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Oscillation of nonlinear impulsive differential
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Abstract Existence and uniqueness of the solutions of a class of first order non-
linear impulsive differential equation with piecewise constant arguments is studied.
Moreover, sufficient conditions for the oscillation of the solutions are obtained.
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1. Introduction

In this paper, we consider an impulsive differential equation with piecewise
constant arguments of the form

() +a)at)+a(ft—1]) f(@[t]) =0, t #n, (1)
Az (n) =dyx(n), ne N={0,1,2,...}, (2)

with the initial conditions
z(=1)==z_1, x(0)= o, (3)

where a : [0,00) = R, f : R — R are continuous functions, d,, : N —» R —
{1}, Az(n) =z(n*) —x(n7), z(n™) = lim x(t), z(n~) = lim =z (¢), [
t—nt t—n—

denotes the greatest integer function, and x_;, xg are given real numbers.

Since 1980’s differential equations with piecewise constant arguments have at-
tracted great deal of attention of researchers in mathematical and some of
the others fields in science. Piecewise constant systems exist in a widely ex-
panded areas such as biomedicine, chemistry, mechanical engineering, physics,
etc. These kind of equations such as Eq.(1) are similar in structure to those
found in certain sequential-continuous models of disease dynamics [1]. In 1994,
Dai and Sing [2] studied the oscillatory motion of spring-mass systems with
subject to piecewise constant forces of the form f(z[t]) or f([t]). Later, they
improved an analytical and numerical method for solving linear and nonlinear
vibration problems and they showed that a function f([N(¢)]/N) is a good ap-
proximation to the given continuous function f(t) if N is sufficiently large [3].
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This method was also used to find the numerical solutions of a non-linear Froude
pendulum and the oscillatory behavior of the pendulum [4].

In 1984, Cooke and Wiener [5] studied oscillatory and periodic solutions of a lin-
ear differential equation with piecewise constant argument and they note that
such equations are comprehensively related to impulsive and difference equa-
tions. After this work, oscillatory and periodic solutions of linear differential
equations with piecewise constant arguments have been dealt with by many
authors [6, 7, 8] and the references cited therein. But, as we know, nonlinear
differential equations with piecewise constant arguments have been studied in a
few papers [9, 10, 11].

On the other hand, in 1994, the case of studying discontinuous solutions of
differential equations with piecewise continuous arguments has been proposed
as an open problem by Wiener [12]. Due to this open problem, the following
linear impulsive differential equations have been studied [13, 14]:

z'(t) +a®)z(t) + b)z([t — 1)) =0, t #n, (@)
z(n®) —xz(n~) =dyz(n), ne N={0,1,2,...},

and
{ ' (t) + a(®)z(t) + o) ([t]) + () ([t +1]) = f(t), t #n,
Az (n) =d,z(n), ne N={0,1,2,...}.

Now, our aim is to consider the Wiener’s open problem for the nonlinear prob-
lem (1)-(3). In this respect, we first prove existence and uniqueness of the
solutions of Eq. (1)-(3) and we also obtain sufficient conditions for the exis-
tence of oscillatory solutions. Finally, we give some examples to illustrate our
results.

2. Existence of solutions

Definition 1. It is said that a function z : Rt U{—1} — R is a solution of Eq.
(1)-(2) if it satisfies the following conditions:

(i) z(t) is continuous on R™ with the possible exception of the points [t] € [0, 00),
(#4) x(t) is right continuous and has left-hand limit at the points [¢] € [0, 00),
(#3i) 2(t) is differentiable and satisfies (1) for any ¢ € R*, with the possible
exception of the points [t] € [0,00) where one-sided derivatives exist,

(iv) x(n) satisfies (2) for n € N.

Theorem 1. The initial value problem (1)-(3) has a unique solution z(t) on
[0,00) U{—1}. Moreover, for n <t <n+1, n € N, z has the form

x (t) =exp f/a(s)ds
"’ : " (5)

% [ y(n) = y(n— 1) 7 (w(n) / exp / a(s)ds | du |,

n n
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where y(n) = x (n) and the sequence {y(n)},>_1 is the unique solution of the
difference equation

n+1
y(n+1) :ﬁexp (— / a(s) ds)

n+1 [
X {y(n) —yn—1)f(y(n)) / exp ( /a(s) ds) du] , m>0

with the initial conditions

y(—=1) = z_1,y(0) = x0. (7)

Proof. Let x, (t) = z(t) be a solution of (1)-(2) on n <t <n+1. Eq. (1)-(2)
is rewritten in the form

W) +at)zt)=—-zn—1)f(x(n), n<t<n+1. (8)

From (8), for n <t < n+ 1 we obtain

xy (t) =exp (—/ta(s) ds)

n

X [:E (n) —x(n—l)f(x(n))/texp ( /ua(s) ds) du] .

On the other hand, if x,,_1(t) is a solution of Eq.(1)-(2) on n — 1 <t < n, then
we get

Tn-1(t) = exp (— / a(s)ds) (10)

n—1

X [x(n—l)—x(n—2)f(x(n—l))/exp( /a(s)ds) du].

n—1 —1

(9)

Using the impulse conditions (2), from (9) and (10), we obtain the difference
equation

1 n+1
z(n+1) = mexp (/a(s)ds)

n

n+1 u
X [x(n) —x(n—1)f(z(n)) / exp ( /a(s) ds) du] .

n n
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Considering the initial conditions (7), the solution of Equation (6) can be ob-
tained uniquely. Thus, the unique solution of (1)-(3) is obtained as (5).

Theorem 2. The problem (1)-(3) has a unique backward continuation on
(=00, 0] given by (5)-(6) for n € Z~ U {0}.

3. Oscillatory solutions

Definition 2. A function z (¢) defined on [0,00) is called oscillatory if there
exist two real valued sequences {t, }n>0, {t, }n>0 C [0, 00) such that ¢, — 400,
t, — oo asn — +oo and x (t,) <0 < z (¢),) for n > N where N is sufficiently
large. Otherwise, the solution is called nonoscillatory.

Remark 1. According to Definition 2, a piecewise continuous function z :
[0,00) — R can be oscillatory even if x (t) # 0 for all ¢ € [0, 00) .

Definition 3. A solution {y,},~_; of Eq.(6) is said to be oscillatory if the
sequence {y,},~_; is neither eventually positive nor eventually negative. Oth-
erwise, the solution is called non-oscillatory.

Theorem 3. Let x (t) be the unique solution of the problem (1)-(3) on [0, c0) .
If the solution y(n), n > —1, of Eq. (6) with the initial conditions (7) is
oscillatory, then the solution x (¢) is also oscillatory.

Proof. Since z (t) = y (n) for t = n, the proof is clear.

Remark 2. We note that even if the solution y(n), n > —1, of the Eq. (6) with
the initial conditions (7) is nonoscillatory, the solution x(t) of (1)-(3) might be
oscillatory.

In the following theorem give a necessary and sufficient condition for the exis-
tence of nonoscillatory solution z(t), when the solution of difference equation
(6)-(7) is nonoscillatory.

Theorem 4. Let {y,},~_; be a nonoscillatory solution of Eq. (6) with the
initial conditions (7). Then the solution z(t) of the problem (1)-(3) is nonoscil-
latory iff there exist a N € N such that

t u

y(i(n)l)>f(y(n))/exp /a(s)ds du, n<t<n+1, n>N. (11)
Proof. Without loss of generality we may assume that y(n) = 2(n) > 0, y(n —
1) =x(n—1) > 0 for n > N. If z(¢) is nonoscillatory, then x(¢) > 0, t > T > N.
So condition (11) is obtained from (5) easily.

Now, let us assume that (11) is true. We should show that z(¢) is nonoscil-
latory. For contradiction, let z(t) be oscillatory. Therefore there exist se-
quences {ty}r>0, {t}}r>0 such that t, — +oo, tj — +o0o0 as k — +oo and
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z(ty) <0 <z (t),). Let n = [ti]. It is clear that ny — +oo as k — +00. So,
from (5) we get

x(ty) =exp | — [ a(s)ds
x| wnw) — y(nk — 1D Flylne) /exp / a(s)ds | du

Since y(ng) > 0, y(ng — 1) > 0 and z(tx) < 0 we obtain

tr u

< Fly(my)) / oxp / 0 (s)ds | du, ng < te <ng+1

Nk Nk

y(ng)
y(nk — 1)

which is a contradiction to (11).
If y(n) =2(n) <0, y(n —1) = x(n—1) <0 for n > N, then the proof is done
by similar method.

Theorem 5. Suppose that 1 —d,, > 0 for n € N and there exist a M > 0 such
that f(z) > M for z € (—o0,00) and

n+1 u
. 1
nl;rrgosup (1 —dy) / exp / a(s)ds | du > a (12)
n n—1

Then, all solutions of Eq. (6) are oscillatory.

Proof. We prove that the existence of eventually positive (or negative) solutions
leads to a contradiction. Let y(n) be a solution of Eq. (6). Assume that
y(n) >0, yin—1) >0, y(n —2) > 0 for n > N, where N is sufficiently large.
From (6)

n

(1—dp)y(n)exp / a(s)ds

-1

—yn=1) =y =27 -1) [ e [a)ds|du

n n

Since y(n —2) > 0 and f(y(n —1)) > 0, we have

n

(1 —d,)y(n)exp / a(s)ds | <y(n—1). (13)

n—1
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By using inequality (13) and Eq. (6), we obtain

n+1 u
y(n) 1—(1—dn)f(y(n))/exp /a(s)ds du
n n—1
n+1 u
> y0) =~ y(n = Df () [exp | [as)ds | au
n+1
=1 —dps1)y(n+1)exp /a(s)ds ) (14)

n

Since y(n) >0, y(n+1) >0, 1 —dp41 > 0 and f(z) > M, from (14), we get

n+1 u

1

> 1 _

i 7nll)ngosup (1 dn)/exp /a(s)ds du,
n n—1

which is a contradiction to (12). The proof is the same in case of existence of
an eventually negative solution.

Corollary 1. Under the hypotheses of Theorem 5, all solutions of (1)-(2) are
oscillatory.

Remark 3. If f(z) = b, b > 0 is a constant function, then we have a linear
equation in the form

{ a:’(tl—&-a t)z(t) + bx(t — 1)) =0, t #n, (15)

)—x(n”) =dpz(n), ne N={0,1,2,...},

which is a special case of (4). In this case, condition (12) reduces to the following

condition
n+1 u

lim sup (1—d,)b / exp /a(s) ds | du>1,
n— oo
n n—1

which is stated in [13] for b(t) = b > 0.

Now, consider following nonimpulsive equation
() +at)z @) +a(t—1) fz]t]) =0, (16)

where a : [0,00) = R, f:R — R are continuous functions.

Corollary 2. Assume that there exists a constant M > 0 such that f(z) > M.
If

n+1 u
. 1
nl;rr;osup /exp /a(s)ds du>M,
n n—1
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then all solutions of Eq. (16) are oscillatory.

Theorem 6. Assume that
f(x) > M >0, (17)

1-d,>K>0, n=0,1,2,.., (18)
and
n+1 n+1 u

1
< lim infexp / a(s)ds lim inf / exp(/ a(s)ds)du < co.  (19)

AKM  n—oo n—oo0

Then, all solutions of Eq. (6) are oscillatory.

Proof. Let y(n) be a solution of Eq. (6). Assume that y(n) >0, y(n —1) >0
for n > N, where N is sufficiently large. From Eq. (6), we have

n+1
(1 =dnt1)y(n + 1) exp / a(s)ds =y(n) —y(n—1)f(y(n))

n

n+1 u (20)
X /exp /a(s) ds | du.
Let w, = yz’rgf)l). Since w, > 0, we consider two cases:
Case 1. Let lim infw, = co. Then from (20), we have
n— oo

n+1 n+1 u
M
1> (1= dpt1)Wnt1 exp / a(s)ds + — / exp /a(s) ds | du. (21)
Wn

Taking the inferior limit on both sides of inequality (21), we get
n+1
1 > lim inf(1 —dy4q1) lim infwp4q lim infexp / a(s)ds
n—oo

- n—ooo n—o0
n

n+1 u
1
+M lim inf — lim inf [ exp /a(s) ds | du,

n— 00 Wy, N—00
n n

which is a contradiction to the lim infw, = oo. So, we consider the second
n— oo
case;

Case 2. Let 0 < lim infw, < co. Dividing Eq. (20) by y(n — 1), we have
n— oo

n+1
y(n) . B y(n+1) ox () ds
y(n—1) (1= dusr) ) oxp n/ (5)d
n+1 u
1) [ ew| [a)as|an
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which yields

n+1
Wy, >(1 — dpg1) W Wy 41 €XP / a(s)ds

n

n+1 u (22)

+M / exp /a(s)ds du.
n n
n+1
Let lim infw, =W, lim infexp [ a(s)ds= A,
n—oo n—oo n

u

n+1
lim inf [ exp([a(s)ds)du = B. Taking the inferior limit on both sides of
n—oo n n
inequality (22), we have

W > lim inf(1 — dpy1)W?A+ MB (23)
n—oo
Now, from (18), there are two subcases:
(i) It li_>m inf(1 — dy+1) = oo, then we obtain a contradiction from (23).

(i) If lim inf(1 — dy41) < oo, then from (23) we have
n—00

AKW? - W + MB <0,
or

KA <o,

o L 2 AMBKA -1
OKA 4K2A2

which contradicts to (19). So Eq. (6) cannot have an eventually positive solu-
tion. Similarly, existence of an eventually negative solution leads us a contra-
diction. Thus all solutions of (6) are oscillatory.

Corollary 3. Under the hypotheses of Theorem 6, all solutions of (1)-(2) are
oscillatory.

Corollary 4. Assume that f(x) > M > 0, and

1 n+1 n+1 u
L < nl;rigolnfexp / a(s)dsnlirgolnf / exp(/ a(s)ds)du < .

then all solutions of (16) are oscillatory.

Remark 4. If f(z) =b, b > 0 is a constant, and d,, = 0 for all n € N, then
Eq.(1)-(2) reduces to the linear nonimpulsive equation

z'(t) + a(t)z(t) + bz ([t — 1]) = 0, (24)
which is the same as Eq.(1) with b(t) = b in [7]. In this case, conditions (12)
and (19), respectively, correspond to conditions (2) and (8) in [7].
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Equation (24) is also special case of Eq.(1.1) in [9]. In this case, condi-
tion (19) reduces to condition (2.3) in [9] with b(¢t) = b. Moreover, if a(t) =
a (constant), then condition (19) reduces to the condition

ae”®

b> e oD

which is known as the best possible for the oscillation [7, 9].

Remark 5. In the case of f(z) = b, a(t) = a, d, = d, n € N, a,b,d are
constants, Theorem 9 in [13] can be applied to Eq. (1)-(2) to obtain existence
of periodic solutions.

Consider the following equation.

{ ' (t) + azx(t) + bz([t — 1]) = 0, ¢ # n,

2(n*) — 2(n~) = de(n), n € N = {0,1,2,..} . (25)

Corollary 5. Let 1—d > K > 0. A necessary and sufficient condition for every
oscillatory solution of Eq.(25) to be periodic with period k is

“(1—-d 2
ae’(1=d) =banda=—1In (2(1 —d) cos 7rm> ) (26)
er —1 k
where m and k are relatively prime and m =1,2,...,[(k — 1)/4].

4. Examples

In this section, we give some examples to illustrate our results.
Example 1. Let us consider the following differential equation

() +a(t)+ (@ [t] + Da ([t —1]) =0, t #n, (27)

Ao:(n)zeglx(n),neN, (28)

which is a special case of (1)-(2) with a(t) =1, f(z) = 2*+1, d, = <+, n € N.
Tt is easily checked that the Eq. (27)-(28) satisfies all hypotheses of Theorem 6.
Thus every solution of equation (27)-(28) is oscillatory. The solution z,,(t) of Eq.
(27)-(28) with the initial conditions z(—1) =0, z (0) = 0.001 forn =0,1,2,3,4
is demonstrated in Figure 1.

Example 2. Consider the equation

) +x@t)+x(t—1])=0, t#n, (29)

Az (n) = %x (n), neN, (30)

that is a special case of Eq. (1)-(2) with a(t) =1, f(z) =1 and d,, = %, eN
Since all hypotheses of Theorem 5 are satisfied, every solution of Eq.(29)-(30)
is oscillatory. Indeed, the solution x (¢) of Eq.(29)-(30) is in the form

T, () =e " yn) —y(n—1) (""" = 1)], n<t<n+1, (31)
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Figure 1: Oscillatory solutions of Eq. (27)-(28) with the initial conditions
2(=1) =0, x(0) = 0.001
where y(n) is the solution of the following linear difference equation

y(n+2) —2e ty(n+ 1)+ (2—2¢ y(n) =0, (32)

which has the complex characteristic roots

1
)\172 = *[1 :|:i\/ —1- 2€+262].
e

So, Eq. (32) has only oscillatory solutions. Hence from Corollary 1, Eq. (29)-
(30) has only oscillatory solutions too. The solution z,(t), n = 0,1,...11, of
(29)-(30) with the initial conditions (—1) = v/2e2 — 2e — 1/(2 — 2¢), 2(0) =0

is given in Figure 2.

X

A

=

Figure 2: Oscillatory solutions of Eq. (29)-(30) with the initial conditions
z(—1) =v2e2 —2e —1/(2—2¢), x(0) =0
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Example 3. Finally we consider the equation

In4
2’ (t) + (In2)z (¢) + z([t—1]) =0, t #n, 33
() + (In2)z (t) i1 ([t —=1J) 7# (33)
Vb —2
Az (n) = x(n), neN. 34
() = V2=t m) 3
Since a(t) = In2, f(x) = \}gfl and d,, = g:f, n € N, verify the hypotheses

of Theorem 5, all solutions of Eq. (33)-(34) are oscillatory. On the other hand,
Since Eq. (33)-(34) satisfies the hypotheses of Corollary 5, all solutions of (33)-
(34) are periodic with period 5. This fact can be seen in Figure 3.

AVARY

-1.0*-

X
101

Figure 3: Oscillatory solutions of Eq. (33)-(34) with the initial conditions

z(—1) = 10+ 2v/5/4, 2(0) = 0.
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