Existence of Solutions for Nonconvex Third Order Differential Inclusions.

Britney Hopkins
Department of Mathematics and Statistics
University of Arkansas at Little Rock
2801 S. University
Little Rock, AR 72204
bjhopkins1@ualr.edu

Abstract

This paper proves the existence of solutions for a third order initial value nonconvex differential inclusion. We start with an upper semicontinuous compact valued multifunction F which is contained in a lower semicontinuous convex function ∂V and show that,

$$x^{(3)}(t) \in F(x(t), x'(t), x''(t)), \ x(0) = x_0, \ x'(0) = y_0, \ x''(0) = z_0.$$

Keywords: Nonconvex Differential Inclusions **AMS Subject Classification:** 34G20, 47H20

1 Introduction

The origins of boundary and initial value problems for differential inclusions are in the theory of differential equations and serve as models for a variety of applications including control theory. Existence results for the second order differential inclusion,

$$x'' \in F(x, x'), x(0) = x_0, x'(0) = y_0,$$

have been obtained by many authors (see [4], [5] and the references therein). In [5], Lupulescu showed existence for the problem

$$x'' \in F(x, x') + f(t, x, x'), \ x(0) = x_0, \ x'(0) = y_0$$

for the case in which F is an upper semicontinuous compact valued multifunction such the $F(x,y) \subset \partial V(y)$ and f is a Carathéodory function.

In this paper, we prove an existence result for the third order differential inclusion,

$$x^{(3)}(t) \in F(x(t), x'(t), x''(t)), \ x(0) = x_0, \ x'(0) = y_0, \ x''(0) = z_0,$$

where F is an upper semicontinuous compact valued multifunction and $F(x, y, z) \subset \partial V(z)$ for some proper lower semicontinuous convex function V. Expounding upon the methods used to establish existence by Lupulescu in [4] and [5], we define a sequence of approximate solutions on a given interval and show that the sequence converges to an actual solution.

2 Preliminaries

Let \mathbb{R}^m be an m dimensional Euclidean space with an inner product $\langle \cdot, \cdot \rangle$ and norm $\| \cdot \|$.

Let $x \in \mathbb{R}^m$ and r > 0. The open ball centered at x with radius r is defined by

$$B_r(x) = \{ y \in \mathbb{R}^m : ||x - y|| < r \},$$

where $\overline{B}_r(x)$ denotes its closure.

For the proper lower semicontinuous convex function $V: \mathbb{R}^m \to \mathbb{R}$, the multifunction $\partial V: \mathbb{R}^m \to 2^{\mathbb{R}^m}$ defined by

$$\partial V(x) = \left\{ \gamma \in R^m : V(y) - V(x) \ge \langle \gamma, y - x \rangle, \forall y \in \mathbb{R}^m \right\},\,$$

is the subdifferential of V.

Let $L^{2}[a,b]$ be a Hilbert space with the inner product defined by

$$\langle x, y \rangle = \int_{a}^{b} x(t) \overline{y(t)} dt,$$

where $\overline{y(t)}$ denotes the complex conjugate of y(t), and the norm is defined as

$$||x|| = \sqrt{\int_a^b |x(t)|^2 dt}.$$

Let $\overline{co}F(x,y,z)$ denote the closed convex hull of F and $x_n \rightrightarrows x$ denote that x_n converges uniformly to x.

We need the following theorems from Aubin and Cellina [1].

Theorem 0.3.4 Consider a sequence of absolutely continuous functions $x_k(\cdot)$ from an interval I to a Banach Space X satisfying

- (i) for every $t \in I$, $x_k(t)_k$ is a relatively compact subset of X;
- (ii) there exists a positive function $c(\cdot) \in L^2(I)$ such that, for almost all $t \in I$, $||x'_k(t)|| \le c(t)$.

Then there exists a subsequence, again denoted by $x_k(\cdot)$, converging to an absolutely continuous function $x(\cdot)$ from I to X in the sense that

- (i) $x_k(\cdot)$ converges uniformly to $x(\cdot)$ over compact subsets of I;
- (ii) $x'_k(\cdot)$ converges weakly to $x'_k(\cdot)$ in $L^2(I,X)$.

Theorem 1.1.4 (the Convergence Theorem) Let F be a proper hemicontinuous map from a Hausdorff locally convex space X to the closed convex subsets of a Banach Space Y. Let I be an interval of $\mathbb R$ and $x_k(\cdot)$ and $y_k(\cdot)$ be measurable functions from I to Y respectively satisfying for almost all t in I and for every neighborhood \aleph of 0 in $X \times Y$, there exists a $k_0 = k_0(t, \aleph)$ such that for every $k_0 \leq k$, $(x_k(t), y_k(t)) \in graph(F) + \aleph$. If,

- (i) $x_k(\cdot)$ converges almost everywhere to a function $x(\cdot)$ from I to X;
- (ii) $y_k(\cdot)$ belongs to $L^2(I,Y)$ and converges weakly to $y(\cdot)$ in $L^2(I,Y)$,

then, for almost all $t \in I$,

$$(x(t), y(t)) \in graph(F) \ i.e.y(t) \in F(x(t)).$$

We also need the following lemma from Brezis [2].

Lemma 3.3 Let $u \in D(V)$ almost everywhere on [0,T] and suppose $g \in L^2([0,T],\mathbb{R})$ such that $g(t) \in \partial V(u(t))$ almost everywhere on [0,T]. Then, the function $t \longmapsto V(u(t))$ is absolutely continuous on [0,T].

Also, let $t \in [0,T]$ such that $u(t) \in D(V)$ and let u and V(u) be differentiable. Then for all $t \in [0,T]$

$$\frac{d}{dt}V(u(t)) = \left\langle h, \frac{du}{dt}(t) \right\rangle \forall h \in \partial V(u(t)).$$

3 The Main Result

THEOREM: If $F: \Omega \to 2^{\mathbb{R}^m}$ and $V: \mathbb{R}^m \to \mathbb{R}$ satisfy the assumptions

- (A1) $\Omega \subset \mathbb{R}^{2m}$ where Ω is open and $F: \Omega \to 2^{\mathbb{R}^m}$ is a compact valued upper semicontinuous multifunction;
- (A2) there exists a lower semicontinuous proper convex function $V: \mathbb{R}^m \to \mathbb{R}$ such that $F(x,y,z) \subset \partial V(z)$ for every $(x,y,z) \in \Omega$.

Then, for every $(x_0, y_0, z_0) \in \Omega$, there exists a T > 0 and a solution $x : [0, T] \to \mathbb{R}^m$ of

$$x^{(3)}(t) \in F(x(t), x'(t), x''(t)), \ x(0) = x_0, \ x'(0) = y_0, \ x''(0) = z_0.$$
 (1)

By a solution we are referring to an absolutely continuous function $x:[0,T]\to\mathbb{R}^m$ with absolutely continuous first and second derivatives with the initial values $x(0)=x_0, x'(0)=y_0, x''(0)=z_0$, and $x^{(3)}(t)\in F(x(t),x'(t),x''(t))$, a.e. on [0,T].

PROOF: Suppose $(x_0, y_0, z_0) \in \Omega$. Then, $K = \bar{B}_r(x_0, y_0, z_0) \subset \Omega$ for some r > 0 since Ω is open. By assumption (A1)

$$F(K) = \bigcup_{(x,y,z)\in K} F(x,y,z)$$

is compact. Then there exists an M>0 such that

$$\sup\{\|v\|: v \in F(x, y, z), (x, y, z) \in K\} \le M. \tag{2}$$

Set

$$T < \min \left\{ \frac{r}{M}, \left(\frac{r}{M}\right)^{\frac{1}{2}}, \left(\frac{r}{M}\right)^{\frac{1}{3}}, \frac{r}{2\|z_0\|}, \frac{r}{2\|y_0\|}, \left(\frac{2r}{3\|z_0\|}\right)^{\frac{1}{2}} \right\}. \tag{3}$$

Let n, j be integers where $1 \le j \le n$. Set $t_n^j = \frac{jT}{n}$. For $t \in \left[t_n^{j-1}, t_n^j\right]$ define,

$$x_n(t) = x_n^j + (t - t_n^j) y_n^j + \frac{1}{2} (t - t_n^j)^2 z_n^j + \frac{1}{6} (t - t_n^j)^3 v_n^j,$$
(4)

where $x_n^0 = x_0$, $y_n^0 = y_0$, and $z_n^0 = z_0$.

For $0 \le j \le n-1$ and $v_n^j \in F\left(x_n^j, y_n^j, z_n^j\right)$, define

$$\begin{cases} x_n^{j+1} &= x_n^j + \left(\frac{T}{n}\right) y_n^j + \frac{1}{2} \left(\frac{T}{n}\right)^2 z_n^j + \frac{1}{6} \left(\frac{T}{n}\right)^3 v_n^j \\ y_n^{j+1} &= y_n^j + \left(\frac{T}{n}\right) z_n^j + \frac{1}{2} \left(\frac{T}{n}\right)^2 v_n^j \\ z_n^{j+1} &= z_n^j + \left(\frac{T}{n}\right) v_n^j. \end{cases}$$
(5)

We claim that $(x_n^1, y_n^1, z_n^1) \in K$. Using (5), we have

$$||z_n^1 - z_0|| = ||z_n^0 + \left(\frac{T}{n}\right)v_n^0 - z_0|| \le \left(\frac{T}{n}\right)M < r.$$

As well as,

$$||y_n^1 - y_0|| = ||y_n^0 + \left(\frac{T}{n}\right)z_n^0 + \frac{1}{2}\left(\frac{T}{n}\right)^2 v_n^0 - y_0||$$

$$\leq \left(\frac{T}{n}\right)||z_0|| + \frac{1}{2}\left(\frac{T}{n}\right)^2 M$$

$$< \frac{1}{2}r + \frac{1}{2}r = r.$$

Also,

$$||x_{n}^{1} - x_{0}|| = ||x_{n}^{0} + \left(\frac{T}{n}\right)y_{n}^{0} + \frac{1}{2}\left(\frac{T}{n}\right)^{2}z_{n}^{0} + \frac{1}{6}\left(\frac{T}{n}\right)^{3}v_{n}^{0} - x_{0}||$$

$$\leq \left(\frac{T}{n}\right)||y_{0}|| + \frac{1}{2}\left(\frac{T}{n}\right)^{2}||z_{0}|| + \frac{1}{6}\left(\frac{T}{n}\right)^{3}M$$

$$< T||y_{0}|| + \frac{1}{2}T^{2}||z_{0}|| + \frac{1}{6}T^{3}M$$

$$< \frac{1}{2}r + \frac{1}{3}r + \frac{1}{6}r = r.$$

Hence the claim holds. Now suppose $j \geq 1$. We make the assumption that,

$$\begin{cases}
x_n^j = x_n^0 + j\left(\frac{T}{n}\right)y_n^0 + \frac{1}{2}\left(\frac{jT}{n}\right)^2 z_n^0 + \frac{1}{6}\left(\frac{T}{n}\right)^3 \left[\left(3j^2 - 3j + 1\right)v_n^0 + \left(3j^2 - 9j + 7\right)v_n^1 + \left(3j^2 - 15j + 19\right)v_n^2 + \dots + 7v_n^{j-2} + v_n^{j-1}\right], \\
y_n^j = y_n^0 + j\left(\frac{T}{n}\right)z_n^0 + \frac{1}{2}\left(\frac{T}{n}\right)^2 \left[\left(2j - 1\right)v_n^0 + \left(2j - 3\right)v_n^1 + \dots + 3v_n^{j-2} + v_n^{j-1}\right], \\
z_n^j = z_n^0 + \left(\frac{T}{n}\right)\left[v_n^0 + v_n^1 + \dots + v_n^{j-1}\right].
\end{cases} (6)$$

To see this, let j = 1. Then,

$$\begin{split} z_n^1 &= z_n^0 + \left(\frac{T}{n}\right) v_n^0 = z_n^{0+1}, \\ y_n^1 &= y_n^0 + \frac{T}{n} z_n^0 + \frac{1}{2} \left(\frac{T}{n}\right)^2 v_n^0 = y_n^{0+1}, \\ x_n^1 &= x_n^0 + \frac{T}{n} y_n^0 + \frac{1}{2} \left(\frac{T}{n}\right)^2 z_n^0 + \frac{1}{6} \left(\frac{T}{n}\right)^3 v_n^0 = x_n^{0+1}. \end{split}$$

Thus, (6) holds when j = 1. Let's suppose assumption (6) holds for j > 1. Using (5) we see that,

$$\begin{split} z_n^{j+1} &= z_n^j + \left(\frac{T}{n}\right) v_n^j \\ &= z_n^0 + \left(\frac{T}{n}\right) \left[v_n^0 + v_n^1 + \dots + v_n^{j-1}\right] + \left(\frac{T}{n}\right) v_j^n \\ &= z_n^0 + \left(\frac{T}{n}\right) \left[v_n^0 + v_n^1 + \dots + v_n^j\right]. \end{split}$$

Thus the assumption holds for z_n^j . Using this and (5) we have,

$$\begin{split} y_n^{j+1} &= y_n^j + \left(\frac{T}{n}\right) z_n^j + \frac{1}{2} \left(\frac{T}{n}\right)^2 v_n^j \\ &= y_n^0 + j \left(\frac{T}{n}\right) z_n^0 + \frac{1}{2} \left(\frac{T}{n}\right)^2 \left[(2j-1)v_n^0 + (2j-3)v_n^1 + \dots + 3v_n^{j-2} + v_n^{j-1} \right] \\ &\quad + \left(\frac{T}{n}\right) \left(z_n^0 + \frac{T}{n} \left[v_n^0 + v_n^1 + \dots + v_n^{j-1} \right] \right) + \frac{1}{2} \left(\frac{T}{n}\right)^2 v_n^j \\ &= y_n^0 + (j+1) \left(\frac{T}{n}\right) z_n^0 + \left(\frac{T}{n}\right)^2 \left[\left(j-\frac{1}{2}\right) v_n^0 + \left(j-\frac{3}{2}\right) v_n^1 + \dots + \frac{1}{2} v_n^{j-1} + v_n^1 + \dots v_n^{j-1} \right] \\ &\quad + \frac{1}{2} \left(\frac{T}{n}\right)^2 v_n^j \\ &= y_n^0 + (j+1) \left(\frac{T}{n}\right) z_n^0 + \left(\frac{T}{n}\right)^2 \left[\left(j+\frac{1}{2}\right) v_n^0 + \left(j-\frac{1}{2}\right) v_n^1 + \dots + \frac{3}{2} v_n^{j-1} + \frac{1}{2} v_n^j \right] \\ &= y_n^0 + (j+1) \left(\frac{T}{n}\right) z_n^0 + \frac{1}{2} \left(\frac{T}{n}\right)^2 \left[(2j+1) v_n^0 + (2j-1) v_n^1 + \dots + v_n^j \right] \\ &= y_n^0 + (j+1) \left(\frac{T}{n}\right) z_n^0 + \frac{1}{2} \left(\frac{T}{n}\right)^2 \left[(2(j+1)-1) v_n^0 + (2(j-1)-3) v_n^1 + \dots + v_n^j \right]. \end{split}$$

Thus the assumption holds for y_n^j . Finally, with this and (5) we have,

$$\begin{split} x_n^{j+1} &= x_n^j + \left(\frac{T}{n}\right) y_n^j + \frac{1}{2} \left(\frac{T}{n}\right)^2 z_n^j + \frac{1}{6} \left(\frac{T}{n}\right)^3 v_n^j \\ &= x_n^0 + j \left(\frac{T}{n}\right) y_n^0 + \frac{1}{2} \left(\frac{jT}{n}\right)^2 z_n^0 + \frac{1}{6} \left(\frac{T}{n}\right)^3 \left[(3j^2 - 3j + 1)v_n^0 + (3j^2 - 9j + 7)v_n^1 + \dots + v_n^{j-1} \right] \\ &+ \left(\frac{T}{n}\right) \left(y_n^0 + j \left(\frac{T}{n}\right) z_n^0 + \frac{1}{2} \left(\frac{T}{n}\right)^2 \left[(2j - 1)v_n^0 + (2j - 3)v_n^1 + \dots + 3v_n^{j-2} + v_n^{j-1} \right] \right) \\ &+ \frac{1}{2} \left(\frac{T}{n}\right)^2 \left(z_n^0 + \frac{T}{n} \left[v_n^0 + \dots + v_n^{j-1} \right] \right) + \frac{1}{6} \left(\frac{T}{n}\right)^3 v_n^j \end{split}$$

$$\begin{split} &=x_{n}^{0}+\left(j+1\right)\left(\frac{T}{n}\right)y_{n}^{0}+\frac{1}{2}(j+1)^{2}\left(\frac{T}{n}\right)^{2}z_{n}^{0}\\ &+\frac{1}{6}\left(\frac{T}{n}\right)^{3}\left[\left(3j^{2}-3j+1\right)v_{n}^{0}+\left(3j^{2}-9j+7\right)v_{n}^{1}+\cdots+v_{n}^{j-1}\right]\\ &+\left(\frac{T}{n}\right)^{3}\left[jv_{n}^{0}+\left(j-1\right)v_{n}^{1}+\cdots+v_{n}^{j-1}\right]+\frac{1}{6}\left(\frac{T}{n}\right)^{3}v_{n}^{j}\\ &=x_{n}^{0}+\left(j+1\right)\left(\frac{T}{n}\right)y_{n}^{0}+\frac{1}{2}(j+1)^{2}\left(\frac{T}{n}\right)^{2}z_{n}^{0}\\ &+\frac{1}{6}\left(\frac{T}{n}\right)^{3}\left[\left(3j^{2}-3j+1\right)v_{n}^{0}+\left(3j^{2}-9j+7\right)v_{n}^{1}+\cdots+v_{n}^{j-1}\right]\\ &+\frac{1}{6}\left(\frac{T}{n}\right)^{3}\left[6jv_{n}^{0}+\left(6j-6\right)v_{n}^{1}+\cdots+6v_{n}^{j-1}\right]+\frac{1}{6}\left(\frac{T}{n}\right)^{3}v_{n}^{j}\\ &=x_{n}^{0}+\left(j+1\right)\left(\frac{T}{n}\right)y_{n}^{0}+\frac{1}{2}(j+1)^{2}\left(\frac{T}{n}\right)^{2}z_{n}^{0}\\ &+\frac{1}{6}\left(\frac{T}{n}\right)^{3}\left[\left(3j^{2}+3j+1\right)v_{n}^{0}+\left(3j^{2}-3j+1\right)v_{n}^{1}+\cdots+7v_{n}^{j-1}+v_{n}^{j}\right]. \end{split}$$

Thus the assumption holds for x_n^j . Using (2), (3) and the relations in (6), we show that $(x_n^j, y_n^j, z_n^j) \in K$.

$$||z_n^j - z_0|| = ||z_n^0 + \left(\frac{T}{n}\right) \left[v_n^0 + v_n^1 + \dots + v_n^{j-1}\right] - z_0||$$

$$\leq j\left(\frac{T}{n}\right) M$$

$$\leq TM$$

$$\leq r$$

And,

$$||y_n^j - y_0|| = ||y_n^0 + j\left(\frac{T}{n}\right)z_n^0 + \frac{1}{2}\left(\frac{T}{n}\right)^2 \left[(2j-1)v_n^0 + (2j-3)v_n^1 + \dots + 3v_n^{j-2} + v_n^{j-1}\right] - y_0||$$

$$\leq j\left(\frac{T}{n}\right)||z_0|| + \frac{1}{2}\left(\frac{jT}{n}\right)^2 M$$

$$\leq T||z_0|| + \frac{1}{2}T^2 M$$

$$< \frac{1}{2}r + \frac{1}{2}r$$

$$= r.$$

Finally,

$$||x_n^j - x_0|| = ||x_n^0 + j\left(\frac{T}{n}\right)y_n^0 + \frac{1}{2}\left(\frac{jT}{n}\right)^2 z_n^0$$

$$+ \frac{1}{6}\left(\frac{T}{n}\right)^3 \left[\left(3j^2 - 3j + 1\right)v_n^0 + \left(3j^2 - 9j + 7\right)v_n^1 + \dots + v_n^{j-1}\right] - x_0||$$

$$\leq \frac{jT}{n}||y_0|| + \frac{1}{2}\left(\frac{jT}{n}\right)^2 ||z_0|| + \frac{1}{6}\left(\frac{jT}{n}\right)^3 M$$

$$\leq T||y_0|| + \frac{1}{2}T^2||z_0|| + \frac{1}{6}T^3 M$$

$$< \frac{1}{2}r + \frac{1}{2}\left(\frac{2}{3}\right)r + \frac{1}{6}r = r.$$

Thus, $(x_n^j, y_n^j, z_n^j) \in K = B_r(x_0, y_0, z_0)$ for $1 \le j \le n$. Now, from the definition of x_n in (4) we have,

$$\begin{cases} x'_n(t) = y_n^j + (t - t_n^j) z_n^j + \frac{1}{2} (t - t_n^j)^2 v_n^j, \\ x''_n(t) = z_n^j + (t - t_n^j) v_n^j, \\ x_n^{(3)}(t) = v_n^j. \end{cases}$$
(7)

By (2) we have that $||x_n^{(3)}(t)|| = ||v_n^j|| \le M$. Similarly, (2) and (3) give the following,

$$||x_n''(t)|| = ||z_n^j + (t - t_n^j) v_n^j||$$

$$= ||z_n^0 + \left(\frac{T}{n}\right) [v_n^0 + v_n^1 + \dots + v_n^{j-1}] + (t - t_n^j) v_n^j||$$

$$\leq ||z_0|| + \left(\frac{jT}{n}\right) M + \left(\frac{T}{n}\right) M$$

$$< ||z_0|| + 2r.$$

As well as,

$$||x'_n(t)|| = ||y_n^j + (t - t_n^j) z_n^j + \frac{1}{2} (t - t_n^j)^2 v_n^j||$$

$$\leq ||y_0|| + \left(\frac{jT}{n}\right) ||z_0|| + \frac{1}{2} \left(\frac{jT}{n}\right)^2 M + \left(\frac{T}{n}\right) ||z_0|| + \left(\frac{jT}{n}\right)^2 M + \frac{1}{2} \left(\frac{T}{n}\right)^2 M$$

$$\leq ||y_0|| + T ||z_0|| + 2T^2 M + T ||z_0||$$

$$< ||y_0|| + 3r.$$

And finally,

$$||x_{n}(t)|| = ||x_{n}^{j} + (t - t_{n}^{j}) y_{n}^{j} + \frac{1}{2} (t - t_{n}^{j})^{2} z_{n}^{j} + \frac{1}{6} (t - t_{n}^{j})^{3} v_{n}^{j}||$$

$$\leq ||x_{0}|| + T ||y_{0}|| + \frac{1}{2} T^{2} ||z_{0}|| + \frac{1}{6} T^{3} M + \left(\frac{T}{n}\right) \left(||y_{0}|| + T ||z_{0}|| + \frac{1}{2} T^{2} M\right)$$

$$+ \frac{1}{2} \left(\frac{T}{n}\right)^{2} (||z_{0}|| + T M) + \frac{1}{6} \left(\frac{T}{n}\right)^{3} M$$

$$\leq ||x_{0}|| + T ||y_{0}|| + \frac{1}{2} T^{2} ||z_{0}|| + \frac{1}{6} T^{3} M + T ||y_{0}|| + T^{2} ||z_{0}||$$

$$+ \frac{1}{2} T^{3} M + \frac{1}{2} T^{2} M ||z_{0}|| + \frac{1}{2} T^{3} M + \frac{1}{6} T^{3} M$$

$$= ||x_{0}|| + 2T ||y_{0}|| + 2T^{2} ||z_{0}|| + T^{3} M + \frac{1}{3} T^{3} M$$

$$< ||x_{0}|| + r + \frac{4}{3} r + r + \frac{1}{3} r$$

$$< ||x_{0}|| + 4r.$$

Since $\left\|x_n^{(3)}(t)\right\| \leq M \ \forall t \in [0,T]$ the sequence $(x_n^{(3)}(t))$ is bounded in $L^2\left([0,T],R^m\right)$. Furthermore, suppose $\varepsilon > 0$ and $\forall t \in [0,T]$, and $\forall \tau \in [0,T], \ |t-\tau| < \frac{\varepsilon}{M}$. Then,

$$||x_n''(t) - x_n''(\tau)|| \le \left| \int_{\tau}^{t} ||x_n^{(3)}(s)|| ds \right|$$

$$\le \left| \int_{\tau}^{t} M ds \right|$$

$$= M|t - \tau|$$

$$\le M\left(\frac{\varepsilon}{M}\right)$$

Thus, (x''_n) is equicontinuous. Similarly (x'_n) and (x_n) are equicontinuous. Theorem 0.3.4 in [1] gives the following:

There exists a subsequence, again denoted $(x_n)_n$ that converges to an absolutely continuous function $x:[0,T]\to R^m$ such that:

- $(i)(x_n) \rightrightarrows x \text{ on } [0,T],$
- (ii) $(x'_n) \Rightarrow x'$ on [0,T],
- (iii) $(x_n'') \Rightarrow x''$ on [0, T],
- $\left(iv\right)\left(x_{n}^{(3)}\right)$ converges weakly to $x^{3}\ \ \mbox{in}\ L^{2}\left([0,T],R^{m}\right).$

By the Convergence Theorem, theorem 1.4.1 in [1], we have that

$$x^{(3)}(t) \in \overline{co}F(x(t), x'(t), x''(t)) \subset \partial V(x''(t))$$
 a.e., $t \in [0, T]$.

Also, by the above and lemma 3.3 in [2],

$$\frac{d}{dt}V(x''(t)) = \langle x^{(3)}(t), x^{(3)}(t) \rangle = \|x^{(3)}(t)\|^2.$$

Since, $\int_0^T \frac{d}{dt} V\left(x''(t)\right) dt = \int_0^T \left\|x^{(3)}(t)\right\|^2 dt$ we have,

$$V(x''(T)) - V(x''(0)) = \int_0^T \left\| x^{(3)}(t) \right\|^2 dt.$$
 (8)

However, by (7) we also have $x_n^{(3)}(t) = v_n^j \in F\left(x_n^j, y_n^j, z_n^j\right) \subset \partial V\left(x_n''(t_n^j)\right)$, $\forall t \in \left[t_n^{j-1}, t_n^j\right]$. Which, from the definition of subdifferential, gives the following,

$$\begin{split} V\left(x_{n}''\left(t_{n}^{j}\right)\right) - V\left(x_{n}''\left(t_{n}^{j-1}\right)\right) &\geq \left\langle x_{n}^{(3)}(t), x_{n}''\left(t_{n}^{j}\right) - x_{n}''\left(t_{n}^{j-1}\right)\right\rangle \\ &= \left\langle x_{n}^{(3)}(t), \int_{t_{n}^{j-1}}^{t_{n}^{j}} x_{n}^{(3)}(s) ds \right\rangle \\ &= \int_{t_{n}^{j-1}}^{t_{n}^{j}} \left\langle x_{n}^{(3)}(t), x_{n}^{(3)}(t)\right\rangle dt \\ &= \int_{t_{n}^{j-1}}^{t_{n}^{j}} \left\| x_{n}^{(3)}(t) \right\|^{2} dt. \end{split}$$

Combining the above inequalities with (8), we get the following inequality,

$$V(x_n''(T)) - V(z_0) \ge \int_0^T ||x_n^{(3)}(t)||^2 dt.$$

If we let n approach infinity, we have

$$V(x''(T)) - V(z_0) \ge \limsup_{n \to \infty} \int_0^T \|x_n^{(3)}(t)\|^2 dt$$
$$\int_0^T \|x^{(3)}(t)\|^2 dt \ge \limsup_{n \to \infty} \int_0^T \|x_n^{(3)}(t)\|^2 dt$$
$$\|x^{(3)}(t)\|^2 \ge \limsup_{n \to \infty} \|x_n^{(3)}(t)\|^2.$$

However, the weak lower semicontinuity of the norm gives,

$$||x^{(3)}(t)||^2 \le \liminf_{n \to \infty} ||x_n^{(3)}(t)||^2.$$

Thus we have,

$$||x^{(3)}(t)||^2 = \lim_{n \to \infty} ||x_n^{(3)}(t)||^2.$$

Hence the sequence $\left(x_n^{(3)}\right) \to x^{(3)}$ pointwise. By assumption (A1), F is closed, implying

$$x^{(3)}(t) \in F(x(t), x'(t), x''(t)), a.e. \ t \in [0, T].$$

References

- [1] J. P. Aubin and A. Cellina; Differential inclusions, Berlin, Springer-Verlag, 1984.
- [2] H. Brezis; Operateurs Maximaux Monotones et Semigroups de Contractions Dans Les Espaces de Hilbert, Amsterdam, North-Holland, 1973.
- [3] K. Deimling; Multivalued Differential Equations, Walter de Gruyter, Berlin, New York, 1992.
- [4] V. Lupulescu; Existence of Solutions for Nonconvex Functional Differential Inclusions, Electronic Journal of Differential Equations, Vol. 2004(2004), No. 141, pp.1-6.
- [5] V. Lupulescu; Existence of Soutions for Nonconvex Second Order Differential Inclusions, Applied Mathematics E-Notes, 3(2003), 115-123.

(Received September 16, 2005)