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Abstract
This paper proves the existence of solutions for a third order initial value nonconvex dif-
ferential inclusion. We start with an upper semicontinuous compact valued multifunction F'
which is contained in a lower semicontinuous convex function OV and show that,

=@ (t) € F(x(t), ' (t),z"(t)), £(0) = zo, z'(0) = yo, =" (0) = z0.
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1 Introduction

The origins of boundary and initial value problems for differential inclusions are in the theory of
differential equations and serve as models for a variety of applications including control theory.
Existence results for the second order differential inclusion,

2" € F(z,z'), (0) = o, 2'(0) = yo,
have been obtained by many authors (see [4], [5] and the references therein). In [5], Lupulescu
showed existence for the problem

2" € F(z,z') + f(t,x,2"), (0) = x0, 2'(0) = yo

for the case in which F' is an upper semicontinuous compact valued multifunction such the F'(x,y) C
OV (y) and f is a Carathéodory function.
In this paper, we prove an existence result for the third order differential inclusion,

e ®(t) € F(a(t),2'(t),2" (1), 2(0) = w0, 2'(0) = yo, 2" (0) = 2,

where F is an upper semicontinuous compact valued multifunction and F(z,y, z) C 0V (z) for some
proper lower semicontinuous convex function V. Expounding upon the methods used to establish
existence by Lupulescu in [4] and [5], we define a sequence of approximate solutions on a given
interval and show that the sequence converges to an actual solution.
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2 Preliminaries

Let R™ be an m dimensional Euclidean space with an inner product (-,-) and norm || - ||.

Let z € R™ and r > 0. The open ball centered at x with radius r is defined by
Br(z) ={y e R™: |z —y| <7},
where B,.(z) denotes its closure.

For the proper lower semicontinuous convex function V' : R™ — R, the multifunction 9V :
R™ — 28" defined by

V(z)y={yeR™:V(y) —V(z) > (v,y — z),Vy e R™},
is the subdifferential of V.

Let L?[a,b] be a Hilbert space with the inner product defined by

b
(z,5) = / (gDt

where y(t) denotes the complex conjugate of y(t), and the norm is defined as

b
o] = / (1) 2dt.

Let ¢oF (z,y,z) denote the closed convex hull of F and z, = z denote that x, converges
uniformly to z.

We need the following theorems from Aubin and Cellina [1].

Theorem 0.3.4 Consider a sequence of absolutely continuous functions x () from an interval
I to a Banach Space X satisfying

(i) for every t € I, (), is a relatively compact subset of X;
(ii) there exists a positive function ¢(-) € L?(I) such that, for almost all ¢ € I, ||z},(¢)|| < c(?).

Then there exists a subsequence, again denoted by xj(-), converging to an absolutely continuous
function z(-) from I to X in the sense that

(i) zx(-) converges uniformly to z(-) over compact subsets of I;

(ii) «.(-) converges weakly to ) (-) in L*(I, X).
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Theorem 1.1.4 (the Convergence Theorem) Let F' be a proper hemicontinuous map from
a Hausdorff locally convex space X to the closed convex subsets of a Banach Space Y. Let I be
an interval of R and zx(-) and yx(-) be measurable functions from I to Y respectively satisfying
for almost all ¢ in I and for every neighborhood R of 0 in X x Y, there exists a ko = ko (¢, R) such
that for every ko <k, (zx(t), yx(t)) € graph(F) + N. If,

(i) xk(-) converges almost everywhere to a function z(-) from I to X;
(ii) yx(-) belongs to L?(I,Y) and converges weakly to y(-) in L2(I,Y),

then, for almost all £ € I,
(x(t),y(t)) € graph(F) i.ey(t) € F(x(t)).

We also need the following lemma from Brezis [2].
Lemma 3.3 Let u € D(V) almost everywhere on [0, 7] and suppose g € L?([0,T],R) such
that g(t) € OV (u(t)) almost everywhere on [0,7]. Then, the function ¢t — V(u(t)) is absolutely

continuous on [0, 7.

Also, let t € [0,T] such that u(t) € D(V) and let v and V(u) be differentiable. Then for all
te€0,T]

d du

V() = <h, E(t)> Vh € OV (u(t)).

3 The Main Result

THEOREM: If F : Q — 28" and V : R™ — R satisfy the assumptions

(A1) Q C R?™ where Q is open and F : Q — 28" is a compact valued upper semicontinuous
multifunction;

(A2) there exists a lower semicontinuous proper convex function V' : R™ — R such that
F(z,y,z) C OV (z) for every (z,y,z) € Q.

Then, for every (xo, Yo, 2z0) € {2, there exists a T'> 0 and a solution z : [0,7] — R™ of

2B(t) € F(x(t), 2 (t), 2" (1), (0) = zo, 2'(0) = yo, 2 (0) = zo. (1)
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By a solution we are referring to an absolutely continuous function z : [0,7] — R™ with
absolutely continuous first and second derivatives with the initial values z(0) = z¢, 2'(0) = yo,
2"(0) = 20, and 23 (t) € F(z(t),2'(t), 2" (t)), a.e. on [0,T].

PROOF: Suppose (79,0, 20) € Q. Then, K = B,(x0,%0, 20) C § for some r > 0 since €2 is open.
By assumption (A1)

is compact. Then there exists an M > 0 such that

sup{||v|| : v € F(x,y, 2), (x,y,2) € K)} < M. (2)

Set

1

r T\NZ /T \3 r r 2r \?
T < min —,(—) ,(—) , , ,< > . 3
{M 2) > \32) 3T 3l 3ol ®

Let n, j be integers where 1 < j < n. Set ti = % For t € [tJ71,#]] define,

zo(t) =2l + (t—t)) y) + % (t— t{,)%g; + % (t— tfl)gv%, (4)

0 _ 0 _ 0 _
where x, = o, y,, = Yo, and z,, = 2.

For 0<j<n—1 and v} € F (20,yJ,2)), define

yitt =yl +

J+l — .J
Zn _Zn+

We claim that (z},y},2) € K. Using (5), we have

T
22+ (5) 122 — 20

Iz = 2ol =

T
S(—)M<r.
n
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As well as,

Also,

1 _
ln = aof| =

T 1 2 1/T
0 - 0 - - 0 - - _
xﬁ(n)w() & 6<n>
< (2 ) ool + 5 (- ol + L (Z
~—\n Yo 2 %0 6 \n

1 1
<Tlyoll + 577 llzoll + T°M

S T P T
27" 37’ 67’—7".

Hence the claim holds. Now suppose 7 > 1. We make the assumption that,

+ (372 — 155+ 19) 02 + -+ Tod =2 + 03],
T 1(T 2 . _ 1 o
Yy =yn+Jj mt g n (25 — 1)vd + (25 — 3)vl + -+ + 3vi 2 + 0] 7!

zfl:zg—l—(%) [Ug—i—v}l—l—---—i—vfl_l}.

3

To see this, let 7 = 1. Then,

. T 1 /45T\> 1/T\*
wh=al b (g () g () (357 =85+ 1) ol 4 (357 - 95 + 7))
n 2\ n 6 \n
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Thus, (6) holds when j = 1. Let’s suppose assumption (6) holds for j > 1. Using (5) we see that,

0 - T 0 1 T ? . 0 . 1 j—2 j—1

2
T T : 1 /T\? .
+<—> <z2+—[v2+v;+m+v;1})+—<—> vl
n n 2\n
T T\*[/ 1 3 1
=y + G+ (=)t (=) [(i-5)n+{i—5)om+ 0+, +...0)
n n 2 2 2

3 (ot 2

r
n
( ) (25 + 1w, +(2j71)v}l+~~~+vfl]

41
3
L1
T3

Thus the assumption holds for yJ. Finally, with this and (5) we have,

, /TN . 1 /T\® . 1/T\® .
At =e () s (7) A5 () o

T 1 /4T 1/7\?
:mgﬂ( )y2+§(‘7—) 22—1—6(5) [(3j% = 3j + 1)vd + (35> — 95 + T)vp +

) 2+ 1) —1Dop + (2(j — 1) = 3)vp + -+ vl].

.. _ﬂ'_vzl_l}

T T 1/T\? - ,
+ (-) <y2+j (—) 204 = (—) [(25 — 1ol + (2 = 3)vp + -+ + 30l 72 +u%1]>
n n 2\ n
1
2

T\? T . 1/T\* .
+ (—) (zg-l——[v?}—k---—i-vfll])-i-—(—) vl
n n 6 \n
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T 1 T\?
_ .0 (2 )0 a2 (2 0
T, + (G +1) - yn+2(3+) —)
1/7\? ,
+g(5) [(35% =3+ 1) vh + (352 = 95 + 7)oy + -+ v ]
T\? . 1/T\*® .
+<E> [jv2+(j1)u;+~~~+v;1}+6<—> vl

T 1 T 2
0 : 0 i 2 0

1/T\® ,
+6(E) (32 =35+ 1) 02 + (352 = 95 + 7) v} + -+~ +vi7!]
1T\ . o .. ) i LT
Fa(z) “”“L¥wj6”"*'“*6“1}ké<a> o

T 1 T\?
0 . 0 - 2 0
=224+ (=)0 +=G+D? (=

3
+% (%) [(37% 4+ 35+ 1) 00 + (352 =35 + 1) vl + -+ Tod 1 4 0d].

Thus the assumption holds for 7. Using (2), (3) and the relations in (6), we show that (24, y?, 23) €
K.

ot ol = o+ () et ) =

s (2)

<TM
<.
And,
j 0 . T 0 1 T ? . 0 . 1 j—2 j—1
[y = voll =l +3 ( — ) 2n+5 () [2F = Dvn+ (25 = Bog + -+ 3072 + 017 — wo
2

(T 1 (5T
<i (3 )l + 3 (£5) 2
n n

1 2
< Tzl + 572M

_1
2" T a"
=7
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Finally,

_ T 1 /+T\2
||, — 0| = z2+j<—)y2+—(j—> 2
n 2 n
1/T\* '
+6<Z) [(35° =37 + 1) o+ (35" = 9j + T) v + -+ 0p7 ] — o
§T 1 /5T\? 1/;T\°
< lwoll + 5 (;) ol + 5 (7) M

1 1
< Tlyoll + 57220l + =M
SR N E AT S
27" 9 3 T 6T—T.

Thus, (24,43, 7)) € K = B, (20, Y0, 20) for 1 < j < n. Now, from the definition of z,, in (4) we
have,

() =yl 4+ (t—th) 2 + = (t—t) v,
al(t) = 20 4 (t — ) vl (7)
xn3)(t) =vj.

By (2) we have that ’

x513)(t)H = |[vi|| < M. Similarly, (2) and (3) give the following,

@1 = (|2 + (¢ = £5) v |

T 4 o
zg+(g) (09 +up 4ol (E—t) )

T T
< 2ol + <L> M+ (—) M
n n

< ||zol| + 2.

As well as,

. | . _
yfl+(t—tfl)zfl+§(t—tﬁl)2v%

AT

T 1 /iT\? T T\ 2

< llyoll + (L) lzoll + & (3—) M+ (—) ol + (3—) M
n 2 n n n

< loll + Tllzo + 27°M + T 0]

< llyoll + 3r-

1/T\?
2 () o
2\n

EJQTDE, 2005 No. 22, p. 8



And finally,

(o)l = o+ (¢ — ) i+ 5 (6= #)7 2+ 5 (6= )" od

1 1 T 1
< ol + T ol + 572 ol + 5720 + (5 ) (Iooll + T ol + 570 )

1/T\? 1/T\*
~ (= TM)+ - (=) M
+2<n> (|lzo]l + )+6<n>

1 2 1 3 2
< llzoll + T llyoll + 5T l2oll + = T7M + T'llyo]| + T |20

1 1 1 1
- 5T3M + 5T2M |20l + 5T3M + 6T3M

1
= lloll + 27 lyo | +27° |20 ]| + T°M + ST*M

<lzol +r+2r4r4l
Zo ' 3T ' 3T

< ||zo]| + 4r.

T H < MVt € [0,T] the sequence (;C%S) (t)) is bounded in L? ([0, T], R™). Furthermore,
suppose € > 0 and V¢ € [0,T], and V7 € [0, T}, |t — 7| < 57. Then,

t
[ 1) s
Tt
< /Mds

= M|t —T|

()

=E.

Since ‘

[l (8) = 2 ()] <

!/

Thus, (z]) is equicontinuous. Similarly (z,

n
gives the following:

) and (z,,) are equicontinuous. Theorem 0.3.4 in [1]

There exists a subsequence, again denoted (z,,), that converges to an absolutely continuous
function x : [0,7] — R™ such that:

i) (xn) = xon[0,T],
i1) (x),) = 2" on [0, 7],
i) (zr) = 2" on [0, T7,

iv) (z(¥)) converges weakly to z® in L ([0,T], R™).
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By the Convergence Theorem, theorem 1.4.1 in [1], we have that

2@ () € @F(x(t), 2/ (t), 2" (1)) C OV (2" (1)) ae., t € [0,T].

Also, by the above and lemma 3.3 in [2],

LV (@"(1) = (@D (1),2@ @) = [«@ @)
Since, [ 4V (@ (1) dt = [, ||«® (1)||” dt we have,
2 _ 2" — g .T(3) 2 )
V@)=V o) = [ <] (®)

However, by (7) we also have aP (t)=wvl € F(ad,yl,20) C OV (xlh(t)), Vt € [t571,)]. Which,
from the definition of subdifferential, gives the following,

V(@ (82)) = V (@ (857) = (a2l () = (8571))
- <x£?> @[« <s>ds>

J

tTL
[ (@0 w)
tit

/t%,
j—1
t,

Combining the above inequalities with (8), we get the following inequality,

2
3 (t)H dt.

V@)~V (o) 2 [ |0 )| a

If we let n approach infinity, we have

V (2"(T)) — V (29) > limsup /OT ‘ 2 (t)H2 dt

T 2 T 2
/ Hx(3)(t)H dt > lim sup/ Hzf’) (t)H dt
0 n— o0 0

2 2
H:c(?’)(t)H Zlimsupfo)(t)H .

n—oo

However, the weak lower semicontinuity of the norm gives,

H:I:(?’)(lf)H2 < liminf H:I:S’)(t)HQ.

n—oo
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Thus we have,

2 2
Hx(3)(t)H = lim ‘xf)(t)H .

n—oo

Hence the sequence (zS’)) — 2) pointwise. By assumption (A1), F is closed, implying

B (t) € F(x(t),2'(t), 2" (t)), a.e. t €[0,T].
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