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Abstract

In this paper we derive a lattice model with infinite distributed delay to

describe the growth of a single-species population in a 2D patchy environment

with infinite number of patches connected locally by diffusion and global in-

teraction. We consider the existence of traveling wave solutions when the

birth rate is large enough that each patch can sustain a positive equilibrium.

When the birth function is monotone, we prove that there exists a traveling

wave solution connecting two equilibria with wave speed c > c∗(θ) by using

the monotone iterative method and super and subsolution technique, where

θ ∈ [0, 2π] is any fixed direction of propagation. When the birth function is

non-monotone, we prove the existence of non-trivial traveling wave solutions

by constructing two auxiliary systems satisfying quasi-monotonicity.
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1 Introduction

In 1990, Aiello and Freedman [1] derived the following model to describe the growth

of a single-species population:{
u′i(t) = αum(t)− γui(t)− αe−γτum(t− τ),

u′m(t) = αe−γτum(t− τ)− βu2
m(t).

(1.1)

Here α, β and γ are positive constants, um and ui denote the number of immature

(juvenile) and mature (adult) members of the population, respectively; the delay

τ > 0 is the time taken from birth to maturity. In particular, they assumed that

the maturation delay τ is known exactly and that all individuals take this amount

of time to mature. They showed that the unique positive equilibrium of (1.1) is

globally asymptotically stable.

However, as reported by Al-Omari and Gourley [2], the individuals do not neces-

sarily mature at the same time, and it has been observed that distributed delays are

more reasonable than discrete delays in modeling maturation periods. Therefore,

they proposed a more general model:{
u′i(t) = b(um(t))− γui(t)−

∫∞
0
b(um(t− s))f(s)e−γsds,

u′m(t) =
∫∞

0
b(um(t− s))f(s)e−γsds− d(um(t)),

(1.2)

where the probability density function f(s) ∈ L1([0,∞),R+) describes the proba-

bility of maturing at each age s and satisfies
∫∞

0
f(s)ds = 1, b(·) and d(·) are the

more general birth rate and death rate functions, respectively. The authors also con-

sidered spatial effects and proposed the following nonlocal reaction-diffusion model

with distributed delay

∂ui(x,t)
∂t

= Di∆ui(x, t) + b(um(x, t))− γui(x, t)
−
∫ τ

0

∫
Ω
G(x, y, s)f(s)e−γsb(um(y, t− s))dyds,

∂um(x,t)
∂t

= Dm∆um(x, t)− d(um(x, t))

+
∫ τ

0

∫
Ω
G(x, y, s)f(s)e−γsb(um(y, t− s))dyds,

x ∈ Ω, t > 0,

(1.3)

subject to homogeneous Neumann boundary conditions

~n · ∇ui = ~n · ∇um = 0 on ∂Ω,

where ~n is an outward normal to ∂Ω, Ω ⊂ RN is bounded. They proved that the

positive equilibria of system (1.2) and (1.3) are stable under some assumptions about
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the functions b and d. In [3], Al-Omari and Gourley further studied the following

system 

∂ui
∂t

= Di
∂2ui
∂x2

+ αum − γui

−α
∫∞

0

∫∞
−∞

1√
4πDis

e
− (x−y)2

4Dis um(y, t− s)e−γsf(s)dyds,
∂um
∂t

= Dm
∂2um
∂x2
− βu2

m

+α
∫∞

0

∫∞
−∞

1√
4πDis

e
− (x−y)2

4Dis um(y, t− s)e−γsf(s)dyds,

(1.4)

where x ∈ (−∞,∞). When f(s) = (s/τ 2)e−s/τ , they proved that system (1.4)

admits traveling waves connecting two equilibria. Weng and Wu [31] also studied

the existence of traveling waves for the second equation of system (1.4).

Another important single-species model with diffusion and stage-structure is the

following equation:

∂w

∂t
= Dm

∂2w

∂x2
− dmw + ε

∫ ∞
−∞

b
(
w(y, t− r0)

) 1√
4πα

e−
(x−y)2

4α dy, (1.5)

which was derived by So et al. [25]. In (1.5), w(x, t) is the total matured population

at time t > 0 and position x ∈ R; Dm and dm are the diffusion and death rates

for the mature population respectively; r0 is the maturation time and b(·) is the

birth function. There have been many studies on the existence and stability of

traveling waves of (1.5), see [7, 12, 20, 23, 28]. However, the mature time of the

individuals in (1.5) are the same, which is not realistic as mentioned in the previous.

Therefore, Gourley and So [10] further proposed and studied the following model

with distributed mature time

∂w

∂t
= D

∂2w

∂x2
− dw +

∫ ∞
0

f(a)e−da
∫ ∞
−∞

b(w(y, t− a))
1√

4πDa
e−

(x−y)2
4Da dyda. (1.6)

For more details on the studies of traveling wave solutions of (1.4), (1.5) and (1.6),

we refer to [7, 9, 10, 12, 16, 18, 22, 23, 27, 28, 29] and the references therein.

For the model (1.5), its discrete version was firstly proposed by Weng et al. [30].

They considered the growth of a single-species population living in a patch environ-

ment consisting of all integer nodes of a 1D lattice. They divided the population into

two ages classes: immature and mature, and assumed that the mature periods of all

individuals are same as those in So et al. [25]. By the discrete Fourier transform,
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Weng et al. [30] obtained the following lattice differential equations

dwj(t)

dt
=Dm[wj+1(t) + wj−1(t)− 2wj(t)]− dmwj(t)

+
µ

2π

∞∑
k=−∞

βα(j − k)b
(
wk(t− r)

)
,

(1.7)

where βα(l) = 2e−ν
∫ π

0
cos(lω)eν cosωdω for ν := 2α. They established the spreading

speed and the existence of monotone traveling waves for (1.7) when the birth function

is monotone. They further showed that the minimal wave speed coincides with the

spreading speed. For more studies on (1.7), we refer to [6, 11, 12, 15, 16, 19, 21, 22,

30, 32].

Cheng et al. [4] extended the work of Weng et al. [30] and proposed the following

lattice equation

dwk,j(t)

dt
=Dm[wk+1,j(t) + wk−1,j(t) + wk,j+1(t) + wk,j−1(t)− 4wk,j(t)]

− dmwk,j(t) +
µ

(2π)2

∞∑
l=−∞

∞∑
q=−∞

βα(l)γα(q)b(wk+l,j+q(t− r)),
(1.8)

which models the growth of a single-species population with two age classes dis-

tributed over a patchy environment consisting of all integer nodes of a 2D lattice.

They studied the well-posedness of the initial-value problem and established the exis-

tence of monotone traveling waves for wave speed c ≥ c∗(θ) > 0, where θ is any fixed

direction of propagation. They further showed that the minimal wave speed c∗(θ)

coincides with the asymptotic speed of spread for any fixed direction θ ∈ [0, 2π].

They showed that the asymptotic speed of propagation depends on not only the

maturation period and the diffusion rate of mature population monotonically but

also the direction of propagation, which is different from the case when the spatial

variable is continuous. In Cheng et al. [5], the authors established the asymptotic

stability of traveling wave fronts for equation (1.8) when immature population is

not mobile.

The aim of the current paper is to modify (1.8) to allow for the fact that the

time from birth to maturity may be rather imperfectly known, or it might vary

from individual to individual, as done by Gourley and So [10]. Therefore, in this

paper we firstly derive a lattice differential equations with distribution mature delay

in 2D lattice and then establish the well-posedness of the nontrivial traveling wave

solutions for the equations. This paper is organized as follows. In Section 2, we

derive the lattice differential equations (2.7) and show some properties of equation
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(2.7). The existence of non-trivial traveling waves of equation (2.7) is obtained in

Section 3, where we consider two cases, namely, the monotone birth function and

the non-monotone birth function.

2 Model derivation

Let uk,j(t, a) ≥ 0 denote the population density of the species of the (k, j)−th patch

at time t ≥ 0 and age a ≥ 0. Assume that the patches are located at the integer

nodes of a 2D lattice and spatial diffusion occurs only at the nearest neighborhood.

From Metz and Diekmann [24], we can obtain the following model:

∂

∂t
uk,j(t, a) +

∂

∂a
uk,j(t, a) =D(a)[uk+1,j(t, a) + uk−1,j(t, a) + uk,j+1(t, a)

+ uk,j−1(t, a)− 4uk,j(t, a)]− d(a)uk,j(t, a),

t > 0, (k, j) ∈ Z× Z,

(2.1)

where D(a) and d(a) are the diffusion and death rates at age a, respectively. Assume

that uk,j(t,∞) = 0 for t ≥ 0, (k, j) ∈ Z×Z. We want an expression for wk,j(t), that

is the total matured population at time t and (k, j) ∈ Z× Z. Let

f(r)dr = probability of maturing between the ages r and r + dr, (2.2)

where f(r) is the probability of maturing at each age r. Note that the probability

of maturing before age a is

F (a) :=

∫ a

0

f(r)dr. (2.3)

Since f is a probability density function, we assume f(r) ≥ 0, and of course,∫∞
0
f(r)dr = 1. Of the total number of mature adults, the number that matured

between age r and r + dr is

(number of age at least r)×(probability of having matured between ages r and r+dr),

or from (2.2), (∫ ∞
r

uk,j(t, a)da

)
· f(r)dr.

Thus, the total number of matures is

wk,j(t) =

∫ ∞
0

(∫ ∞
r

uk,j(t, a)da

)
· f(r)dr.
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Reversing the order of integration yields the following alternative expression:

wk,j(t) =

∫ ∞
0

uk,j(t, a)

(∫ a

0

f(r)dr

)
da =

∫ ∞
0

uk,j(t, a)F (a)da, (2.4)

where F (a) is given by (2.3).

In the following, we want to find a differential equation satisfied by wk,j(t).

Differentiating (2.4) with respect to t, together with (2.1), one sees that

dwk,j(t)

dt
=

∫ ∞
0

∂uk,j(t, a)

∂t
F (a)da

=

∫ ∞
0

{
− ∂uk,j(t, a)

∂a
+D(a)[uk+1,j(t, a) + uk−1,j(t, a) + uk,j+1(t, a)

+ uk,j−1(t, a)− 4uk,j(t, a)]− d(a)uk,j(t, a)
}
F (a)da. (2.5)

In this paper we shall assume that the diffusion coefficient and death rate are

age independent. i.e. D(a) = D and d(a) = d for a ∈ [0,∞), where D and d are

positive constants. From (2.5),

dwk,j(t)

dt
=−

∫ ∞
0

F (a)
∂uk,j(t, a)

∂a
da+D

[
wk+1,j(t) + wk−1,j(t)

+ wk,j+1(t) + wk,j−1(t)− 4wk,j(t)
]
− dwk,j(t).

Integrating by parts on the first term, and using F (0) = 0 and uk,j(t,∞) = 0, we

obtain

dwk,j(t)

dt
=

∫ ∞
0

f(a)uk,j(t, a)da+D
[
wk+1,j(t) + wk−1,j(t) + wk,j+1(t)

+ wk,j−1(t)− 4wk,j(t)
]
− dwk,j(t).

(2.6)

By an argument similar to that of Cheng et al. [4], using discrete Fourier trans-

formation and inverse discrete Fourier transformation(see [8, 26]), we obtain a closed

system as follows:

dwk,j(t)

dt
=D[wk+1,j(t) + wk−1,j(t) + wk,j+1(t) + wk,j−1(t)− 4wk,j(t)]− dwk,j(t)

+
1

(2π)2

∞∑
l=−∞

∞∑
q=−∞

[∫ ∞
0

βα(l)γα(q)b
(
wk+l,j+q(t− a)

)
e−daf(a)da

]
,

(2.7)
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where α = Da, b : R+ → R+ is a birth function and

βα(l) = Re

∫ π

−π
eilω1−4α sin2 ω1

2 dω1 = 2e−ν
∫ π

0

cos(lω1)eν cosω1dω1, (ν := 2α), (2.8)

γα(l) = Re

∫ π

−π
eilω2−4α sin2 ω2

2 dω2 = 2e−ν
∫ π

0

cos(lω2)eν cosω2dω2, (ν := 2α), (2.9)

for any l ∈ Z.

The following lemma gives the properties of βα and γα, see [30, 4].

Lemma 2.1 Let βα and γα be given in (2.8) and (2.9), respectively. Then the

following holds:

(1) βα(l) = βα(|l|), γα(l) = γα(|l|),∀l ∈ Z. i.e. βα(l) and γα(l) are isotropic

functions for any α ≥ 0;

(2) 1
2π

∑∞
l=−∞ βα(l) = 1, 1

2π

∑∞
l=−∞ γα(l) = 1;

(3) βα(l) ≥ 0, γα(l) ≥ 0 if α = 0 and l ∈ Z; βα(l) > 0, γα(l) > 0 if α >

0 and l ∈ Z.

3 Existence of traveling waves

In this section, we establish the existence of traveling waves for the lattice differential

equation (2.7) when it has a positive equilibrium. We will consider two cases: (a)

the birth function b(·) is monotone; (b) the birth function b(·) is nonmonotone.

3.1 Monotone birth functions

We assume that the birth function b : R+ → R+ satisfies (Hb).

(Hb) b is local Lipschitz continuous and b′(0) exists. Furthermore, b satisfies the

following:

(1) b(0) = 0, b′(0)f̄(d) > d, b(w) ≤ b′(0)w for any w ∈ R+, where f̄(d) =∫∞
0
e−daf(a)da;

(2) f̄(d)b(w) = dw admits a unique positive solution w∗ > 0 and b is nonde-

creasing in [0, w∗], where f̄(d) =
∫∞

0
e−daf(a)da;

(3) There exist constants ρ ∈ (0, 1], M0 > 0 and η ∈ (0, w∗) such that

b′(0)w − b(w) < M0w
1+ρ for any w ∈ (0, η);

(4) b(w)f̄(d) > dw for w ∈ (0, w∗).
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A traveling wave solution of lattice differential equation (2.7) is a solution with

the form

wk,j(t) = φ(k cos θ + j sin θ + ct),

where θ ∈ [0, 2π] is any fixed direction of propagation, c > 0 is the wave speed.

Denote

s = k cos θ + j sin θ + ct.

Substituting it into (2.7), we have that φ(·) satisfies

cφ′(s) + (4D + d)φ(s)

=D
[
φ(s+ cos θ) + φ(s− cos θ) + φ(s+ sin θ) + φ(s− sin θ)

]
(3.1)

+
1

(2π)2

∞∑
l=−∞

∞∑
q=−∞

[∫ ∞
0

βα(l)γα(q)b
(
φ(s+ l cos θ + q sin θ − ca)

)
e−daf(a)da

]
.

In view of the symmetry and periodicity in equation (3.1), it is sufficient to consider

θ ∈ [0, π
2
]. Let θ ∈ [0, π

2
]. Denoting C = C(R, [0, K]), we define

S =

{
φ ∈ C

∣∣∣∣∣ (i) φ(s) is nondecreasing, for any s ∈ R;

(ii) lims→−∞ φ(s) = 0, lims→∞ φ(s) = w∗.

}
Define two operators A and H on C by

A(φ)(s) = φ(s+ cos θ) + φ(s− cos θ) + φ(s+ sin θ) + φ(s− sin θ),

H(φ)(s) =
1

(2π)2

∞∑
l=−∞

∞∑
q=−∞

[∫ ∞
0

βα(l)γα(q)b
(
φ(s+ l cos θ + q sin θ − ca)

)
e−daf(a)da

]
.

Definition 3.1 A function U ∈ C is called an upper solution of (3.1) if U is dif-

ferentiable almost everywhere on R and satisfies the following inequality

cU ′(s) ≥ D[A(U)(s)− 4U(s)]− dU(s) +H(U)(s).

A lower solution can be defined similarly by reversing the inequality above.

Linearize (3.1) at the trivial equilibrium w0 = 0, and we denote the characteristic

equation by ∆(λ, c, θ) = 0. It can be seen that

∆(λ, c, θ) =− cλ+D[eλ cos θ + e−λ cos θ + eλ sin θ + e−λ sin θ − 4]− d

+ b′(0)

∫ ∞
0

[
1

2π

∞∑
l=−∞

βα(l)eλl cos θ

][
1

2π

∞∑
q=−∞

γα(q)eλq sin θ

]
e−(cλ+d)af(a)da.
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Let

S(α) =
1

2π

∞∑
l=−∞

βα(l)eλl cos θ, T (α) =
1

2π

∞∑
q=−∞

γα(q)eλq sin θ.

Since S(0) = 1 and

dS(α)

dα
= S(α)(eλ cos θ + e−λ cos θ − 2),

we have

S(α) = exp
{

(eλ cos θ + e−λ cos θ − 2)α
}

= exp
{

2α[cosh(λ cos θ)− 1]
}
.

Similarly,

T (α) = exp
{

2α[cosh(λ sin θ)− 1]
}
.

Using the expressions of S(α) and T (α), we rewrite ∆(λ, c, θ) as

∆(λ, c, θ) =b′(0)

∫ ∞
0

exp {2α[cosh(λ cos θ) + cosh(λ sin θ)− 2]− (cλ+ d)a} f(a)da

− cλ+D
(
eλ cos θ + e−λ cos θ + eλ sin θ + e−λ sin θ − 4

)
− d.

It is obvious that lim
λ→+∞

∆(λ, c, θ) = +∞ and

∆(0, c, θ) = b′(0)

∫ ∞
0

e−daf(a)da− d = b′(0)f̄(d)− d > 0 for c ∈ R.

By simple computations, we have

∂∆(λ, c, θ)

∂λ
=− c+D

[
cos θeλ cos θ − cos θe−λ cos θ + sin θeλ sin θ − sin θe−λ sin θ

]
+ b′(0)

∫ ∞
0

exp
{

2α[cosh(λ cos θ) + cosh(λ sin θ)− 2]− (cλ+ d)a
}

×
{

2α[sinh(λ cos θ) · cos θ + sinh(λ sin θ) · sin θ]− ca
}
f(a)da,

∂2∆(λ, c, θ)

∂λ2
=D

[
cos2 θeλ cos θ + cos2 θe−λ cos θ + sin2 θeλ sin θ + sin2 θe−λ sin θ

]
+ b′(0)

∫ ∞
0

exp
{

2α[cosh(λ cos θ) + cosh(λ sin θ)− 2]− (cλ+ d)a
}

×
{

2α
[

sinh(λ cos θ) · cos θ + sinh(λ sin θ) · sin θ]− ca
}2
f(a)da

+ b′(0)

∫ ∞
0

exp
{

2α[cosh(λ cos θ) + cosh(λ sin θ)− 2
]
− (cλ+ d)a

}
EJQTDE, 2013 No. 44, p. 9



× 2α
[
cosh(λ cos θ) · cos2 θ + cosh(λ sin θ) · sin2 θ

]
f(a)da

>0

and
∂∆(λ, c, θ)

∂λ
|λ=0 = −c− cb′(0)

∫ ∞
0

ae−daf(a)da < 0 for c > 0.

Then ∆(λ, c, θ) is convex with respect to λ. Differentiating ∆(λ, c, θ) with respect

to c > 0, we obtain that

∂∆(λ, c, θ)

∂c
=− λ

{
1 + b′(0)

∫ ∞
0

exp
{

2α[cosh(λ cos θ) + cosh(λ sin θ)− 2]

− (cλ+ d)a
}
af(a)da

}
< 0

for λ > 0. Furthermore, it is easy to show that ∆(λ, 0, θ) > 0 and limc→+∞∆(λ, c, θ) =

−∞ for any given λ > 0.

Summarizing the above discussion, we have the following assertion.

Lemma 3.2 For any fixed θ ∈ [0, π
2
], there exists a pair of c∗(θ) and λ∗, such that

(1) ∆(λ∗, c∗(θ), θ) = 0, ∂
∂λ

∆(λ∗, c∗(θ), θ) = 0;

(2) ∆(λ, c, θ) > 0 for 0 < c < c∗(θ) and any λ > 0;

(3) For any c > c∗(θ), equation ∆(λ, c, θ) = 0 has two positive real solutions 0 <

λ1 < λ2 such that ∆(·, c, θ) < 0 in (λ1, λ2) and ∆(·, c, θ) > 0 in R/[λ1, λ2].

Define

φ+(s) =
{ w∗, s ≥ 0,

eλ1sw∗, s ≤ 0,
(3.2)

and

φ−(s) =
{ 0, s ≥ −1

ε
lnM,

w∗(1−Meεs)eλ1s, s ≤ −1
ε

lnM,
(3.3)

where 0 < ε < 1
2
λ1ρ, ε < λ2 − λ1, λ1 and λ2 are given in Lemma 3.2. Choose

M > 1 large enough so that φ−(s) < η for s ∈ R, where η is a given constant by the

assumption (Hb).

Lemma 3.3 For functions φ+(s) and φ−(s) given by (3.2) and (3.3), if M > 1 is

large enough, then φ+(s) and φ−(s) are a pair of upper and lower solutions of (3.1).

Proof. We first prove that φ+(s) is an upper solution of (3.1).
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For s > 0, φ+(s) = w∗. By Lemma 2.1 (2), and the monotonicity of b(·), we

have

− cφ+′(s) +D
[
A
(
φ+
)

(s)− 4φ+(s)
]
− dφ+(s) +H(φ+)(s)

≤D(w∗ + w∗ + w∗ + w∗ − 4w∗)− dw∗ + b(w∗)f̄(d) = 0.

For s ≤ 0, φ+(s) = eλ1sw∗. Since φ+(s) ≤ eλ1sw∗ for s ∈ R and b(w) ≤ b′(0)w for

w ≥ 0, we have

− cφ+′(s) +D
[
A
(
φ+
)

(s)− 4φ+(s)
]
− dφ+(s) +H(φ+)(s)

≤eλ1sw∗
[
− cλ1 +D

(
eλ1 cos θ + e−λ1 cos θ + eλ1 sin θ + e−λ1 sin θ − 4

)
− d
]

+
b′(0)

(2π)2
eλ1sw∗

∫ ∞
0

∞∑
l=−∞

∞∑
q=−∞

βα(l)γα(q)eλ1l cos θ+λ1q sin θe−(cλ1+d)af(a)da = 0.

Hence, φ+(s) is an upper solution of (3.1).

Next, we prove that φ−(s) is a lower solution of (3.1). Obviously, φ−(s) ≥ 0 and

H(φ−)(s) ≥ 0 for s ∈ R. If s ≥ −1
ε

lnM , then φ−(s) = 0. It follows that

− cφ−′(s) +D
[
A
(
φ−
)

(s)− 4φ−(s)
]
− dφ−(s) +H(φ−)(s)

=D
[
φ−(s+ cos θ) + φ−(s− cos θ) + φ−(s+ sin θ) + φ−(s− sin θ)

]
+H(φ−)(s) ≥ 0.

Notice that w∗(1 −Meεs)eλ1s ≤ φ−(s) ≤ w∗eλ1s and 0 ≤ φ−(s) ≤ η for all s ∈ R.

Then, if s ≤ −1
ε

lnM , we have φ−(s) = w∗(1−Meεs)eλ1s. In view of ∆(λ1+ε, c, θ) <

0, one sees that

−cφ−′(s) +D
[
A
(
φ−
)

(s)− 4φ−(s)
]
− dφ−(s) +H(φ−)(s)

≥ −cφ−′(s) +D
[
A
(
φ−
)

(s)− 4φ−(s)
]
− dφ−(s)

+
b′(0)

(2π)2

∞∑
l=−∞

∞∑
q=−∞

[∫ ∞
0

βα(l)γα(q)φ−(s+ l cos θ + q sin θ − ca)e−daf(a)da

]

− M0

(2π)2

∞∑
l=−∞

∞∑
q=−∞

[∫ ∞
0

βα(l)γα(q)
(
φ−(s+ l cos θ + q sin θ − ca)

)1+ρ
e−daf(a)da

]

≥ w∗eλ1s∆(λ1, c, θ)− w∗Me(λ1+ε)s∆(λ1 + ε, c, θ)− M0 (w∗)1+ρ

(2π)2
eλ1(1+ρ)s

×
∞∑

l=−∞

∞∑
q=−∞

[∫ ∞
0

βα(l)γα(q) exp {λ1(1 + ρ)(l cos θ + q sin θ − ca)} e−daf(a)da

]

≥ −w∗Me(λ1+ε)s∆(λ1 + ε, c, θ)− M0 (w∗)1+ρ

(2π)2

(
1

M

)λ1ρ−ε
ε

e(λ1+ε)s
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×
∞∑

l=−∞

∞∑
q=−∞

[∫ ∞
0

βα(l)γα(q) exp {λ1(1 + ρ)(l cos θ + q sin θ − ca)} e−daf(a)da

]
≥ 0

provided that M > 1 large enough. Hence, φ−(s) is a lower solution of (3.1). This

completes the proof. �
Let δ = 4D + d. Define an operator F : S → C by

F(φ)(s) =
1

c
e−

δs
c

∫ s

−∞
e
δτ
c

{
DA(φ)(τ) +H(φ)(τ)

}
dτ,

It is easy to find that F is well-defined and a fixed point of F is a solution of (3.1).

Lemma 3.4 (1) φ−(s) ≤ F(φ−)(s) ≤ F(φ+)(s) ≤ φ+(s) for any s ∈ R;

(2) If φ(s) ≤ ψ(s) for any φ, ψ ∈ C (R, [0, w∗]) with s ∈ R, then F(φ)(s) ≤
F(ψ)(s) for any s ∈ R;

(3) F(φ) ∈ S for any φ ∈ S;

(4) There exists KS > 0 such that for any φ ∈ S, it holds that ‖F(φ)(·)‖C1,1 ≤
KS.

By Lemma 3.3 and the monotonicity of H, we can easily obtain (1)-(3) of Lemma

3.4, see also Ma [17]. Differentiating with F(φ)(s) and using the Lipschitz continuity

of b, we can prove Lemma 3.4 (4).

Define an iteration sequence φn = Fφn−1, n ≥ 1, φ0 = φ+. It follows from Lemma

3.4 that,

φ−(s) ≤ · · · ≤ φn(s) ≤ φn−1(s) ≤ · · · ≤ φ1(s) ≤ φ+(s),∀s ∈ R. (3.4)

By (3.4) and Lemma 3.4 (4), there exists a function φ∗ ∈ C1 (R, [0, w∗]) such that

φn(·) converge to φ∗ in C1
loc. It follows from the Lebesgue dominated convergence

theorem that φ∗ is a fixed point of F , which is also a solution of (3.1). Furthermore,

φ∗ is nondecreasing and satisfies

φ−(s) ≤ φ∗(s) ≤ φ+(s), s ∈ R.

It is easy to show that lim
s→−∞

φ∗(s) = 0 and lim
s→∞

φ∗(s) = u∗ > 0, where u∗ is a

constant. Especially, 0 < u∗ ≤ w∗. By the standard discussion (see Ma [17], Wu

and Zou [33]), we get u∗ = w∗. From the above arguments, we have proved the

following theorem.
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Theorem 3.5 Assume that b : R+ → R+ satisfies (Hb). For each θ ∈ [0, π
2
], there

exists c∗(θ) > 0 defined in Lemma 3.2 such that for any c > c∗(θ), (2.7) has a

monotone traveling wave φ∗ : R→ R such that

lim
s→−∞

φ∗(s) = 0 and lim
s→∞

φ∗(s) = w∗.

3.2 Nonmonotone birth functions

In this subsection, we establish the existence of nontrivial traveling waves when

the birth function b(·) is nonmonotone. The main method is to construct two aux-

iliary lattice differential equations with monotone birth functions and then apply

Schauder’s fixed-point theorem.

At first, let b satisfy the following assumption:

(H′b) b : R+ → R+ is local Lipschitz continuous, and

(1) b(0) = 0, b′(0)f̄(d) > d, b′′(0) exists, b(w) ≤ b′(0)w for any w > 0, where

f̄(d) =
∫∞

0
e−daf(a)da;

(2) f̄(d)b+(w) = dw has a unique positive solution w∗+, where

f̄(d) =
∫∞

0
e−daf(a)da;

(3) there exist positive constants ρ ∈ (0, 1], M0 > 0 and η ∈ (0, w∗+) such that

b′(0)w − b(w) < M0w
1+ρ and b±(w) = b(w) for any w ∈ (0, η), where b±(w)

are defined as follows:

b+(w) := max
v∈[0,w]

b(v), b−(w) := min
v∈[w,w∗

+]
b(v).

It is obvious that b− and b+ are nondecreasing and satisfy

b−(w) ≤ b(w) ≤ b+(w) for w ∈ [0, w∗+].

If b is nondecreasing, then b± = b and (H ′b) reduces into (Hb). If f̄(d)b(w) = dw has

a unique positive solution w∗, then

f̄(d)b(w) > dw for 0 < w < w∗

and

f̄(d)b(w) < dw for w > w∗.

Thus (H ′b)(2) holds. (H ′b)(3) implies that both f̄(d)b−(w) = dw and f̄(d)b(w) = dw

have minimum positive solutions in (0, w∗+], denoting by w∗− and w∗ respectively.

Obviously, if b satisfies (H ′b), then b± satisfies (Hb). Hereafter, we assume that w∗−
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and w∗ are the minimum positive solutions of f̄(d)b−(w) = dw and f̄(d)b(w) = dw

in [0, w∗+], respectively. In particular, b′+(0) = b′−(0) = b′(0).

We consider the following two equations:

dwk,j(t)

dt
=D

[
wk+1,j(t) + wk−1,j(t) + wk,j+1(t) + wk,j−1(t)− 4wk,j(t)

]
− dwk,j(t)

+
1

(2π)2

∞∑
l=−∞

∞∑
q=−∞

[ ∫ ∞
0

βα(l)γα(q)b+

(
wk+l,j+q(t− a)

)
e−daf(a)da

]
(3.5)

and

dwk,j(t)

dt
=D

[
wk+1,j(t) + wk−1,j(t) + wk,j+1(t) + wk,j−1(t)− 4wk,j(t)

]
− dwk,j(t)

+
1

(2π)2

∞∑
l=−∞

∞∑
q=−∞

[ ∫ ∞
0

βα(l)γα(q)b−
(
wk+l,j+q(t− a)

)
e−daf(a)da

]
.

(3.6)

The traveling wave equations of (3.5) and (3.6) are

cφ′(s)=D
[
A(φ)(s)− 4φ(s)

]
− dφ(s)

+
1

(2π)2

∞∑
l=−∞

∞∑
q=−∞

[∫ ∞
0

βα(l)γα(q)b+

(
φ(s+ l cos θ + q sin θ − ca)

)
e−daf(a)da

]
and

cφ′(s)=D
[
A(φ)(s)− 4φ(s)

]
− dφ(s)

+
1

(2π)2

∞∑
l=−∞

∞∑
q=−∞

[∫ ∞
0

βα(l)γα(q)b−
(
φ(s+ l cos θ + q sin θ − ca)

)
e−daf(a)da

]
,

respectively.

The following lemma is the immediate consequence of Theorem 3.5.

Lemma 3.6 Let b satisfy (H ′b). Then for any θ ∈ [0, π
2
], there exists c∗(θ) > 0 de-

fined in Lemma 3.2 such that for any c > c∗(θ), both (3.5) and (3.6) admit monotone

traveling wave solutions ψ+(s) and ψ−(s), respectively, such that

lim
s→−∞

ψ+(s) = lim
s→−∞

ψ−(s) = 0,

lim
s→∞

ψ+(s) = w∗+, lim
s→∞

ψ−(s) = w∗−

and

lim
s→∞

ψ+(s) ≤ w∗+e
λ1s, lim

s→∞
ψ−(s) ≤ w∗−e

λ1s, ∀s ∈ R.
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Define b̄(w) := 1
d
b(w). Assume

(P) For any u, v ∈ [w∗−, w
∗
+], if u ≤ w∗ ≤ v, u ≥ b̄(v) and v ≤ b̄(u), then u = v.

Similar to the discussion of Hus and Zhao [14, Lemma2.1] (see Fang et al. [6]),

it follows that one of the following is the sufficient condition for (P ):

(P1) wb(w) is strictly increasing for w ∈ [w∗−, w
∗
+];

(P2) b(w) is nonincreasing for w ∈ [w∗, w∗+] and b̂(w)
w

is strictly decreasing for w ∈
(0, w∗], where b̂(w) = b̄

(
b̄(w)

)
.

Theorem 3.7 Let b satisfy (H ′b). Then for any θ ∈ [0, π
2
], there exists c∗(θ) > 0

defined in Lemma 3.2 such that for any c > c∗(θ), (2.7) has a traveling wave solution

φ(s) satisfying

φ(−∞) = 0, w∗− ≤ lim inf
s→∞

φ(s) ≤ lim sup
s→∞

φ(s) ≤ w∗+.

Furthermore, if b(w)/w is strictly decreasing in w ∈ [w∗−, w
∗
+] and (P ) holds, then

φ(+∞) = w∗.

Proof. It is obvious that traveling wave equation φ(s) of (3.1) is a solution of the

following equation:

φ′(s) +
δ

c
φ(s) = Ĥ(φ)(s), (3.7)

where

Ĥ(φ)(s) =
D

c

[
φ(s+ cos θ) + φ(s− cos θ) + φ(s+ sin θ) + φ(s− sin θ)

]
+

1

c(2π)2

∞∑
l=−∞

∞∑
q=−∞

[ ∫ ∞
0

βα(l)γα(q)b
(
φ(s+ l cos θ

+ q sin θ − ca)
)
e−daf(a)da

]
.

(3.8)

We define Ĥ+ and Ĥ− by replacing b in (3.8) with b+ and b−, respectively. It is easy

to show that Ĥ± are nondecreasing and satisfy

Ĥ(w∗) =
δ

c
w∗, Ĥ+(w∗+) =

δ

c
w∗+, Ĥ−(w∗−) =

δ

c
w∗−

and

Ĥ(0) = Ĥ+(0) = Ĥ−(0) = 0.
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Notice that equation (3.7) is equivalent to

φ(s) = e−
δ
c
s

∫ s

−∞
e
δ
c
τĤ(φ)(τ)dτ.

We can define an operator T : C
(
R, [0, w∗+]

)
→ C (R) as follows:

T (φ)(s) = e−
δ
c
s

∫ s

−∞
e
δ
c
τĤ(φ)(τ)dτ. (3.9)

Similarly, define T+ and T− by replacing Ĥ in (3.9) with Ĥ+ and Ĥ−, respectively.

It is not difficult to show that T± are nondecreasing and satisfy

T (w∗) = w∗, T+(w∗+) = w∗+, T−(w∗−) = w∗−

and

T−(ϕ) ≤ T (ϕ) ≤ T+(ϕ), ∀ϕ ∈ C
(
R, [0, w∗+]

)
.

For any c > c∗(θ), let λ1 = λ1(c) (see Lemma 3.2). Define

φ̄(s) =
{ w∗+, s ≥ 0,

eλ1sw∗+, s < 0,
φ(s) = φ−(s), s ∈ R.

where φ−(s) is a traveling wave solution of equation (3.6). By Lemma 3.4, it is easy

to show

T−(φ)(s) = φ(s), T+(φ̄)(s) ≤ φ̄(s).

For any given λ > 0, let

Xλ :=
{
ϕ ∈ C(R,R)

∣∣∣∣sup
x∈R
|ϕ(x)|e−λx <∞

}
and ‖ϕ‖λ = sup

x∈R
|ϕ(x)|e−λx. Then (Xλ, ‖ · ‖λ) is a Banach space. Notice that both φ

and φ̄ are elements of Xλ for any given λ ∈ (0, λ1). Define

Y :=
{
ϕ ∈ Xλ

∣∣φ ≤ ϕ ≤ φ̄
}
.

Obviously, Y is a convex and closed subset of Xλ. For any ϕ ∈ Y , it holds that

φ = T−(φ) ≤ T−(ϕ) ≤ T (ϕ) ≤ T+(ϕ) ≤ T+(φ̄) ≤ φ̄.

Thus, T (Y ) ⊂ Y.
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Next, we show that T is completely continuous on Y . For any ϕ, ψ ∈ Y ,

‖Ĥ(ϕ)− Ĥ(ψ)‖λ = sup
x∈R
|Ĥ(ϕ)(x)− Ĥ(ψ)(x)|e−λx

≤
{D
c

(
eλ cos θ + e−λ cos θ + eλ sin θ + e−λ sin θ

)
+

Lb
c(2π)2

∞∑
l=−∞

∞∑
q=−∞

[ ∫ ∞
0

βα(l)γα(q)eλ(l cos θ+q sin θ−ca)e−daf(a)da
]}
‖ϕ− ψ‖λ

:=M ′‖ϕ− ψ‖λ,

where Lb is a Lipschitz constant of b(w) in [0, w∗+]. It follows that

‖T (ϕ)− T (ψ)‖λ

≤ sup
x∈R

∣∣∣∣e− δcx ∫ x

−∞
e
δ
c
yĤ(ϕ)(y)dy − e−

δ
c
x

∫ x

−∞
e
δ
c
yĤ(ψ)(y)dy

∣∣∣∣ e−λx
≤ sup

x∈R
e−( δ

c
+λ)x

∫ x

−∞
e( δ

c
+λ)y

∥∥∥Ĥ(ϕ)− Ĥ(ψ)
∥∥∥
λ
dy

≤ sup
x∈R

e−( δ
c
+λ)x

∫ x

−∞
M ′e( δ

c
+λ)y‖ϕ− ψ‖λdy =

cM ′

δ + cλ
‖ϕ− ψ‖λ.

Therefore, T is continuous on Y .

Notice that Ĥ is uniformly bounded on Y . Then there exists M ′′ > 0 such that∣∣∣∣ ddsT (ϕ)(s)

∣∣∣∣ =

∣∣∣∣−δce− δc s
∫ s

−∞
e
δ
c
τĤ(ϕ)(τ)dτ + Ĥ(ϕ)(s)

∣∣∣∣ ≤M ′′

for any ϕ ∈ Y . Therefore, T (Y ) is a family of uniformly bounded and equicontinuous

functions on R. For any given sequence {ψn}n≥1 in T (Y ), there exists ψ ∈ C(R,R)

such that ψn(x) → ψ(x) uniformly for any bounded subset of R (by passing to a

subsequence if necessary, still denoted by {ψn}n≥1). Since φ ≤ ψn ≤ φ̄, we have

φ ≤ ψ ≤ φ̄ and ψ ∈ Y . Since lim
|x|→∞

|φ̄(x) − φ(x)|e−λx = 0, for any given ε > 0,

there exist B > 0 and N > 1 such that 0 ≤ |φ̄(x) − φ(x)|e−λx < ε if |x| ≥ B, and

|ψn(x) − ψ(x)|e−λx < ε if |x| ≤ B with n ≥ N . Thus, for any n ≥ N we have

‖ψn − ψ‖λ < ε. Therefore, T (Y ) is compact in Xλ. By the Schauder’s fixed-point

theorem, the operator T has a fixed point φ in Y . Clearly, φ is non-trivial and

satisfies φ(−∞) = 0 and

φ−(s) ≤ φ(s) ≤ min
{
w∗+, w

∗
+e

λ1s
}
.

Similar to the proof of Hus and Zhao [14, Theorem 3.1], we can get that b(w)/w

is strictly decreasing in w ∈ [w∗−, w
∗
+], and φ(+∞) = w∗ if (P ) holds. This completes

the proof. �
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3.3 An example

In this subsection, we illustrate the results of the previous by examining an equation

derived by Gurney et. al. [13] as a model of the population dynamics of a species of

fly. Namely, we take b(w) = pwe−rw and f(a) = 2√
π
e−a

2
, where p and r are positive

constants. Then (2.7) becomes

dwk,j(t)

dt
=D[wk+1,j(t) + wk−1,j(t) + wk,j+1(t) + wk,j−1(t)− 4wk,j(t)]

− dwk,j(t) +
1

(2π)2

∞∑
l=−∞

∞∑
q=−∞

[∫ ∞
0

βα(l)γα(q)

×
(
pwk+l,j+q(t− a)e−rwk+l,j+q(t−a)

)
e−da

( 2√
π
e−a

2
)
da

]
.

(3.10)

Let

f̄(d) =

∫ ∞
0

e−daf(a)da = e
d2

4

(
1− 2√

π

∫ d
2

0

e−x
2

dx
)

and

w∗ =
1

r
ln
(p
d
f̄(d)

)
.

Then we consider two cases:

Case (i): 1 < p
d
f̄(d) ≤ e. In this case we can confirm that the assumption (Hb)

holds. Consequently, applying Theorem 3.5 yields that for each θ ∈ [0, π
2
], there

exists c∗(θ) > 0 such that for any c > c∗(θ), (3.10) has a monotone traveling wave

solution connecting two equilibria 0 and w∗.

The remainder is to show that (Hb) holds for b(w) = pwe−rw if 1 < p
d
f̄(d) ≤

e. Firstly, b(w) = pwe−rw is Lipschitz continuous in w ∈ [0,∞). By a simple

computation, we obtain b(0) = 0 and b′(0) = p. Since p
d
f̄(d) > 1, we have b′(0)f̄(d) >

d. In addition, we have b(w) = pwe−rw ≤ pw = b′(0)w for w ≥ 0. Thus, (Hb)(1)

holds. It is easy to calculate that w∗ = 1
r

ln(p
d
f̄(d)) is the unique positive solution of

f̄(d)b(w) = dw. Suppose 1 < p
d
f̄(d) ≤ e, then b(w) is nondecreasing in [0, w∗] and

f̄(d)b(w) > dw for w ∈ (0, w∗), which implies that (Hb)(2) and (Hb)(4) hold. From

the fact that b ∈ C2([0,+∞)), it is easy to prove that (Hb)(3) holds. This completes

the proof.

Case (ii): p
d
f̄(d) > e. We note that the function b(w) = pwe−rw is increasing in

w ∈
(
0, 1

r

)
and is decreasing in w ∈

(
1
r
,+∞

)
. Define

b+(w) =

{
b(w), 0 ≤ w ≤ 1

r
,

b(1
r
) = p

er
, w > 1

r
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and

b−(w) =

{
b(w), 0 ≤ w ≤ w∗0,

b(w∗0) := b(w∗+) = p2

erd
f̄(d)e−

p
de
f̄(d), w > w∗0,

where w∗+ = p
der
f̄(d) > 1

r
is the positive root of f̄(d)b+(w) = dw and w∗0 ∈

(
0, 1

r

)
satisfies b(w∗0) = b(w∗+). Let w∗− = p2

erd2
(f̄(d))2e−

p
de
f̄(d) be the positive root of

f̄(d)b−(w) = dw. Then we have w∗0 < w∗− < w∗+. Similar to Case (i), in this case we

can easily show that the assumption (H ′b) holds with b±(w) defined above. Applying

Theorem 3.7, we have that for each θ ∈ [0, π
2
], there exists c∗(θ) > 0 such that for

any c > c∗(θ), (3.10) has a traveling wave solution wk,j(t) = φ(k cos θ + j sin θ + ct)

satisfying φ(−∞) = 0 and w∗− ≤ lim inf
s→∞

φ(s) ≤ lim sup
s→∞

φ(s) ≤ w∗+.
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