sufficiently small Bε ⊂ Θ. Since u ∈ Θ was
arbitrary, Θ is open in P . Hence P◦ 6= ∅ and the proof is complete. �

Define the integral operators M, N : B → B as follows,

Mu(t) =

∫ 1

0

G(t, s; β0, η0) φq

(
∫ 1

0

G(s, τ ; β1, η1)f(τ)u(τ) dτ

)

ds, t ∈ [0, 1],

Nu(t) =

∫ 1

0

G(t, s; β0, η0) φq

(
∫ 1

0

G(s, τ ; β1, η1)g(τ)u(τ) dτ

)

ds, t ∈ [0, 1].

Standard arguments are used to show that M and N are completely continuous.
Our first theorem states that the operators M and N are u0-positive with respect
to P .

Theorem 3.2. The operators M and N are u0−positive with respect to the cone

P.

Proof. We will prove the theorem for the operator M . The proof for the operator
N is similar. We first show that M : P → P . Next we show that M : P \ {0} → Θ.
Finally, given a u ∈ P\{0}, we determine constants k1, k2 such that the appropriate
inequalities hold.

Let u ∈ P . Then u(t) ≥ 0 and u′(t) ≤ 0 for all t ∈ [0, 1]. Since f(t) ≥ 0 and
since G(t, s; α, ξ) ≥ 0 for all (t, s) ∈ [0, 1] × [0, 1], then Mu(t) ≥ 0 for all t ∈ [0, 1].
Also, since ∂

∂t
G(t, s; β0, η0) = −1 for s < t, then
∫ t

0

∂

∂t
G(t, s; β0, η0) φq

(
∫ 1

0

G(s, τ ; β1, η1)f(τ)u(τ)dτ

)

ds

= −

∫ t

0

φq

(
∫ 1

0

G(s, τ ; β1, η1)f(τ)u(τ) dτ

)

ds ≤ 0.
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Since ∂
∂t

G(t, s; β0, η0) = 0 for s > t, then
∫ 1

t

∂

∂t
G(t, s; β0, η0) φq

(
∫ 1

0

G(s, τ ; β1, η1)f(τ)u(τ) dτ

)

ds = 0.

Consequently, (Mu)′(t) ≤ 0 for all t ∈ [0, 1] and so, M(P) ⊆ P .
Now consider u ∈ P\{0}. Since u′(t) ≤ 0 for all t ∈ [0, 1] then u is non-increasing

over [0, 1]. Suppose that u(0) = 0 then either u ≡ 0 or u(t) ≤ 0 for all t ∈ [0, 1]. In
either case, u 6∈ P \ {0}. Hence u(0) > 0. By continuity, there exists c ∈ (0, 1] such
that u(t) > 0 for all t ∈ [0, c). Since f does not vanish on any nontrivial compact
subsets of [0, 1], there exists [α, β] ⊂ [0, c) such that f(t) > 0 for all t ∈ [α, β]. So,
for t ∈ [0, 1]

Mu(t) =

∫ 1

0

G(t, s; β0, η0) φq

(
∫ 1

0

G(s, τ ; β1, η1)f(τ)u(τ) dτ

)

ds

≥

∫ β

α

G(t, s; β0, η0) φq

(

∫ β

α

G(s, τ ; β1, η1)f(τ)u(τ) dτ

)

ds

> 0.

Also, if t ∈ (0, 1] then

(Mu)′(t) =

∫ 1

0

∂

∂t
G(t, s; β0, η0) φq

(
∫ 1

0

G(s, τ ; β1, η1)f(τ)u(τ) dτ

)

ds

≤ −

∫ t

0

φq

(

∫ β

α

G(s, τ ; β1, η1)f(τ)u(τ) dτ

)

ds

< 0.

Consequently, if u ∈ P \ {0}, then Mu ∈ Θ ⊂ P◦. That is, M : P \ {0} → P◦.
To complete the proof, fix u0 ∈ P \ {0} and let u ∈ P \ {0}. From the above

we know that Mu ∈ Θ ⊂ P◦ and so, there exists k1 sufficiently small so that
Mu−k1u0 ∈ P . Similarly, there exists k2 sufficiently large so that u0−

1
k2

Mu ∈ P .
Thus,

Mu − k1u0 ∈ P ⇒ k1u0 � Mu,

u0 −
1

k2
Mu ∈ P ⇒ Mu � k2u0.

That is, given u0 ∈ P \ {0}, for each u ∈ P \ {0}, there exists k1, k2 such that

k1u0 � Mu � k2u0.

The operator M is u0-positive with respect to the cone P and the proof is complete.
�

Now we apply Theorems 2.1 and 2.2 to obtain results concerning the eigenvectors
and eigenvalues of M and N .

Theorem 3.3. The operator M (N) has an essentially unique eigenvector, u ∈ P◦,

and the corresponding eigenvalue, Λ1, (Λ2), is simple, positive, and larger than the

absolute value of any other eigenvalue.
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Proof. From Theorem 3.2, we have that the compact, linear operator M is u0-
positive with respect to P . By Theorem 2.1, M has an essentially unique eigenvec-
tor, u1 ∈ P , and the corresponding eigenvalue, Λ1 is simple, positive, and larger
than the absolute value of any other eigenvalue. Since u1 6= 0 then, Mu1 ∈ Θ ⊂ P◦.
Now Mu1 = Λ1u1 and so u1 = 1

Λ1
Mu1 ∈ P◦ and the proof is complete. �

Theorem 3.4. Assume that 0 ≤ f(t) ≤ g(t) for all t ∈ [0, 1]. Let Λ1 and Λ2 be the

largest positive eigenvalues of M and N respectively with corresponding essentially

unique eigenvectors u1 and u2. Then Λ1 ≤ Λ2. Furthermore, Λ1 = Λ2, if, and only

if, f(t) = g(t) for all t ∈ [0, 1].

Proof. Since 0 ≤ f(t) ≤ g(t) for all t ∈ [0, 1] and since G(t, s; α, ξ) ≥ 0 for (t, s) ∈
[0, 1]× [0, 1], then

(Nu − Mu)(t) =

∫ 1

0

G(t, s; β0, η0) φq

(
∫ 1

0

G(s, τ ; β1, η1)
(

g(τ) − f(τ)
)

u(τ) dτ

)

ds

≥ 0.

Since ∂
∂t

G(t, s; α, ξ) = −1 if s < t and ∂
∂t

G(t, s; α, ξ) = 0 if s > t, then

(Nu − Mu)′(t)

=

∫ 1

0

∂

∂t
G(t, s; β0, η0) φq

(
∫ 1

0

G(s, τ ; β1, η1)
(

g(τ) − f(τ)
)

u(τ) dτ

)

ds

= −

∫ t

0

φq

(
∫ 1

0

G(s, τ ; β1, η1)
(

g(τ) − f(τ)
)

u(τ) dτ

)

ds

≤ 0.

Thus, Nu − Mu ∈ P and so, M � N with respect to P . From Theorem 2.2, if u1

and u2 are eigenvectors of M and N respectively, with corresponding eigenvalues
Λ1 and Λ2 then Λ1 ≤ Λ2.

Note if f(t) = g(t) then by Theorem 2.2 Λ1 ≤ Λ2 and Λ1 ≥ Λ2. In this case
Λ1 = Λ2.

To finish the proof, we need to show that Λ1 = Λ2 implies f(t) = g(t) for all
t ∈ [0, 1]. Suppose that f(t) < g(t) on some interval [α, β] ⊂ [0, 1]. As in Theorem
3.2, (N − M)u1 ∈ Θ ⊆ P◦. Since u1 ∈ P◦, there exists an ε > 0 sufficiently small
so that εu1 � (N − M)u1 = Nu1 − Mu1 = Nu1 − Λu1. Thus (Λ1 + ε)u1 � Nu1.
Since N � N, (Λ1 + ε)u1 � Nu1, and Nu2 � Λ2u2, then by Theorem 2.2 we have
Λ1 + ε ≤ Λ2. Hence Λ1 < Λ2. By the contrapositive, Λ1 = Λ2 implies f(t) = g(t)
for all t ∈ [0, 1] and the proof is complete. �

Let Λ1 be an eigenvector of M with corresponding eigenvector u1 and let λ1 =

φp

(

1
Λ1

)

. Then for all t ∈ [0, 1],

Λ1u1(t) = Mu1(t) =

∫ 1

0

G(t, s; β0, η0) φq

(
∫ 1

0

G(s, τ ; β1, η1)f(τ)u1(τ) dτ

)

ds.
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Since 1
Λ1

= φq(λ), then

u1(t) =
1

Λ1

∫ 1

0

G(t, s; β0, η0) φq

(
∫ 1

0

G(s, τ ; β1, η1)f(τ)u1(τ) dτ

)

ds

= φq(λ1)

∫ 1

0

G(t, s; β0, η0) φq

(
∫ 1

0

G(s, τ ; β1, η1)f(τ)u1(τ) dτ

)

ds.

That is, λ1 is an eigenvalue corresponding to (1.1), (1.3), (1.4). The converse also

holds. Thus, Λ1(Λ2) is an eigenvalue of M(N) if, and only if λ1 = φ
(

1
Λ1

) (

λ2 =

φ
(

1
Λ2

))

is an eigenvalue of (1.1), (1.3), (1.4),
(

(1.2), (1.3), (1.4)
)

. Furthermore,

since φp is an increasing one-to-one function, then 1
φ(λ1) = Λ1 ≤ Λ2 = 1

φ(λ2)
implies

that λ2 ≤ λ1 and Λ1 = Λ2 if, and only if λ1 = λ2.

Theorem 3.5. Let 0 ≤ f(t) ≤ g(t) for all t ∈ [0, 1]. Then there exist smallest

positive eigenvalues of (1.1), (1.3), (1.4) and (1.2), (1.3), (1.4), respectively, each of

which is simple, positive, and less than the absolute value of any other eigenvalue of

the corresponding problems. Also, the corresponding essentially unique eigenvectors

may be chosen to belong to P◦. Finally, λ2 ≤ λ1, and λ1 = λ2 if and only if

f(t) = g(t), 0 ≤ t ≤ 1.

4. The 2m + 2 Order Problem

Let m > 1 be a fixed integer. Define L0u(t) ≡ u′′(t) and for k = 1, 2, . . . , m

Lku(t) ≡ φpk

(

(

Lk−1u
)′′

(t)
)

.

In this section we compare eigenvalues for the 2m + 2 order problems,

(−1)m+1
(

Lmu
)′′

(t) = λ1f(t)u(t), (4.1)

(−1)m+1
(

Lmu
)′′

(t) = λ2g(t)u(t), (4.2)

t ∈ [0, 1], with eigenvectors satisfying the nonlocal boundary conditions,

u′(0) = 0,
(

Lku
)′

(0) = 0, (4.3)

β0u(η0) = u(1), βkLku(ηk) = Lku(1), (4.4)

k = 1, . . . , m, where 0 < ηi < 1, 0 < βi < 1, and pi > 2 for 1 ≤ i ≤ m.
For each k = 1, 2, . . . , m define the operator Gk by

Gkh(sk+1) ≡ φqm+1−k

(
∫ 1

0

G(sk+1, sk; βm+1−k, ηm+1−k)h(sk) dsk

)

,

where G(t, s; α, ξ) is defined in (3.4). Using the technique outlined in the beginning
of section 3, we see that u(t) is a solution of (−1)m+1 (Lmu)

′′
(t) = λh(t), (4.3),

(4.4), if, and only if,

u(t) =φq1

(

φq2

(

· · ·
(

φqm
(λ)
)

· · ·
))

×
∫ 1

0

G(t, sm+1; β0, η0)
[(

Gm ◦ Gm−1 ◦ · · · ◦ G1

)

(h)
]

(sm+1) dsm+1.
(4.5)
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Our Banach space is

B =
{

u ∈ C2m+1[0, 1] : u satisfies the boundary conditions (4.3), (4.4)
}

with norm

‖u‖ = max
{

|u(t)|0, |u
′(t)|0,

∣

∣Lku(t)
∣

∣

0
,
∣

∣

(

Lku
)′

(t)
∣

∣

0
, k = 1, 2, . . . , m

}

,

where |z|0 = supt∈[0,1] |z(t)|. Define the cone P2 ⊂ B by

P2 =
{

u ∈ B : u(t) ≥ 0, (−1)u′(t) ≥ 0, (−1)kLku(t) ≥ 0, k = 1, 2, . . . , m,

and (−1)k+1
(

Lku
)′

(t) ≥ 0, k = 1, 2, . . . , m, for t ∈ [0, 1]
}

and the auxiliary set, Θ2, as follows,

Θ2 =
{

u ∈ B : u(t) > 0, (−1)kLku(t) > 0, k = 1, 2, . . . , m, for t ∈ [0, 1]

and − u′(t) > 0, (−1)k+1
(

Lku
)′

(t) > 0, k = 1, 2, . . . , m, for t ∈ (0, 1]
}

.

A modification of the proof of Lemma 3.1 yields that Θ2 ⊂ P◦
2 . Hence the cone

P2 is solid and reproducing. We define operators M,N : B → B as follows,

Mu(t) =

∫ 1

0

G(t, sm+1; β0, η0)
[(

Gm ◦ Gm−1 ◦ · · · ◦ G1

)

(f)
]

(sm+1) dsm+1,

Nu(t) =

∫ 1

0

G(t, sm+1; β0, η0)
[(

Gm ◦ Gm−1 ◦ · · · ◦ G1

)

(g)
]

(sm+1) dsm+1,

for all t ∈ [0, 1]. The proofs of the following theorems are similar to those of their
counterparts in section 3 and are omitted.

Theorem 4.1. The operators M,N : P2 → P2 are completely continuous and

u0−positive with respect to the cone P2.

Theorem 4.2. The operator M (N ) has an essentially unique eigenvector, u ∈ P◦
2 ,

and the corresponding eigenvalue, Λ1, (Λ2), is simple, positive, and larger than the

absolute value of any other eigenvalue.

Theorem 4.3. Assume that 0 ≤ f(t) ≤ g(t) for all t ∈ [0, 1]. Let Λ1 and Λ2 be the

largest positive eigenvalues of M and N respectively with corresponding essentially

unique eigenvectors u1 and u2. Then Λ1 ≤ Λ2. Furthermore, Λ1 = Λ2, if, and only

if, f(t) = g(t) for all t ∈ [0, 1].

Let Λ1 be an eigenvector of M with corresponding eigenvector u1 and let λ1 =

φpm

(

· · ·φp1

(

1
Λ1

)

· · ·
)

. Then λ1 is an eigenvalue corresponding to (4.1), (4.3),

(4.4). The converse also holds. Thus, Λ1(Λ2) is an eigenvalue of M (N ) if, and

only if λ1 = φpm

(

· · ·φp1

(

1
Λ1

)

· · ·
) (

φpm

(

· · ·φp1

(

1
Λ2

)

· · ·
))

is an eigenvalue of

(4.1), (4.3), (4.4),
(

(4.2), (4.3), (4.4)
)

. Furthermore, since each φpk
, k = 1, . . . , m,

is an increasing one-to-one function, and since Λ1 ≤ Λ2, then λ2 ≤ λ1 and Λ1 = Λ2

if, and only if, λ1 = λ2.
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Theorem 4.4. Let 0 ≤ f(t) ≤ g(t) for all t ∈ [0, 1]. Then there exist smallest

positive eigenvalues of (4.1), (4.3), (4.4) and (4.2), (4.3), (4.4), respectively, each of

which is simple, positive, and less than the absolute value of any other eigenvalue of

the corresponding problems. Also, the corresponding essentially unique eigenvectors

may be chosen to belong to P◦
2 . Finally, λ2 ≤ λ1, and λ1 = λ2 if and only if

f(t) = g(t), 0 ≤ t ≤ 1.

Remark: We would like to thank the reviewers for their suggestions that improved
this paper.

References

[1] H. Amann, Fixed point equations and nonlinear eigenvalue problems in ordered Banach
spaces, SIAM Rev. 18 (1976), no. 4, 620–709.

[2] K. Deimling, “Nonlinear Functional Analysis,” Springer-Verlag, New York, 1985.
[3] P. W. Eloe and J. Henderson, Comparison of eigenvalues for a class of multipoint boundary

value problems, Recent Trends in Ordinary Differential Equations 1 (1992), 179–188.
[4] R. D. Gentry and C. C. Travis, Comparison of eigenvalues associated with linear differential

equations of arbitrary order, Trans. Amer. Math. Soc. 223 (1976), 167–179.
[5] B. Karna, Eigenvalue comparisons for three-point boundary value problems, preprint.
[6] B. Karna, Eigenvalue comparisons for m-point boundary value problem, Comm. Appl. Non-

linear Anal. 11 (2004), no. 1, 73–83.
[7] E. R. Kaufmann, Comparison of eigenvalues for eigenvalue problems of a right disfocal oper-

ator, Panamer. Math. J. 4 (1994), no. 4, 103–124.
[8] M. S. Keener and C. C. Travis, Positive cones and focal points for a class of nth order

differential equations, Trans. Amer. Math. Soc. 237 (1978), 331–351.
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