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On the uniform boundedness of the solutions of

systems of reaction-diffusion equations

Lamine MELKEMI, Ahmed Zerrouk MOKRANE, and Amar YOUKANA

Abstract. We consider a system of reaction-diffusion equations for
which the uniform boundedness of the solutions can not be derived by
existing methods. The system may represent, in particular, an epidemic
model describing the spread of an infection disease within a population.
We present an L

p argument allowing to establish the global existence
and the uniform boundedness of the solutions of the considered system.

1. INTRODUCTION

In this work we consider the following class of reaction diffusion systems

(1)

{

∂u
∂t

− d1∆u = c− f(u, v) − αu in R
+ × Ω

∂v
∂t

− d2∆v = g(u, v) − σv in R
+ × Ω

with Neuman boundary conditions

(2)
∂u

∂ν
=
∂v

∂ν
= 0 on R

+ × Γ

where Ω is an open, bounded domain in R
n with boundary Γ = ∂Ω of

class C1, d1, d2, α, σ are positive constants, c ≥ 0 and f, g are nonnegative
functions of class C1(R+ × R

+) satisfying the following assumptions

(A1) f(0, .) = 0, g(., 0) ≥ 0,

(A2) ξ ≥ 0, η ≥ 0 =⇒ 0 ≤ f(ξ, η) ≤ (1 + η)βϕ(ξ)

and

(A3) (∀ξ, η ≥ 0) g(ξ, η) ≤ ψ(η)f(ξ, η) with lim
η→+∞

ψ(η)

η
= 0

where β ≥ 1 and ϕ,ψ are nonnegative functions of class C(R+).
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We are interested in the problem of the existence of global solutions to
the system (1)-(2) in the class C(Ω̄) with initial data as well as their uniform
boundedness

(3) u(0, x) = u0, v(0, x) = v0

with u0, v0 ∈ L∞(Ω) and u0 ≥ 0, v0 ≥ 0.

We observe that the system (1)-(3) generalizes that when g = f since
the assumption (A3) obviously holds in this case. In practice, when g = f ,
the system (1)-(3) may represent an epidemic model describing the spread
of an infection disease within a population in which case c is the recruitment
ratio into the susceptible class, α is the natural death rate and 1

σ
denotes the

average infectious period (for details see for example [12], [3], [6],[8]). When
c = 0 and g(u, v) = f(u, v) + αu+ σv we get a system of reaction-diffusion
equations with balance law initially posed by R. H. Martin for which the
problem of the existence of global solutions and their uniform boundedness
was studied by many authors. The question was positively answered by
Alikakos [1] and Masuda [10] under the assumption (A2) and later on by
Haraux and Youkana [4], Youkana [13], Barabanova [2] and Kanel and
Kirane [9] when the vector field may be a function with exponential growth.

When f = g and c > 0, it is clear that the problem of the uniform
boundedness of the solutions of (1)-(3) is not as immediate as the global
existence. In [7], Hollis, Martin and Pierre used duality arguments on Lp

techniques allowing under certain conditions to derive the uniform bound-
edness of solutions of (1) with mixed boundary conditions from uniform
estimates. However we do not see how the method in [7] may be applied to
the problem (1)-(3). In order to establish the uniform boundedness of the
solutions of (1)-(3) in this case (that is when g = f and c > 0) one may
propose the method developed by Morgan in [11]. Indeed the method in
[11] assures the uniform boundedness of the solutions of (1)-(3) once it is
verified that

(i) The vector field of (1) (i.e. the right hand side in (1)) is polynomial
in v )

(ii) c− f(u, v) − αu,

(4) λ(c− f(u, v) − αu) + µ(g(u, v) − σv)
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for some positive constants λ, µ > 0 are uniformly upper bounded
and

(iii)
∫

Ω(u+ v) ≤ C independent of t.

Using standard manipulations, one can check that concerning the system
(1)-(3) considered here, the conditions (i)-(iii) are satisfied provided that ψ
is bounded. Unfortunately, when ψ is not bounded, the condition (ii) is not
satisfied.

In this paper our main concern is to establish the global existence and
the uniform boundedness of the solutions of the system (1)-(3) under the
assumptions (A1)-(A3). To this end we make use of the Lyapunov function
techniques and present an approach similar to that developed by Haraux
and Youkana [4] and Barabanova [2].

2. STATEMENT AND PROOF OF THE MAIN RESULT

It is classical that for nonnegative u0, v0 ∈ L∞(Ω) there exists a unique
local nonnegative solution (u, v) of class C(Ω̄) of (1)-(3) on ]0, T ∗[, where
T ∗ is the eventual blowing-up time in L∞(Ω) (see [5]). By the comparison
principle one may also show that

(5) 0 ≤ u(t, x) ≤ max(||u0||∞,
c

α
) =: K.

As a consequence our problem amounts to establish the uniform bound-
edness of v. To do so, we will make use of the result established in [5] from
which the uniform boundedness of v is derived once

||g(u, v) − σv||p ≤ C

(where C is a nonnegative constant independent of t) for some p > n
2 . Be-

cause of the assumptions (A2) and (A3), we are led to establish the uniform
boundedness of the ||v||p on ]0, T ∗[ in order to get that of ||v||∞ on ]0, T ∗[.

For p ≥ 2, we let

γ =
(d1 − d2)

2

4d1d2
, γ(p) =

pγ + 1

p− 1
, Mp = K +

c

γ(p)σ
.

The main result of this paper is stated in what follows:
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Proposition 1. Assume p ≥ 2 and let

(6) Gb(t) =

∫

Ω
[bu+ exp(−

p− 1

pγ + 1
ln(γ(p)[Mp − u]))vp]dt

where (u, v) is the solution of (1)-(3) on ]0, T ∗[. Then under the assumptions
(A1)-(A3) there exist two positive constants a > 0 and b > 0 such that

(7)
d

dt
Gb ≤ −(p− 1)σGb + a .

Before proving this theorem we first need the following two technical
lemmas:

Lemma 1. Let (u, v) be a solution of (1)-(3). Then

(8)
d

dt

∫

Ω
udx+

∫

Ω
f(u, v)dx+ α

∫

Ω
udx = c|Ω|.

Proof. We integrate the both sides of the equation

du

dt
− d1∆u = c− f(u, v) − αu

satisfied by u on Ω. We find
∫

Ω
f(u, v)dx = c|Ω| − α

∫

Ω
u−

d

dt

∫

Ω
u(t, x)dx.

Lemma 2. Assume that p ≥ 2. Then under the assumptions (A1)-(A3)
there exists b1 > 0 such that

(9) [pηp−1g(ξ, η) −
1

γ(p)Mp
ηpf(ξ, η)] ≤ b1f(ξ, η)

for all 0 ≤ ξ ≤ K and η ≥ 0.

Proof. According to the assumption (A3), we have

[pηp−1g(ξ, η) −
1

γ(p)Mp
ηpf(ξ, η)] ≤ [p

ψ(η)

η
−

1

γ(p)Mp
]ηpf(ξ, η).

Since ψ(η)
η

goes to 0 as η → +∞, there exists η0 > 0 such that

(0 ≤ ξ ≤ K, η ≥ η0) =⇒ [p
ψ(η)

η
−

1

γ(p)Mp
]ηpf(ξ, η) ≤ 0
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On the other hand

(ξ, η) 7−→ pηp−1ψ(η) −
1

γ(p)Mp
ηp

being continuous is bounded on the compact interval [0, η0] so that (9) im-
mediately follows.

We proceed now to the proof of Proposition 1

Proof of Proposition 1. Let

h(u) = −
p− 1

pγ + 1
ln(γ(p)(Mp − u))

so that

Gb(t) = b

∫

Ω
udx+ L(t)

where

L(t) =

∫

Ω
eh(u)vpdx.

Differentiating L(t) with respect to t and using the Green formula one
obtains

d

dt
L = H + S

where

H = −d1

∫

Ω
(h′2(u) + h

′′

(u))eh(u)vp(∇u)2dx

−p(d1 + d2)

∫

Ω
h′(u)eh(u)vp−1∇u∇vdx

−d2

∫

Ω
p(p− 1)eh(u)vp−2(∇v)2dx

and

S = c

∫

Ω
h′(u)eh(u)vpdx+

∫

Ω
[pvp−1g(u, v) − h′(u)vpf(u, v)]eh(u)dx

−α

∫

Ω
h′(u)ueh(u)vpdx− σ

∫

Ω
peh(u)vpdx.

We observe that H involves a quadratic form with respect to ∇u and ∇v

Q = d1(h
′2(u)+h

′′

(u))vp(∇u)2+p(d1+d2)h
′(u)vp−1∇u∇v+d2p(p−1)vp−2(∇v)2
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which is nonnegative if

(10) [p(d1 + d2)h
′(u)vp−1]2 − 4d1d2p(p− 1)(h′2(u) + h

′′

(u))v2p−2 ≤ 0.

We have chosen h(u) in such a way that

h′(u) =
1

γ(p)(Mp − u)
, h

′′

(u) =
γ(p)

[γ(p)(Mp − u)]2
.

The left hand side of (10) can be written

v2p−2{p2[(d1 − d2)
2h′2(u) − 4d1d2h

′′

(u)] + 4d1d2p(h
′2(u) + h

′′

(u))}

= 4d1d2pv
2p−2{p[γ

1

[γ(p)(Mp − u)]2
−

γ(p)

[γ(p)(Mp − u)]2
]

+
1 + γ(p)

[γ(p)(Mp − u)]2
}

= 0

since pγ−pγ(p)+1+γ(p) = 0. Therefore (10) holds, Q ≥ 0 and consequently

H = −

∫

Ω
Qeh(u)dx ≤ 0.

Concerning the second term S we observe that

S ≤

∫

Ω
(ch′(u) − σp)eh(u)vpdx+

∫

Ω
[pvp−1g(u, v) − h′(u)vpf(u, v)]eh(u)dx

≤ −(p− 1)σ

∫

Ω
eh(u)vpdx+

∫

Ω
[pvp−1g(u, v) − h′(u)vpf(u, v)]eh(u)dx

since

h′(u) =
1

γ(p)(Mp − u)
≤

1

γ(p)(Mp −K)
=
σ

c

On the other hand

−h′(u) = −
1

γ(p)(Mp − u)
≤ −

1

γ(p)Mp

h(u) ≤ −
1

γ(p)
ln
c

σ
.
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Therefore by virtue of Lemma 2 (in particular (9)) and the fact that v ≥ 0

pvp−1g(u, v) − h′(u)vpf(u, v) ≤ pvp−1g(u, v) −
1

γ(p)Mp
vpf(u, v)

≤ b1f(u, v).

As a consequence

S ≤ −(p− 1)σL+ b1

∫

Ω
eh(u)f(u, v)dx

≤ −(p− 1)σL+ b1e
−

1
γ(p)

ln c

σ

∫

Ω
f(u, v)dx.

Let

b = b1e
− 1

γ(p)
ln c

σ

where b1 > 0 is a positive constant satisfying (9). Using (8) one obtains

S ≤ −(p− 1)σL+ b(c|Ω| −
d

dt

∫

Ω
u(t, x)dx)

≤ −(p− 1)σL+ bc|Ω| − b
d

dt

∫

Ω
u(t, x)dx.

Since Gb(t) = b
∫

Ω udx+ L(t), it follows that

S ≤ −(p− 1)σGb + (p− 1)σb

∫

Ω
udx+ bc|Ω| − b

d

dt

∫

Ω
u(t, x)dx

≤ −(p− 1)σGb + b((p− 1)σK + c)|Ω| − b
d

dt

∫

Ω
u(t, x)dx

from which we conclude that

d

dt
Gb(t) ≤ −(p− 1)σGb(t) + a

with a = b((p− 1)σK + c)|Ω|.

We are now ready to establish the global existence and uniform bound-
edness of the solutions of (1)-(3)

Theorem 1. Under the assumptions (A1)-(A3), the solutions of (1)-(3)
are global and uniformly bounded on [0,+∞[.
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Proof. By a multiplication of the inequality (7) by e(p−1)σt and then
integrating, we deduce that there exists a positive constant C1 > 0 indepen-
dent of t such that:

Gb(t) ≤ C1.

Since

eh(u) ≥ e
− 1

γ(p)
ln γ(p)Mp

it follows that for all p ≥ 2
∫

Ω
vpdx ≤ e

1
γ(p)

ln[Kγ(p)+ c

σ
]
Gb(t)

≤ C1.[Kγ(p) +
c

σ
]

1
γ(p) =: C(p).

Select now p > n
2 and proceed to bound ||g(u, v)−σv||p. Beforehand let

A = max
0≤η≤η0

ψ(η), B = max
0≤ξ≤K

ϕ(ξ)

where η0 is such that

η ≥ η0 =⇒ ψ(η) ≤ η

According to (A2)-(A3), we have

g(u, v) ≤ ψ(v)f(u, v)

≤ ψ(v)ϕ(u)(1 + v)β

≤ Bψ(v)(1 + v)β

since 0 ≤ u ≤ K. Therefore
∫

Ω
g(u, v)p ≤ Bp

∫

Ω
ψ(v)p(1 + v)βp

= Bp(

∫

v≤η0

ψ(v)p(1 + v)βp +

∫

v≥η0

ψ(v)p(1 + v)βp)

as a consequence
∫

Ω
g(u, v)p ≤ (AB(1 + η0)

β)p|Ω| +Bp

∫

Ω
vp(1 + v)βp.

Using the fact that for x, y ≥ 0 and r ≥ 1

(x+ y)r ≤ 2r−1(xr + yr)
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we obtain
∫

Ω
g(u, v)p ≤ (AB(1 + η0)

β)p|Ω| + 2βp−1Bp(C(p) + C((β + 1)p))

= : Rp.

Finally

||g(u, v) − σv||p ≤ ||g(u, v)||p + σ||v||p

≤ R+ σ p

√

C(p).

Using the result of [5, p.39, Thm 1.6.1] we conclude that the solutions of
(1)-(3) are indeed global and uniformly bounded on ]0,+∞[×Ω.
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