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Abstract

In this paper, we discuss the oscillatory behavior of the second-order forced
nonlinear dynamic equation

(

a(t)x∆(t)
)∆

+ p(t)f(xσ) = r(t),

on a time scale T when a(t) > 0. We establish some sufficient conditions which
ensure that every solution oscillates or satisfies lim inf t→∞ |x(t)| = 0. Our oscilla-
tion results when r(t) = 0 improve the oscillation results for dynamic equations
on time scales that has been established by Erbe and Peterson [Proc. Amer.
Math. Soc 132 (2004), 735-744], Bohner, Erbe and Peterson [J. Math. Anal.
Appl. 301 (2005), 491–507] since our results do not require

∫∞

t0
q(t)∆t > 0 and

∫ ±∞

±t0

du
f(u) < ∞. Also, as a special case when T = R, and r(t) = 0 our results

improve some oscillation results for differential equations. Some examples are
given to illustrate the main results.

Keywords. Oscillation, forced second-order nonlinear dynamic equation,
time scale, positive solution.
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1 Introduction

The theory of time scales, which has recently received a lot of attention, was intro-
duced by Stefan Hilger in his Ph. D. Thesis in 1988 in order to unify continuous and
discrete analysis, see [14]. A time scale T is an arbitrary closed subset of the reals,
and the cases when this time scale is equal to the reals or to the integers represent
the classical theories of differential and of difference equations. Many other inter-
esting time scales exist, and they give rise to many applications (see [6]). Not only
the new theory of the so-called ”dynamic equations” unify the theories of differential
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equations and difference equations, but also extends these classical cases to cases ” in
between”, e.g., to the so-called q−difference equations when T =qN0 = {qt : t ∈ N0 for
q > 1} and can be applied on different types of time scales like T =hZ, T = N

2 and
T = Tn the space of the harmonic numbers. A book on the subject of time scales by
Bohner and Peterson [6] summarizes and organizes much of the time scale calculus.
The reader is referred to [6, Chapter 1] for the necessary time scale definitions and
notation used throughout this paper.

In recent years, there has been increasing interest in obtaining sufficient con-
ditions for the oscillation/nonoscillation of solutions of different classes of dynamic
equations on time scales. The oscillation results not only unify the oscillation results
of differential and difference equations but also involve the oscillation conditions for
different types of equations on different time scales which the oscillation behavior of
the solutions is not known before. The problem of obtaining sufficient conditions for
oscillation of the nonlinear dynamic equation

(a(t)x∆)∆ + p(t)f(xσ) = 0, for t ∈ T, (1.1)

with a(t) > 0 and p(t) ≥ 0 has been studied by some authors, such as Saker [17],
Bohner and Saker[7], Erbe, Peterson and Saker [13] and Bohner, Erbe and Peterson
[5]. For oscillation of (1.1), when no explicit sign assumptions are made with respect
to the coefficients p(t), Erbe and Peterson [12] established some sufficient conditions
for oscillation when

lim inf
t→∞

∫ t

T

p(t)∆t > 0, (1.2)

for large T. One can see that (1.2) implies that either

∫ ∞

t0

p(t)∆t = ∞, (1.3)

or
∫ ∞

T

p(t)∆t = lim
t→∞

∫ t

T

p(s)∆s, (1.4)

exists and satisfies
∫∞
T

p(t)∆t ≥ 0 for large T. Also in [5], the authors established
some sufficient conditions for oscillation of Eq.(1.1) when f(u) is superlinear, i.e,
when

∫∞
t0

du
f(u) < ∞.

For qualitative behavior of solutions of forced nonlinear dynamic equations on
time scales, the author in [19] considered the equation

x∆∆(t) + pσf(x(t)) = r(t), t ∈ T,

where pσ(t) and r(t) are real-valued rd−continuous positive functions defined on the
time scale T and established some sufficient conditions for boundedness and contin-
uation. For oscillation of different dynamic equations on time scales, we refer the
reader to the papers [1-5, 8-11, 18, 20, 21].
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In this paper, we are concerned with the oscillatory behavior of the forced non-
linear dynamic equation

(a(t)x∆)∆ + p(t)f(xσ) = r(t), for t ∈ [t0,∞)T, (1.5)

where T is a time scale, a(t) > 0, p(t) and r(t) are real-valued rd−continuous function
defined on the time scale T. Since we are interested in the oscillatory and asymptotic
behavior of solutions near infinity, we assume that supT = ∞, and define the time
scale interval [t0,∞)T by [t0,∞)T := [t0,∞) ∩ T. Our attention is restricted to those
solutions x(t) of (1.5) which exist on some half line [tx,∞) and satisfy sup{|x(t)| :
t > t0} > 0 for any t0 ≥ tx.

We note that, if T = R, then σ(t) = t, µ(t) = 0, x∆(t) = x
′

(t) and (1.5) becomes
the second-order nonlinear differential equation

(a(t)x
′

(t))
′

+ p(t)f(x(t)) = r(t). (1.6)

If T = Z, then σ(t) = t + 1, µ(t) = 1, x∆(t) = ∆x(t) = x(t + 1) − x(t),
∫ b

a
f(t)∆t =

∑b−1
i=a f(i) and (1.5) becomes the second order nonlinear difference equation

∆(a(t)∆x(t)) + p(t)f(x(t + 1)) = r(t). (1.7)

If T =hZ, for h > 0, then σ(t) = t+h, µ(t) = h, x∆(t) = ∆hx(t) = x(t+h)−x(t)
h

,
∫ b

a
f(t)∆t =

∑

b−a−h

h

k=0 f(a + kh)h and (1.5) becomes the generalized difference equation

∆h(a(t)∆hx(t)) + p(t)f(x(t + h)) = r(t). (1.8)

If T=qN = {qk, k ∈ N, q > 1}, then σ(t) = qt, µ(t) = (q − 1)t, x∆(t) = ∆qx(t) =
x(qt)−x(t)

(q−1)t ,
∫∞
a

f(t)∆t =
∑∞

k=0 µ(qk)f(qk) and (1.5) becomes the q−difference equation

∆q(a(t)∆qx(t)) + p(t)f(x(qt)) = r(t). (1.9)

If T = N
2
0 = {t2 : t ∈ N0}, then σ(t) = (

√
t + 1)2, µ(t) = 1 + 2

√
t, x∆(t) = ∆Nx(t) =

x((
√

t+1)2)−x(t)

1+2
√

t
, and (1.5) becomes the difference equation

∆N (a(t)∆Nx(t)) + p(t)f(x(
√

t + 1)2) = r(t). (1.10)

If T = Tn = {Hn : n ∈ N0} where {Hn} is the set of the harmonic numbers defined
by

H0 = 0, Hn =

n
∑

k=1

1

k
, n ∈ N0,

then σ(Hn) = Hn+1, µ(Hn) = 1
n+1 , x∆(t) = x∆(Hn) = ∆Hn

x(Hn) = (n + 1)x(Hn),
and (1.5) becomes the difference equation

∆Hn
(a(Hn)∆Hn

x(Hn)) + p(Hn)f(x(Hn+1)) = r(t). (1.11)
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In this paper, we follow the technique that has been used by Kwong and Wong
[15] for differential equations and establish some sufficient conditions which ensure
that every solution of (1.5) oscillates or satisfies lim inf t→∞ |x(t)| = 0. Our results
do not assume that p(t) and r(t) be of definite sign (it possible that the function
p(t) is oscillatory). When r(t) = 0, our results improve the oscillation results that
has been established by Erbe and Peterson [12] and Bohner, Erbe and Peterson
[5] for the equation (1.1), since our results do not require the condition (1.2) and
∫ ±∞
±t0

du
f(u) < ∞. As a special case when T = R, a(t) = 1, and r(t) = 0 our results

improve the oscillation results that has been established for the differential equation

x
′′

(t) + p(t)f(x(t)) = 0,

by Kwong and Wong [15] and Li [16], since our results do not require that
∫ ±∞
±t0

du
f(u) <

∞. To the best of our knowledge this approach for investigation the asymptotic
behavior of Eq.(1.5) on time scales has not been studied before. We note that our
results cover the oscillation behavior of the equations (1.6)-(1.11) and also can be
extended on different types of time scales. The paper is ended by some examples to
illustrate the main oscillation results.

2 Main Results

In this Section, we study the oscillation and nonoscillation of Eq.(1.5). Before stating
our main results we need the following lemmas.

Lemma 2.1 [6]. Assume that g : T → R is delta differentiable on T . As-
sume that f : R → R is continuously differentiable. Then f ◦ g : T → R is delta
differentiable and satisfies

(f ◦ g)∆(t) =







1
∫

0

f
′

(g(t) + hµ(t)g∆(t))dh







g∆(t). (2.1)

Lemma 2.2. Let g(t, s, z) be real-valued function of t and s in [T,C] and z in
[T1, C1] such that, for each fixed t = t0 and s = s0, g(t0, s0, z) is a nondecreasing
function of z. Let G(t) be a differentiable function on [T,C], let u and v be functions
on [T,C] such that u(t) and v(t) are in [T1, C1] for all t in [T,C]; let g(t, s, u(s))
and g(t, s, v(s)) be are rd-continuous functions in s for fixed t; and for all t in [T,C]
let

v(t) = G(t) +

t
∫

T

g(t, s, v(s))∆s, (2.2)

and

u(t) ≥ G(t) +

t
∫

T

g(t, s, u(s))∆s, (2.3)

then u(t) ≥ v(t) for all t in [T,C].
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Proof. For t = T , the result is obvious. Assume that there exits T1 ∈ [T,C],
such that u(T1) = v(T1) and v(t) < u(t) for t ∈ [T, T1]. Since g(t, s, z) is monotone
nondecreasing in z for fixed t and s, it follows that g(T1, s, v(s)) ≤ g(T1, s, u(s)). Then
from (2.2), we have

v(T1) = G(T1) +

T1
∫

T

g(T1, s, v(s))∆s ≤ G(T1) +

T1
∫

T

g(T1, s, u(s))∆s = u(T1). (2.4)

This is a contradiction to the fact that u(T1) = v(T1). Hence u(t) ≥ v(t) for all t in
[T,C]. The proof is complete.

Throughout the following, we will assume that: a, p, r : T→ R are rd-continuous
functions, and f : R→ R is continuously differentiable such that a(t) > 0 and

uf(u) > 0 and f
′

(u) ≥ k > 0 for u 6= 0, (2.5)

Theorem 2.1. Assume that (2.5) holds. Let x(t) be a positive (negative) solution
of (1.5) on [T1, C) for some positive T1 satisfying t0 ≤ T1 < C ≤ ∞, and define w(t)
by the Riccati substitution

w(t) =
a(t)x∆

f(x(t))
. (2.6)

If there exists a T in [T1, C) and a positive constant A1 such that

−w(T1) +

t
∫

T1

[p(s) − r(s)/(f ◦ xσ)(s)]∆s +

T
∫

T1

[

Q(x(s))w2(s)/a(s)
]

∆s ≥ A1, (2.7)

for all t in [T,C], then a(t)x∆(t) ≤ −A1f(x(T )) ( a(t)x∆(t) ≥ −A1f(x(T ))) for all
t ∈ [T,C).

Proof. Let x(t) be a solution of (1.5) satisfying the hypotheses of the theorem.
From (1.5) and the definition of w(t), we have

w∆(t) + Q(x(t))
w2(t)

a(t)
= r(t)/(f ◦ xσ)(t) − p(t), (2.8)

where

Q(x) :=
f(x)

(f ◦ xσ)







1
∫

0

f
′

(x(t) + hµ(t)x∆(t))dh







> 0.

Integrating (2.8) form T1 to t (T1 ≤ t ≤ C), we get

w(t) − w(T1) +

t
∫

T1

[

Q(x(s))w2(s)/a(s)
]

∆s =

t
∫

T1

[r(s)/(f ◦ xσ)(s) − p(s)]∆s.
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This implies after applying (2.7) that

−w(t) ≥ A1 +

t
∫

T

[

Q(x(s))w2(s)/a(s)
]

∆s > 0, for T ≤ t < C. (2.9)

Since a(t) > 0, we see that w(t) < 0 and

x(t)x∆(t) < 0 on [T,C).

Suppose that x(t) > 0 and let u(t) = −a(t)x∆(t). Then u(t) > 0 and (2.9) becomes

u(t) ≥ A1f(x(t)) +

t
∫

T

[

f(x(t))Q(x(s))[−x∆(s)]u(s)/f 2(x(s))
]

∆s. (2.10)

Define
g(t, s, z) =

[

f(x(t))Q(x(s))[−x∆(s)]z/f 2(x(s))
]

,

for t and s in [T,C) and z in [0,∞). It is clear that the function g is nondecreasing
in the variable z. Letting G(t) = A1f(x(t)) and applying Lemma 2.2, we have u(t) ≥
v(t), where v(t) satisfies the integral equation

v(t) = A1f(x(t)) +

t
∫

T

[

f(x(t))Q(x(s))[−x∆(s)]v(s)/f 2(x(s))
]

∆s. (2.11)

Multiplying (2.11) by 1/f(x(t)) and differentiating with respect to t, we obtain

[

v(t)

f(x(t))

]∆

=



A1 +

t
∫

T

[

Q(x(s))[−x∆(s)]v(s)/f 2(x(s))
]

∆s





∆

=
−Q(x(t))x∆(t)v(t)

f2(x(t))
.

On the other hand, by using Lemma 2.1, we have

[

v(t)

f(x(t))

]∆

=
f(x(t))v∆(t) − v(t) (f(x(t)))∆

f(x(t))f(xσ)

=
v∆(t)

f(xσ)
−

v(t)

{

1
∫

0

f
′

(x(t) + hµ(t)x∆(t))dh

}

x∆(t)

f(x(t))f(xσ)

=
v∆(t)

f(xσ)
− Q(x(t))[x∆(t)]v(t)

f2(x(t))
.

Then, we have
v∆(t)

f(xσ)
= 0.
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This implies that v∆(t) = 0, so that v(t) = v(T ) = A1f(x(T )) > 0 for all t in [T,C).
Now, since u(t) ≥ v(t), we have

a(t)x∆(t) ≤ −A1f(x(T )), for T ≤ t < C.

The proof for the case when x(t) is negative follows from a similar argument as
above by taking u(t) = a(t)x∆(t) and G(t) = −A1f(x(t)) to prove that a(t)x∆(t) ≥
−A1f(x(T )). The proof is complete.

Remark 2.1. From Theorem 2.1, we saw that x∆(t) < 0 for positive solution
x(t), this implies that f(x(t))/(f ◦ xσ) ≥ 1, so that

Q(x) =
f(x)

f(xσ)







1
∫

0

f
′

(x + hµ(t)x∆)dh







≥ L,

for some L ≥ k > 0.

Theorem 2.2. Assume that (2.5) holds, and

∞
∫

t0

p(s)∆s < ∞, (2.12)

∞
∫

t0

|r(s)|∆s < ∞, (2.13)

∞
∫

t0

1

a(t)
∆t = ∞. (2.14)

If x(t) is a solution of Eq.(1.5) such that lim inf t→∞ |x(t)| > 0, then

L

∞
∫

T

[

w2(s)/a(s)
]

∆s ≤
∞
∫

T

[

Q(x(s))w2(s)/a(s)
]

∆s < ∞, (2.15)

lim
t→∞

w(t) = 0, (2.16)

and

w(t) =

∞
∫

t

[Q(x(s))w2(s)/a(s)]∆s +

∞
∫

t

[p(s) − r(s)/(f ◦ xσ)(s)]∆s, (2.17)

for all sufficiently large t.
Proof. Let x(t) be a solution of (1.5) such that limt→∞ |x(t)| > 0. Then there

exist A2 > 0, m > 0 and t1 > t0 such that |x(t)| ≥ m and |f(x(t))| ≥ A2 for t ≥ t1.
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This, together with (2.13), since
∞
∫

t0

|r(s)|∆s < ∞, implies that there exists a positive

constant A3 such that
∣

∣

∣

∣

∣

∣

t
∫

t1

[r(s)/(f ◦ xσ)(s)]∆s

∣

∣

∣

∣

∣

∣

≤ 1

A2

t
∫

t1

|r(s)|∆s ≤ A3 for all t ≥ t1, (2.18)

where A3 is a positive constant. If (2.15) does not hold, then there exists t2 > t1 such

that
t2
∫

t1

[Q(x(s))w2(s)/a(s)]∆s > 0 and then it follows from (2.12), since
∞
∫

t0

p(s)∆s <

∞, that there exist A1 > 0 and t2 > t1 such that (2.7) holds for t ≥ t2. For the case
when x(t) > 0 on [t2,∞) it follows from Theorem 2.1 and its proof that x∆(t) < 0
and a(t)x∆(t) ≤ −A1f(x(t2)) for t ≥ t2. Therefore from (2.14), we have

x(t) ≤ x(t2) − A1f(x(t2))

∫ t

t1

1

a(s)
∆s → −∞ as t → ∞,

which contradicts the fact that x(t) > 0 on [t2,∞). The proof when x(t) < 0 on
[t2,∞) is similar and will be omitted. This completes the proof of (2.15). Next, we
prove (2.16) and (2.17) hold. From Theorem 2.1, since

w∆(t) + Q(x(t))
w2(t)

a(t)
= r(t)/(f ◦ xσ)(t) − p(t),

we have after integration from t to z (for t > z) that

w(z) +

z
∫

t

[Q(x(s))w2(s)/a(s)]∆s = w(t) +

z
∫

t

[r(s)/(f ◦ xσ)(s) − p(s)]∆s. (2.19)

This together with (2.12), (2.15) and (2.18), implies that limz→∞ w(z) exists. Then
from (2.19), we have

w(t) = lim
z→∞

w(z)+

∞
∫

t

[Q(x(s))w2(s)/a(s)]∆s+

∞
∫

t

[p(s)−r(s)/(f◦xσ)(s)]∆s, for t ≥ t1.

(2.20)
To prove that (2.16) and (2.17) hold it suffices to prove that limz→∞ w(z) = 0. First
suppose that x(t) > 0 on [t1,∞), so that by Theorem 2.1, we have x(t)x∆(t) < 0
and (2.9) holds. If not assume that limt→∞ w(z) = A4 exists. If A4 > 0, we see that

w(t) = a(t)x∆

f(x(t)) ≥ A4/2 for t ≥ T2 > t1 which implies that x∆(t) > 0 for t ≥ T2 and

this is a contradiction since x(t)x∆(t) < 0. If A4 < 0, then (2.12), (2.15) and (2.18)
imply that there exists a T1 > t1 so large such that

∣

∣

∣

∣

∞
∫

t

p(s)∆s

∣

∣

∣

∣

≤ −A4/6,

∣

∣

∣

∣

∞
∫

t

[r(s)/(f ◦ xσ)(s)]∆s

∣

∣

∣

∣

≤ −A4/6,

∞
∫

t1

[Q(x(s))w2(s)/a(s)]∆s ≤ −A4/6.















(2.21)
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Letting t = t0 in (2.20), we have

w(t0) = A4 +

∞
∫

t0

[Q(x(s))w2(s)/a(s)]∆s +

∞
∫

t0

[p(s) − r(s)/(f ◦ xσ)(s)]∆s. (2.22)

Using (2.21) and (2.22) and the fact that Q(x(s)) > 0, we have

−w(t0) +

t1
∫

t0

[Q(x(s))w2(s)/a(s)]∆s +

t
∫

t0

[p(s) − r(s)/(f ◦ xσ)(s)]∆s

= −A4 −
∞
∫

t1

[Q(x(s))w2(s)/a(s)]∆s −
∞
∫

t

[p(s) − r(s)/(f ◦ xσ)(s)]∆s

> −A4 +
A4

6
+

A4

6
+

A4

6
= −A4

2
:= A1 > 0.

Thus the condition (2.7) of Theorem 2.1 is satisfied. Then by applying Theorem 2.1,
we obtain

a(t)x∆(t) ≤ −A1f(x(T )).

Then integrating the last inequality leads to a contradiction with the positive nature
of x(t). Thus A4 = 0 and this proved (2.16). The proof when x(t) < 0 is similar and
will be omitted.

As consequence from Theorem 2.2, we have the following property of the nonoscil-
latory solutions of Eq.(1.5).

Corollary 2.1. Assume that (2.5), (2.12)-(2.14) hold. If x(t) is a nonoscillatory
solution (1.5), then

lim
t→∞

a(t)x∆(t)

f(x(t))
= 0,

holds.
We note that if (2.12) and (2.13) hold then the function

h0(t) =

∞
∫

t

[p(s) − γ |r(s)|]∆s/
√

a(t),

is well defined on [t0,∞)T for every positive constant γ and for any arbitrary function
g we define (g(t))+ = 1

2(g(t) + |g(t)|).

Theorem 2.3. Assume that (2.5), (2.12)-(2.14) hold. Then either

∫ ∞

t

[(h0(t))+]2∆t = ∞, (2.23)
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or
∫ ∞

t

([

h0(s) + L

∫ ∞

s

(h0(u))2 ∆u/
√

a(s)

]

+

)

∆s = ∞, (2.24)

implies that every solution x(t) of (1.5) oscillates or satisfies lim inf t→∞ |x(t)| = 0.
Proof. Assume to the contrary that Eq.(1.5) has a nonoscillatory solution x(t).

Without loss of generality, we assume that x(t) > 0 such that lim inf t→∞ x(t) > 0. It
then follows from (2.5), there exist K > 0, m > 0 and t1 > t0 such that x(t) ≥ m
and f(xσ) > 0 for t ≥ t1. Since the hypothesis of Theorem 2.2 hold, we have from
(2.17) that

w(t) ≥ L

∞
∫

t

[w2(s)/a(s)]∆s + h0(t)
√

a(t) ≥ h0(t)
√

a(t), (2.25)

for t ≥ t1 and some constant L > 0. Then, we have by (2.23) that

∫ ∞

t

w2(s)/a(s)∆t ≥
∫ ∞

t

[h0(t)]
2∆t = ∞,

which contradicts (2.15). Now, suppose that (2.24) holds. From (2.25), and the last
inequality, we have

w(t) ≥ L

∞
∫

t

[h0(s)]
2∆s + h0(t)

√

a(t),

so that

w(t)/
√

a(t) ≥ h0(t) + L

∫ ∞

t

[h0(s)]
2/
√

a(t)∆s.

Using the fact that w2(t) ≥ w(t), (noting that w(t) < 0 since x(t) > 0), we have

w2(t)/a(t) ≥ [h0(t) + L

∫ ∞

t

[h0(s)]
2/
√

a(t)∆s].

Integrating the last inequality, we get a contradiction with (2.15). The proof is
complete.

Define

h1(t) =

∞
∫

t

[h0(s)+]2∆s and hn+1(t) =

∞
∫

t

([h0(s) + Lhn(s)/
√

a(t)]+)2∆s,

for n = 1, 2, 3, ... .

Theorem 2.4. Assume that (2.5), (2.12)-(2.14) hold. If there exists a positive
integer N such that

hn exists for n = 0, 1, 2, 3, ..., N − 1and hN does not exist, (2.27)
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then every solution x(t) of (1.5) oscillates or satisfies lim inf t→∞ |x(t)| = 0.
Proof. Assume to the contrary that Eq.(1.5) has a nonoscillatory solution x(t)

and proceed as in the proof of Theorem 2.3 to get (2.25). From (2.25) we have

w(t) ≥ L

∞
∫

t

[w2(s)/a(s)]∆s + h0(t)
√

a(t), (2.28)

for t ≥ t1 and some constant L > 0. From (2.15), we have

∞
∫

t1

[w2(s)/a(s)]∆s < ∞. (2.29)

As in the proof of Theorem 2.3, we have

w2(t)/a(t) ≥ [h0(t)+]2. (2.30)

If N = 1, then (2.29) and (2.30) imply that

h1(t) =

∞
∫

t

[h0(s)+]2∆s < ∞,

which contradicts the nonexistence of hN (t) = h1(t). If N = 2, then from (2.28) and
(2.30), we get

w(t) ≥ L

∞
∫

t

[h0(s)+]2∆s + h0(t)
√

a(t) = h0(t)
√

a(t) + Lh1(t),

so
w(t)/

√

a(t) ≥ h0(t) + Lh1(t)/
√

a(t),

and this implies that

w2(t)/a(t) ≥ ([h0(t) + Lh1(t)/
√

a(t)]+)2.

Then in view of (2.27) and (2.29), an integration of the last inequality leads to a con-
tradiction of the nonexistence of hN = h2. A similar arguments lead to a contradiction
for any N > 2. The proof is complete.

In the following theorems, we establish some sufficient conditions for oscillation
of (1.1). We start with the following theorem.

Theorem 2.5. Assume that (2.5) holds, and

∞
∫

t0

p(s)∆s < ∞, (2.31)
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∞
∫

t0

1

a(t)
∆t = ∞. (2.32)

If x(t) is a solution of Eq.(1.1) such that lim inf t→∞ |x(t)| > 0, then

∞
∫

T

[

Q(x(s))w2(s)/a(s)
]

∆s < ∞, (2.33)

lim
t→∞

w(t) = 0, (2.34)

and

w(t) =

∞
∫

t

[Q(x(s))w2(s)/a(s)]∆s +

∞
∫

t

p(s)∆s, (2.35)

for all sufficiently large t.
Proof. Assume to the contrary that Eq.(1.1) has a nonoscillatory solution x(t)

such that lim inf t→∞ x(t) > 0. Without loss of generality, we assume there exits
t1 ≥ t0 be such that x(t) > 0 and f(x) > 0 for t ≥ t1. (the proof when x(t) is
negative is similar since xf(x) > 0 for all x 6= 0). From Theorem 2.1, since r(t) ≡ 0,
we have from (2.7) that

−w(T1) +

t
∫

T1

p(s)∆s +

T
∫

T1

[Q(x(s))w2(s)/
√

a(s)]∆s ≥ A1.

Proceeding as in Theorem 2.2, we see that w(t) → 0 as t → ∞, and (2.35) holds.
The proof is complete.

Remark 2.2. The same arguments lead to the following conclusion for Eq.(1.1)
under the weaker condition on the function p(t). Suppose that the assumptions on
the function f be as defined above are satisfied and

∫ t

t0
p(s)∆s is bonded below. If

(1.1) has a nonoscillatory solution x(t), then

w(t) = β −
t
∫

t0

p(s)∆s +

∞
∫

t

[Q(x(s))w2(s)/a(s)]∆s,

is satisfied for some constant β such that

lim
t→∞

inf

t
∫

t0

p(s)∆s ≤ β ≤ lim
t→∞

sup

t
∫

t0

p(s)∆s.

From Theorems 2.3 and 2.4, we have the following oscillation results for Eq.(1.1).
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Theorem 2.6. Assume that (2.5), (2.31) and (2.33) hold. Then either

∫ ∞

t

[(h∗
0(t))+]2∆t = ∞, where h∗

0(t) =

∞
∫

t

p(s)∆s/
√

a(t),

or
∫ ∞

t

([

h∗
0(s) + L

∫ ∞

t

(

h∗
0(s)/

√

a(t)
)2
]

+

)

∆s = ∞,

implies that every solution x(t) of (1.1) oscillates or satisfies lim inf t→∞ |x(t)| = 0.
Define

h∗
1(t) =

∞
∫

t

[h∗
0(s)+]2∆s and h∗

n+1(t) =

∞
∫

t

([h∗
0(s) + Lh∗

n(s)/
√

a(t)]+)2∆s,

for n = 1, 2, 3, ..., where L is a positive constant.

Theorem 2.7. Assume that (2.5), (2.31) and (2.33) hold. If there exists a posi-
tive integer N such that

h∗
n exists for n = 0, 1, 2, 3, ..., N − 1 and hN does not exist.

Then every solution x(t) of (1.1) oscillates or satisfies lim inf t→∞ |x(t)| = 0.

Remark 2.3. We note that our results in Theorem 2.5 and 2.6 improve the
results that has been established for Eq.(1.1) by Saker [16], Bohner and Saker [7],
Erbe, Peterson and Saker [13] since our results do not require that condition p(t) > 0.
The results also improve the results that has been established by Erbe and Peterson
[12], since our results do not require the condition (1.2) and improve the results that
has been established by Bohner, Erbe and Peterson [5, Theorem 3.3], since our results
do not require that the condition

∫ ±∞
±t0

du
f(u) < ∞.

In the case when T = R, we note that Theorem 2.5 improve the results that has
been established by Li [16, Theorem 3.1] and when a(t) = 1, Theorem 2.5 improve
the results by Kwong and Wong [15, Theorem 3] for differential equations, where our
results do not require that the condition

∫ ±∞
±t0

du
f(u) < ∞ to be satisfied.

3 Examples

In this Section, we give some examples which demonstrate how the theory of previous
section may be applied to specific problems.

Example 3.1. Consider the second-order nonlinear forced dynamic equation

x∆∆(t) +
1

tσ(t)
xσ(1 + (xσ)2) =

1

tσ(t)
, for t ∈ [t0,∞)T. (3.1)
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Here p(t) = r(t) = 1
tσ(t) and f(u) = u(1 + u2). It is easy to see that f(u) satisfies

(2.5) with k = 1, and

∫ ∞

t0

p(t)∆t =

∫ ∞

t0

|r(t)|∆t =

∫ ∞

t0

1

tσ(t)
∆t =

∫ ∞

t0

(

−1

t

)∆

∆t = 1/t0 < ∞.

On the other hand,

h0(t) =

∫ ∞

t

(p(s) − γr(s))∆s =
(1 − γ)

t
> 0, for each 0 < γ < 1, t ≥ t0 > 0,

h1(t) =

∫ ∞

t

[h0(s)]
2 ∆s = (1 − γ)

∫ ∞

t

1

s2
∆s < ∞, for each 0 < γ < 1,

and by putting L = 1, we have

∫ ∞

t

[h0(s) + h1(s)]∆s =

∫ ∞

t

[

(1 − γ)

s
+ (1 − γ)2

(
∫ ∞

s

1

u2
∆u

)2
]

∆s

≥
∫ ∞

t

[

(1 − γ)

s
+ (1 − γ)2

(
∫ ∞

s

1

uσ(u)
∆u

)2
]

∆s

=

∫ ∞

t





(1 − γ)

s
+ (1 − γ)2

(

∫ ∞

s

(

1

u

)∆

∆u

)2


∆s

=

∫ ∞

t

[

(1 − γ)

s
+ (1 − γ)2

1

s2

]

∆s = ∞.

Hence, it follows from Theorem 2.3 that every solution x(t) of Eq.(3.1) is either
oscillates or satisfies lim inf t→∞ |x(t)| = 0.

Example 3.2. Consider the second-order nonlinear forced dynamic equation

x∆∆(t) +
1

tσ(t)
xσ(1 + (xσ)2) = − 1

tσ(t)
, for t ∈ [t0,∞)T. (3.2)

Here p(t) = 1
tσ(t) , r(t) = − 1

tσ(t) and f(u) = u(1 + u2). It is easy to see as above that

f(u) satisfies the conditions of Theorem 2.3,

∫ ∞

t0

p(t)∆t =

∫ ∞

t0

|r(t)|∆t =

∫ ∞

t0

1

tσ(t)
∆t =

∫ ∞

t0

(

−1

t

)∆

∆t = 1/t0 < ∞.

On the other hand,

h0(t) =

∫ ∞

t

(p(s) − r(s))∆s =
2

t
> 0,

∫ ∞

t

[h0(s)]
2 ∆s =

∫ ∞

t

4

s2
∆s < ∞, for t ≥ t0.
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and by putting L = 1, we have

∫ ∞

t

[h0(s) + Lh1(s)] ∆s =

∫ ∞

t

[

2

s
+ 16

(
∫ ∞

s

1

u2
∆u

)2
]

∆s

≥
∫ ∞

t

[

2

s
+ 16

(
∫ ∞

s

1

uσ(u)

)2

∆u

]

∆s

=

∫ ∞

t





2

s
+ 16

(

∫ ∞

s

(

1

u

)∆

∆u

)2


∆s

=

∫ ∞

t

[

2

s
+

16

s2

]

∆s = ∞.

Hence, it follows from Theorem 2.3 that every solution x(t) of Eq.(3.2) is either
oscillates or satisfies lim inf t→∞ |x(t)| = 0.

Example 3.3. Consider the second-order nonlinear forced dynamic equation

x∆∆(t) +
1

tσ(t)
xσ(1 + (xσ)

1

3 ) =
1

tσ(t)
, for t ∈ [t0,∞)T. (3.3)

Here p(t) = 1
tσ(t) , r(t) = 1

tσ(t) and f(u) = u(1+u
1

3 ). By Theorem 2.3, we can easily see

that every solution x(t) of Eq.(3.3) is either oscillates or satisfies lim inf t→∞ |x(t)| = 0.

Note that the results that has been established by Bohner, Erbe and Peterson [5,
Theorem 3.3] can not be applied for Eq.(3.3), since the condition

∫ ±∞
±t0

du
f(u) < ∞ is

not satisfied. Also a special case when T = R, the results by Kwong and Wong [15]
and Li [16] can not be applied for the equation

x
′′

(t) +
1

t2
x(1 + (x)

1

3 ) =
1

t2
, for t > 0,

since
∫ ∞ du

u(1 + u
1

3 )
= ∞.
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