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A class of Second Order BVPs

On Infinite Intervals

Smäıl DJEBALI and Toufik MOUSSAOUI

Abstract

In this work, we are concerned with a boundary value problem asso-
ciated with a generalized Fisher-like equation. This equation involves
an eigenvalue and a parameter which may be viewed as a wave speed.
According to the behavior of the nonlinear source term, existence re-
sults of bounded solutions, positive solutions, classical as well as weak
solutions are provided. We mainly use fixed point arguments.

1 INTRODUCTION

The aim of this paper is to prove existence theorems for the boundary value
problem

{

−u′′ + cu′ + λu = h(x, u), −∞ < x < +∞.
lim

|x|→+∞
u(x) = 0. (1.1)

The parameter c > 0 is a real positive constant while h: R × R → R is a
continuous function satisfying lim

|x|→+∞
h(x, 0) = 0; the parameter λ > 0 may

be seen as an eigenvalue of the problem. In the linear case h(x, u) = f(x)u,
the problem arises in the study of a reaction-diffusion system involved in
disease propagation throughout a given population [2]; the sublinear case
h(x, u) ≤ f(x)u was also studied in [2] where existence and non existence
results are given. For other recent developments in solvability to boundary
value problems on unbounded domains see [1, 7] and references therein.

In this work, we investigate the nonlinear case; the study of problem
(1.1) depends on the growth type of the source term h with respect to the
second argument. In Section 2, we prove existence of bounded classical solu-
tions in case the nonlinear right-hand term h obeys a generalized polynomial
growth condition. Section 3 is devoted to proving existence of positive so-
lutions under integral restrictions on the nonlinear function h. A general
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existence principle is given in Section 4. In Section 5, we show existence of
positive solutions on the half-line under polynomial-like growth condition on
the function h. Finally, existence of weak solutions is discussed in Section
6.

Our arguments will be based on fixed point theory. So, let us recall for
the sake of completeness, respectively Schauder’s and Schauder-Tichonoff’s
fixed point theorems [11]:

Theorem 1. Let E be a Banach space and K ⊂ E a bounded, closed
and convex subset of E. Let F : K −→ K be a completely continuous
operator. Then F has a fixed point in K.

Theorem 2. Let K be a closed, convex subset of a locally convex,
Hausdorff space E. Assume that T : K −→ K is continuous, and T (K) is
relatively compact in E. Then T has at least one fixed point in K.

In sequel, Ck(I,R) (k ∈ N) will refer to the space of kth continuously
differentiable functions defined on an interval I of the real line. C0(R,R)
stands for the space of continuous functions defined on the real line and
vanishing at infinity; throughout this article, we will shorten the notation of
this space to E0. Endowed with the sup-norm ‖u‖ = supx∈R |u(x)| , it is a
Banach space. Recall that Lp(R) is the Banach space of pth power integrable
functions on R. Hereafter, R

+
∗ refers to the set of positive real numbers and

the notation := means throughout to be defined equal to.

2 A GENERALIZED POLYNOMIAL GROWTH

CONDITION

The main existence result of this section is

Theorem 2.1 The Green function being defined by (2.3), assume the fol-
lowing assumptions hold true:



































∃Ψ : [0,+∞[ −→ [0,+∞[
continuous and nondecreasing;
∃ q ∈ E0 positive, continuous such that
|h(x, u)| ≤ q(x)Ψ(|u|), ∀ (x, u) ∈ R

2;

∃M0 ∈ R
+
∗ ,

αΨ(M0)
M0

≤ 1

with α: = supx∈R

∫ +∞
−∞ G(x, y)q(y) dy <∞.

(2.1)

Then Problem (1.1) admits a solution u ∈ E0.
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Example 2.1 Consider a separated-variable nonlinear function h(x, y) =
f(x)g(y) with |f(x)| ≤ 1

x2+1
: = q(x) and |g(y)| ≤

√

|y| + 1:= Ψ(|y|). The

real numbers r1, r2 being defined in (2.4), we have 0 ≤ G(x, y) ≤ 1
r1−r2

; then
the constant α introduced in Assumptions 2.1 satisfies the estimate 0 < α ≤

1
r1−r2

∫ +∞
−∞

1
x2+1

dx = π
r1−r2

. We infer the existence of some positive number

M0 large enough such that π
r1−r2

√
M0 + 1 ≤ M0. Therefore, αΨ(M0) ≤

π
r1−r2

Ψ(M0) ≤ M0 and so Assumptions 2.1 are satisfied. For instance, the
following problem has at least one nontrivial solution:

{ −u′′ + cu′ + λu = 1
(x2+1)(u2+1) , −∞ < x < +∞.

lim
|x|→+∞

u(x) = 0.

Remark 2.1 (a) Assumptions (2.1) encompass the case where the nonlin-
ear function h satisfies the polynomial growth condition

∃ f ∈ E0, ∃ ρ > 0, |h(x, y)| ≤ |f(x)||y|ρ, ∀ (x, y) ∈ R
2

with either (ρ 6= 1) or (ρ = 1 and supx∈R |f(x)| ≤ λ).
(2.2)

(b) If, in Assumptions (2.1), the function h rather satisfies |h(x, y)| ≤
|f(x)| |y|ρ + β, ∀ (x, y) ∈ R

2, with some (f, β) ∈ E2
0 , then we can only take

ρ < 1 in Assumption (2.2). This particular case was studied in [9]; Theorem
2.1 then improves a similar result obtained in [9].

(c) Since we work on the whole real line, Theorem 2.1, as well as the
other existence theorems in this paper, provide solutions which are not in
general known to be nontrivial. To ensure existence of nontrivial solutions,
one must add assumptions on the nonlinear function h such as h(x, 0) 6≡ 0
further to lim

|x|→±∞
h(x, 0) = 0. Example 2.1 shows existence of at least one

nontrivial solution.
(d) If we consider instead the autonomous case h(x, u) = g(u) with

g(0) = 0, then the trivial solution u ≡ 0 is the unique solution. Let us prove
this in two steps:

• For any solution u to Problem (1.1), note that lim
|x|→+∞

u′(x) = 0. We

check this when x→ +∞. Indeed, let

`: = lim inf
x→+∞

u′(x) ≤ ¯̀: = lim sup
x→+∞

u′(x).

Then by a classical fluctuation lemma [6], there exist two sequences (xn)n∈N

and (yn)n∈N converging to positive infinity such that ` = lim
n→∞

u′(xn) and

¯̀ = lim
n→∞

u′(yn) whereas lim
n→∞

u′′(xn) = lim
n→∞

u′′(yn) = 0. Inserting into the

equation in Problem (1.1), we find that cl = cl̄ = 0; hence ` = ¯̀ = 0 for
c > 0.
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• Define the energy

E(x) =
1

2
|u′(x)|2 − λ

2
|u(x)|2 +G(u(x))

with G(u):=
∫ u

0 g(s) ds. Then, multiplying the equation in Problem (1.1) by
u′ and making an integration by part, we find that E(x) = c

∫ x

−∞ |u′|2 dx and

so E′(x) = c|u′(x)|2 ≥ 0. As lim
x±∞

E(x) = 0, we deduce that E is identically

zero. From u′(x)2 = 1
c
E′(x) = 0, u is constant and hence u ≡ 0.

(d) As for the separated-variable case h(x, u) = f(x)g(u), we must im-
pose g(0) 6= 0 both with f(±∞) = 0 otherwise we could also obtain u ≡ 0 as
a solution.

Under Hypothesis (2.1), we will make use of Schauder’s fixed point theorem
to prove existence of a solution in a closed ball B(0, R) with some radius
R > 0.

Proof of Theorem 2.1 It is clear that Problem (1.1) is equivalent to
the integral equation:

u(x) =
∫ +∞
−∞ G(x, y)h(y, u(y)) dy

with Green function

G(x, y) =
1

r1 − r2

{

er1(x−y) if x ≤ y

er2(x−y) if x ≥ y
(2.3)

and characteristic roots

r1 =
c+

√
c2 + 4λ

2
and r2 =

c−
√
c2 + 4λ

2
· (2.4)

Define the mapping T : E0 → E0 by

Tu(x) =

∫ +∞

−∞
G(x, y)h(y, u(y)) dy. (2.5)

In view of Schauder’s fixed point theorem, we look for fixed points for the
operator T in the Banach space E0. The proof is split into four steps.

• Claim 1: The mapping T is well defined; indeed, for any u ∈ E0, we
get, by Assumptions (2.1), the following estimates:

|Tu(x)| ≤
∫ +∞
−∞ G(x, y)|h(y, u(y))| dy

≤
∫ +∞
−∞ G(x, y)q(y)Ψ(|u(y)|) dy

≤ Ψ(‖u‖)
∫ +∞
−∞ G(x, y)q(y) dy, ∀x ∈ R

≤ αΨ(‖u‖).

EJQTDE, 2006 No. 4, p. 4



The convergence of the integral defining Tu(x) is then established. In addi-
tion for any y ∈ R, G(±∞, y) = 0, and then, taking the limit in Tu(x),
we get, by l’Hospital Theorem, Tu(±∞) = 0. Therefore, the mapping
T : E0 → E0 is well defined.

Claim 2: The operator T is continuous.
Let be a sequence (un)n ∈ E0 converge uniformly to u0 on all compact subin-
terval of R. For some fixed a > 0, we will prove the uniform convergence
of (Tun)n to some limit Tu0 on the interval [−a, a]. Let ε > 0 and choose
some b > a large enough. By the uniform convergence of the sequence (un)n
on [−b, b], there exists an integer N = N(ε, b) satisfying

n ≥ N =⇒ I1: = sup
x∈R

∫ +b

−b

G(x, y)|h(y, un(y)) − h(y, u0(y))| dy <
ε

2
·

For x ∈ [−a, a] , we have that |Tun(x) − Tu0(x)| ≤ I1 + I2 + I3 with:

I2: = supx∈R

∫

R−[−b,+b]G(x, y)|h(y, u0(y))| dy ≤ ε
4

(by Cauchy Convergence Criterion and lim
|y|→+∞

h(y, u0(y)) = 0.)

I3: = supx∈R

∫

R−[−b,+b]G(x, y)|h(y, un(y))| dy ≤ ε
4 ·

(by Lebesgue Dominated Convergence Theorem.)

This proves the uniform convergence of the sequence (Tun)n to the limit
Tu0 on the interval [−a, a].

Claim 3: For any M > 0, the set {Tu, ‖u‖ ≤ M} is relatively com-
pact in E0. By Ascoli-Arzela Theorem, it is sufficient to prove that all the
functions of this set are equicontinuous on every subinterval [−a, a] and that
there exists a function γ ∈ E0 such that for any x ∈ R, |Tu(x)| ≤ γ(x). Let
x1, x2 ∈ [−a, a] ; we have successively the estimates:

|Tu(x2) − Tu(x1)| ≤
∫ +∞
−∞ |G(x2, y) −G(x1, y)||h(y, u(y))| dy

≤
∫ +∞
−∞ |G(x2, y) −G(x1, y)|q(y)Ψ(|u(y)|) dy

≤ Ψ(M)
∫ +∞
−∞ |G(x2, y) −G(x1, y)|q(y) dy.

By continuity of the Green function G, the latter term tends to 0, when x2

tends x1; whence comes the equicontinuity of the functions {T (u); ‖u‖ ≤
M}. Now, we check analogously the second statement:

|Tu(x)| ≤
∫ +∞
−∞ G(x, y)|h(y, u(y))| dy

≤
∫ +∞
−∞ G(x, y)q(y)Ψ(|u(y)|) dy

≤ Ψ(M)
∫ +∞
−∞ G(x, y)q(y) dy: = γ(x), ∀x ∈ R.

By l’Hopital Theorem, we have that γ ∈ E0.
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Claim 4: There exists some R > 0 such that T maps the closed ball
B(0, R) into itself. From assumption (2.1), we know that there is some

positive number M0 such that αΨ(M0)
M0

≤ 1. If ‖u‖ ≤M0, then

‖T (u)‖ ≤ supx∈R

∫ +∞
−∞ G(x, y)q(y)Ψ(|u(y)|) dy

≤ αΨ(M0)
≤ M0,

so that it is enough to take R = M0. The proof of Theorem 2.1 then follows
from Schauder’s fixed point theorem.

3 EXISTENCE OF POSITIVE SOLUTIONS

Making use of Schauder-Tichonov’s theorem, we prove here existence of a
positive solution under an integral condition on the nonlinear term:

Theorem 3.1 Problem (1.1) has a positive solution provided the following
mean growth assumption on the nonlinear function h is fulfilled















The function h is positive and satisfies h(x, u) ≤ H(x, |u|)
where H : R × R

+ → R
+is continuous, nondecreasing

with respect to the second argument and verifies

∃ c∗ > 0,
∫ +∞
−∞ H(x, c∗) dx ≤ c∗(r1 − r2).

(3.1)

Remark 3.1 It is easy to check that in the separated-variable case, As-
sumption (3.1) leads to Assumption (2.1).

Example 3.1 The problem

{ −u′′ + cu′ + λu = un

x2+u2 + 1
x2+1

, ( n ∈ N, n > 2) −∞ < x < +∞;

lim
|x|→+∞

u(x) = 0

has at least one positive nontrivial solution. Indeed, the function H(x, y) =
yn

x2+y2 + 1
x2+1 satisfies lim

|x|→0
H(x, 0) = 0, H(x, 0) 6≡ 0 and is nondecreasing in

the second argument y for any integer n > 2. Moreover,
∫ +∞
−∞ H(x, y) dx =

π(1 + yn−1) so that Assumption (3.1) may be satisfied. For instance, if we

take n = 3, then there exists c∗ ∈]c1, c2[ with c1 = k−
√

k2−1
2 , c2 = k+

√
k2−1
2

assuming k: = r1−r2
π

> 2.

To prove Theorem 3.1, we proceed as in Theorem 2.1, and reformulate Prob-
lem (1.1) as a fixed point problem for the mapping T defined in 2.5. Here,
we appeal to Schauder-Tichonov’s fixed point theorem. Let K be the closed
convex subset of E0 defined by:

K = {u ∈ E0, 0 ≤ u(x) ≤ c∗, ∀x ∈ R}.
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Using Assumption (3.1) and the fact that the mapping H is nondecreasing
in the second argument, we find that T maps K into itself. Indeed, taking
into account the bound 0 < G(x, y) ≤ 1

r1−r2
, we derive the straightforward

estimates:

0 ≤ Tu(x) ≤
∫ +∞
−∞ G(x, y)H(y, |u(y)|) dy

≤ 1
r1−r2

∫ +∞
−∞ H(y, c∗) dy

≤ c∗.

Since 0 ≤ Tu(x) ≤
∫ +∞
−∞ G(x, y)H(y, c∗) dy and G(±∞, y) = 0, ∀ y ∈ R, we

have that Tu(±∞) = 0 and so T (E0) ⊂ E0. In addition, the mapping T is
continuous as can easily be seen. It remains to check that T (K) is relatively
compact. By Ascoli-Arzela Theorem, it is sufficient to prove that all the
functions of this set are equicontinuous on every subinterval [−a, a] and
that there exists a function γ ∈ E0 such that for any x ∈ R, |Tu(x)| ≤ γ(x).
Let x1, x2 ∈ [−a, a] ;

|Tu(x2) − Tu(x1)| ≤
∫ +∞
−∞ |G(x2, y) −G(x1, y)||h(y, u(y))| dy

≤
∫ +∞
−∞ |G(x2, y) −G(x1, y)|H(y, c∗) dy.

By continuity of the function G, we deduce from Lebesgue dominated con-
vergence theorem that the last right-hand term tends to 0 when x2 tends to
x1. Whence comes the compactness of T (K) by Ascoli-Arzela Lemma and
then the claim of Theorem 3.1 follows.
Now, we check analogously the second statement:

|Tu(x)| ≤
∫ +∞

−∞
G(x, y)H(y, c∗) dy ≡ γ(x)

with γ ∈ E0 for G(±∞, y) = 0, ∀ y ∈ R.

4 A FURTHER TYPE OF GROWTH

In this section, we prove existence of bounded, solutions to Problem (1.1)
under new growth conditions on the nonlinearity h; by the way we show
that polynomial-like growth condition may be relaxed. The proof of our
existence result relies on the following fixed point theorem by Furi and Pera
[3]. This theorem was also used in [1] to deal with a BVP on an infinite
interval.

Theorem 3. Let E be a Fréchet space, Q a closed convex subset of
E, 0 ∈ Q and let T : Q → E be a continuous compact mapping. Assume
further that, for any sequence (uj , µj)j≥1 from ∂Q× [0, 1] that converges to
(u, µ) with u = µTu, 0 ≤ µ < 1, one has µjTuj ∈ Q for all j large enough.

EJQTDE, 2006 No. 4, p. 7



Then, T has a fixed point in Q.

Our aim is now to prove

Theorem 4.1 First, assume the following sign assumption is fulfilled:

(H1) ∃M0 > 0 such that |y| > M0 ⇒ yh(x, y) ≤ 0, ∀x ∈ R.
Then Problem (1.1) has a bounded solution provided either one
of the following growth assumptions is satisfied:
(H2)1 There exists a function H : R × R

+ → R
+ continuous and

nondecreasing with respect to the second argument such that:

|h(x, y)| ≤ H(x, |y|), ∀ (x, y) ∈ R
2 with

∫ +∞
−∞ H(x,M0 + 1) dx <∞;

or (H2)2 |h(x, y)| ≤ q(x)ψ(|y|), ∀ (x, y) ∈ R
2

with ψ : R
+ → R

+ continuous and nondecreasing, q ∈ E0

positive, continuous and α: = supx∈R

∫ +∞
−∞ G(x, y)q(y) dy <∞;

or (H2)3 lim
x→+∞

sup|y|≤M0+1 |h(x, y)| = 0.

Example 4.1 Consider the function h defined by

h(x, y) =











1−y
x2+1 , y ≥ +1

1
x2+1

, −1 ≤ y ≤ +1
−1−y
x2+1

, y ≤ −1

Then, |h(x, y)| ≤ 1+|y|
x2+1

= H(x, |y|) with H(x, s) = 1+s
x2+1

· Since
∫ +∞
−∞

2
x2+1

dx =
2π < ∞, Assumptions (H1) and (H2)1 are satisfied with M0 = 1. Since
h(x, 0) 6≡ 0, Problem (1.1) has a nontrivial solution for such a nonlin-
ear right-hand term. We may notice that the function h can be written
as h(x, y) = θ(y)−y

x2+1 where θ(y) = H(y−1)−H(−y−1), the function H being
the Heaviside function.

Remark 4.1 (a) The sign condition (H1) implies that any solution u of
Problem (1.1) satisfies |u(x)| ≤ M0, ∀x ∈ R. Indeed, on the contrary,
assume maxx∈R |u(x)| = |u(x0)| > M0 for some x0 ∈ R. Then u′(x0) = 0
and −u′′(x0)u(x0) + cu′(x0)u(x0) + λu(x0)

2 = u(x0)f(x0, u(x0)) ≤ 0; this
yields u′′(x0)u(x0) ≥ 0, leading to a contradiction.

(b) Assumption (H2)1 is weaker than the one in Theorem 3.1.
(c) Assumption (H2)2 is weaker than the one in Theorem 2.1.
(d) Then, when Assumption (H1) is satisfied, Theorem 4.1 improves

both of Theorems 2.1 and 3.1.

Proof of Theorem 4.1. For the sake of clarity, we only do the proof in case
Assumptions (H1) and (H2) are simultaneously satisfied. The other cases
can be treated similarly. In the Fréchet space E: = C(R,R), set r0: = M0+1,
consider the closed, convex set Q = {u ∈ E : supx∈R |u(x)| ≤ r0}, and de-
fine the mapping T : Q → E as in (2.5). In three steps, we carry over the
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proof.

• Claim 1. T is continuous. Let (un)n∈N be a sequence in Q such that
un → u in Q; we show that Tun → Tu in Q, as n goes to infinity. We
have that for any x ∈ R, |h(x, un(x))| ≤ H(x, r0), |h(x, u(x))| ≤ H(x, r0)
and that lim

n→∞
h(x, un(x)) = h(x, u(x)). By the Dominated Convergence

Lebesgue’s Theorem, we deduce that lim
n→∞

Tun(x) = Tu(x) on each subin-

terval [−xm, xm].
In addition, for x1, x2 ∈ [−xm, xm], the following estimates hold true

|Tun(x2) − Tun(x1)| ≤
∫ +∞
−∞ |G(x2, y) −G(x1, y)|H(y, r0) dy;

|Tu(x2) − Tu(x1)| ≤
∫ +∞
−∞ |G(x2, y) −G(x1, y)|H(y, r0) dy.

Therefore, ∀ ε > 0, ∃ δ > 0 such that

|x2−x1| < δ ⇒ |Tu(x2)−Tu(x1)| < ε and |Tun(x2)−Tun(x1)| < ε, ∀n ∈ N.

Furthermore, the convergence is uniform since Tun(x) → Tu(x) on [−xm, xm]
as n→ +∞, and the claim follows.

• Claim 2. Using Ascoli-Arzela Theorem, we are going to prove that
T (Q) is relatively compact in E, that is T (Q) is uniformly bounded and
equicontinuous on each subinterval [−xm, xm]. For any x ∈ [−xm, xm] and
any u ∈ Q, we have:

|Tu(x)| ≤
∫ +∞
−∞ G(x, y)H(y, |u(y)|) dy

≤
∫ +∞
−∞ G(x, y)H(y, r0) dy: = ψr0(x),

with, by l’Hospital rule, lim
x→±∞

ψr0(x) → 0; that is ψr0 ∈ E0. Moreover,

T (Q) is equicontinuous on each subinterval [−xm, xm]. Indeed, let x1, x2 ∈
[−xm, xm] with x1 < x2; we have:

|Tu(x2) − Tu(x1)| ≤
∫ +∞

−∞
|G(x2, y) −G(x1, y)|H(y, r0) dy

which also tends to 0 as x2 tends to x1, for any u ∈ Q.

• Claim 3. Now, we check the last assumption in Furi-Pera’s Theorem.
Consider some sequence (uj , µj)j≥0 ∈ ∂Q × [0, 1] such that, when j → ∞,
µj → µ and uj → u with u = µTu and µ ∈ [0, 1]. We must show that
µjTuj ∈ Q as j → ∞. Let v ∈ E be such that |v(x)| ≤ r0 for x ∈ R, then we

have that |Tv(x)| ≤
∫ +∞
−∞ G(x, y)H(y, r0) dy: = ψr0(x) and lim

|x|→+∞
ψr0(x) =

0. Since uj ∈ Q, there exists some x∗ ∈ R such that

∀x ∈ R \ [−x∗, x∗], |µjTuj(x)| ≤ r0.
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Let us consider the case x ∈ [−x∗, x∗]. Since µj → µ and T (Q) is bounded in
E, the sequence µjTuj converges uniformly to µTu on [−x∗, x∗]; thus there
exists some j0 ∈ N

∗ such that ∀ j ≥ j0, |µjTuj(x)| ≤ |µTu(x)| + 1, ∀x ∈
[−x∗, x∗]. We have also by Remak 4.1(a) that |µTu(x)| ≤ M0. Therefore,
for j large enough, it holds that

|µjTuj(x)| ≤M0 + 1 = r0, ∀x ∈ [−x∗, x∗].

We then conclude the estimate |µjTuj(x)| ≤M0 + 1 = r0, ∀x ∈ R.

The claim of Theorem 4.1 then follows from Theorem 3.

5 THE PROBLEM ON THE POSITIVE HALF

LINE

5.1 Setting of the problem

In this section, we consider the problem posed on the positive half-line:
{

−u′′ + cu′ + λu = h(x, u(x)), x ∈ I
u(0) = u(+∞) = 0.

(5.1)

Hereafter, I denotes ]0,+∞[, the set of positive real numbers. Setting

k: =
√

λ+ c2/4, we rewrite the problem for the function v(x) = e
−c
2

xu(x):

{

−v′′ + k2v = e
−c
2

xh(x, e
c
2
xv(x)), x ∈ I

v(0) = v(+∞) = 0.
(5.2)

Equivalently, the unknown v satisfies the integral equation:

v(x) =
∫ +∞
0 K(x, s)e

−c
2

sh(s, e
c
2
sv(s)) ds

with new Green function

K(x, s) =
1

2k

{

e−ks(ekx − e−kx) x ≤ s
e−kx(eks − e−ks) x ≥ s.

(5.3)

Notice that K is different from the one in (2.3) and that the unknown u is
now solution of the integral equation:

u(x) =
∫ +∞
0 e

c
2
(x−s)K(x, s)h(s, u(s)) ds.

The following lemma provides estimates of the Green function K and will
play an important role in the sequel; we omit the proof:

Lemma 5.1 We have

(a) K(x, s) ≤ 1
2k
, K(x, s)e−µx ≤ K(s, s)e−ks, ∀x, s ∈ I, ∀µ ≥ k.

(b) ∀ s ∈ I,∀ (0 < γ < δ), ∀x ∈ [γ, δ] , K(x, s) ≥ mK(s, s)e−ks.
(5.4)

Here m: = min
{

e−kδ, ekγ − e−kγ
}

.
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Under suitable assumptions on the nonlinear function h, we shall prove
the existence of a positive solution to Problem (5.1). The proof relies on
Krasnosels’kii fixed point theorem in cones ([5], [8]) and Zima’s compactness
criterion [12]; but first of all, let us recall some

5.2 Preliminaries

Definition 5.1 A nonempty subset C of a Banach space X is called a cone
if C is convex, closed, and satisfies
(i) αx ∈ C for all x ∈ C and any real positive number α,
(ii) x,−x ∈ C imply x = 0.

Definition 5.2 A set of functions u ∈ Ω ⊂ X are said to be almost equicon-
tinuous on I if they are equicontinuous on each interval [0, T ] , 0 < T < +∞.

Next we state Krasnosels’kii Fixed Point Theorem in cones.

Theorem 4. ([8]) Let X be a Banach space and C ⊂ X be a cone in X.
Assume that Ω1 and Ω2 are two bounded open sets in X such that 0 ∈ Ω1

and Ω̄1 ⊂ Ω2. Let F : C ∩ (Ω2 − Ω1) −→ C be a completely continuous
operator such that either
(i) ‖Fx‖ ≤ ‖x‖ for x ∈ C ∩ ∂Ω1 and ‖Fx‖ ≥ ‖x‖ for x ∈ C ∩ ∂Ω2,
or (ii) ‖Fx‖ ≥ ‖x‖ for x ∈ C ∩ ∂Ω1 and ‖Fx‖ ≤ ‖x‖ for x ∈ C ∩ ∂Ω2

is satisfied.
Then F has at least one fixed point in C ∩ (Ω2 − Ω1).

Now, let p: I −→]0,+∞[ be a continuous function. Denote by X the
Banach space consisting of all weighted functions u continuous on I and
satisfying

supx∈I{|u(x)|p(x)} <∞,

equipped with the norm ‖u‖ = supx∈I{|u(x)|p(x)}. We have

Lemma 5.2 ([13]) If the functions u ∈ Ω are almost equicontinuous on I
and uniformly bounded in the sense of the norm

‖u‖q = supx∈I{|u(x)|q(x)}

where the function q is positive, continuous on I and satisfies

lim
x→+∞

p(x)
q(x) = 0,

then Ω is relatively compact in X.

Having disposed of these auxiliary results, we are ready to prove
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Theorem 5.1 Suppose that:















h : I × R
+ −→ R

+ is a continuous function,
∃ p > 0 : p 6= 1, h(x, u) ≤ a(x) + b(x)up, ∀ (x, u) ∈ I × R

+,
where a, b : I −→ R

+ are continuous positive functions
vanishing at positive infinity and

(5.5)







there exists θ > k + c
2 such that

M1: =
∫ +∞
0 e−(k+ c

2
)sa(s) ds <∞,

M2: =
∫ +∞
0 e(pθ−k− c

2
)sb(s) ds <∞.

(5.6)

2k

(

2k

pM2

)
1

p−1

−M2

(

2k

pM2

)
p

p−1

−M1 ≥ 0, when p > 1. (5.7)

2k

(

2k

pM2

)
1

p−1

−M2

(

2k

pM2

)
p

p−1

−M1 ≤ 0, when 0 < p < 1. (5.8)

{

There exist α > 0, γ, δ > 0 and x0 ∈ I such that:

min
x∈[γ,δ],u∈[mα,αeθδ] h(x, u) ≥ αeθx0

[

∫ δ

γ
e

c
2
(x0−s)K (x0, s) ds

]−1
,

(5.9)
the Green functionK being defined in (5.3) and m: = min

{

e−kδ, ekγ − e−kγ
}

.
Then Problem (5.1) has at least one positive solution u ∈ C(I; R+).

Remark 5.1 The case p = 1 is treated in [2].

Proof of Theorem 5.1:
We follow the method used in [2, 14]. Let θ ∈ R be as in Hypothesis (5.6) and
consider the weighted space X = {u ∈ C(I; R): supx∈I{e−θx|u(x)|} < ∞}
endowed with the weighted sup-norm:

‖u‖θ = supx∈I{e−θx|u(x)|},

as well as the positive cone in X:

C = {u ∈ X;u ≥ 0 on I and minx∈[γ,δ] u(x) ≥ m ‖u‖θ}.

Next define on C the operator F by:

Fu(x) =
∫ +∞
0 e

c
2
(x−s)K(x, s)h(s, u(s)) ds.

(a) First step. In the following, we study the properties of this operator:

• Claim 1:
For any u ∈ X, supx∈I e

−θx |Fu(x)| <∞, that is F (X) ⊂ X.
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Indeed, choosing µ = θ− c
2 in (5.4) (note that µ ≥ k by (5.6)), and using

(5.4)(a), (5.5), we have the estimates

0 ≤ e−θxFu(x) =

= e−θx
∫ +∞
0 e

c
2
(x−s)K(x, s)h(s, u(s)) ds

= e−(θ− c
2
)x

∫ +∞
0 e

−c
2

sK(x, s)h(s, u(s)) ds

≤
∫ +∞
0 e−(k+ c

2
)sK(s, s) [a(s) + b(s)|u(s)|p] ds

≤ 1
2k

∫ +∞
0 e−(k+ c

2
)sa(s) ds + 1

2k
‖u‖θ

∫ +∞
0 e(pθ−k− c

2
)sb(s) ds

≤ 1
2k

(M1 +M2 ‖u‖p
θ) <∞.

• Claim 2:
For any u ∈ C, let us check that minx∈[γ,δ] Fu(x) ≥ m ‖Fu‖θ that is F (C) ⊂
C. Indeed, Fu(x) ≥ 0 ∀x ∈ I and ∀x ∈ [γ, δ] , ∀ s, τ ∈ I we have, choosing
µ = θ − c

2 in (5.4)(a):

minx∈[γ,δ] Fu(x) ≥ m
∫ +∞
0 e

c
2
(γ−s)K(s, s)e−ksh(s, u(s)) ds

≥ meγ
c
2 e−θτ

∫ +∞
0 e

c
2
(τ−s)K(τ, s)h(s, u(s)) ds

≥ me
c
2
γ ‖Fu‖θ ≥ m ‖Fu‖θ .

Next, we prove that F is completely continuous:

• Claim 3:
Let Ω1 = {u ∈ X, ‖u‖θ < r},Ω2 = {u ∈ X, ‖u‖θ < R}, the constants
0 < r < R being real positive numbers to be selected later on. Consider
some u ∈ C ∩ Ω2; then Fu is uniformly bounded. Indeed, as in claim 1, we
have that ‖Fu‖θ ≤ 1

2k
(M1 +M2R

p), for any u ∈ C ∩ Ω2.

• Claim 4:
The functions {Fu} for u ∈ CK∩Ω2 are almost equicontinuous on I; indeed

|Fu(x2) − Fu(x1)| ≤
∫ +∞

0

∣

∣

∣
e

c
2
(x2−s)K(x2, s) − e

c
2
(x1−s)K(x1, s)

∣

∣

∣
h(s, u(s)) ds

=

∫ x1

0

∣

∣

∣
e

c
2
(x2−s)K(x2, s) − e

c
2
(x1−s)K(x1, s)

∣

∣

∣
h(s, u(s)) ds

+

∫ x2

x1

∣

∣

∣
e

c
2
(x2−s)K(x2, s) − e

c
2
(x1−s)K(x1, s)

∣

∣

∣
h(s, u(s)) ds

+

∫ +∞

x2

∣

∣

∣
e

c
2
(x2−s)K(x2, s) − e

c
2
(x1−s)K(x1, s)

∣

∣

∣
h(s, u(s)) ds.

In the following, we derive lengthy estimates of each of the summands in
the right-hand side. We have successively:

∫ x1

0

∣

∣

∣
e

c
2
(x2−s)K(x2, s) − e

c
2
(x1−s)K(x1, s)

∣

∣

∣
h(s, u(s)) ds ≤
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≤ 1

2k

∣

∣

∣
e(

c
2
−k)x2 − e(

c
2
−k)x1

∣

∣

∣

∫ x1

0
e−

c
2
s(eks − e−ks)a(s) ds

+
1

2k

∣

∣

∣
e(

c
2
−k)x2 − e(

c
2
−k)x1

∣

∣

∣

∫ x1

0
e−

c
2
s(eks − e−ks)b(s)|u(s)|p ds

≤ 1

2k

∣

∣

∣
e(

c
2
−k)x2 − e(

c
2
−k)x1

∣

∣

∣

∫ x1

0
e−

c
2
s(eks − e−ks)a(s) ds

+
1

2k

∣

∣

∣
e(

c
2
−k)x2 − e(

c
2
−k)x1

∣

∣

∣
‖u‖p

θ

∫ x1

0
e(pθ−c)s(eks − e−ks)b(s) ds

≤ 1

2k

∣

∣

∣
e(

c
2
−k)x2 − e(

c
2
−k)x1

∣

∣

∣

∫ x1

0
e−

c
2
s(eks − e−ks)a(s) ds

+
1

2k
Rp

∣

∣

∣
e(

c
2
−k)x2 − e(

c
2
−k)x1

∣

∣

∣

∫ x1

0
e(pθ− c

2
)s(eks − e−ks)b(s) ds.

The right-hand term in the last inequality tends to 0 when x2 −→ x1, for
any u ∈ C ∩ Ω̄2. In addition, we have the bounds:

∫ x2

x1

∣

∣

∣
e

c
2
(x2−s)K(x2, s) − e

c
2
(x1−s)K(x1, s)

∣

∣

∣
h(s, u(s)) ds ≤

≤ 1

2k
e(

c
2
−k)x2

∫ x2

x1

e−
c
2
s(eks − e−ks)a(s) ds

+
1

2k
e(

c
2
−k)x2‖u‖p

θ

∫ x2

x1

e(pθ− c
2
)s(eks − e−ks)b(s) ds

+
1

2k
e

c
2
x1(ekx1 − e−kx1)

∫ x2

x1

e−( c
2
+k)sa(s) ds

+
1

2k
e

c
2
x1(ekx1 − e−kx1)‖u‖p

θ

∫ x2

x1

e(pθ− c
2
−k)sb(s) ds

≤ 1

2k
e(

c
2
−k)x2

∫ x2

x1

e−
c
2
s(eks − e−ks)a(s) ds

+
1

2k
e(

c
2
−k)x2Rp

∫ x2

x1

e(pθ− c
2
)s(eks − e−ks)b(s) ds

+
1

2k
e

c
2
x1(ekx1 − e−kx1)

∫ x1

x2

e−( c
2
+k)sa(s) ds

+
1

2k
e

c
2
x1(ekx1 − e−kx1)Rp

∫ x2

x1

e(pθ− c
2
−k)sb(s) ds.

Again, all of the terms in the right side tend to 0 when x2 −→ x1, for all
u ∈ C ∩ Ω̄2.

At last, we have:
∫ +∞

x2

∣

∣

∣
e

c
2
(x2−s)K(x2, s) − e

c
2
(x1−s)K(x1, s)

∣

∣

∣
h(s, u(s)) ds ≤
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≤ 1

2k

∣

∣

∣
e

c
2
x2(ekx2 − e−kx2) − e

c
2
x1(ekx1 − e−kx1)

∣

∣

∣

∫ +∞

x2

e−( c
2
+k)sa(s) ds

+
1

2k

∣

∣

∣
e

c
2
x2(ekx2 − e−kx2) − e

c
2
x1(ekx1 − e−kx1)

∣

∣

∣
‖u‖p

θ

∫ +∞

x2

e(pθ− c
2
−k)sb(s) ds

≤ 1

2k

∣

∣

∣
e

c
2
x2(ekx2 − e−kx2) − e

c
2
x1(ekx1 − e−kx1)

∣

∣

∣

∫ +∞

x2

e−( c
2
+k)sa(s) ds

+
1

2k

∣

∣

∣
e

c
2
x2(ekx2 − e−kx2) − e

c
2
x1(ekx1 − e−kx1)

∣

∣

∣
Rp

∫ +∞

x2

e(pθ− c
2
−k)sb(s) ds.

And all of the terms in the right side tend to 0 when x2 −→ x1, for all
u ∈ C ∩ Ω̄2.

According to Lemma 5.2, we conclude that the operator F is completely
continuous on C ∩ Ω2.

(b) Second step. Now, we check the first alternative in Theorem 4.

• If u ∈ C∩∂Ω1, then e−θxFu(x) ≤ 1
2k

(M1+M2‖u‖p
θ) ≤ 1

2k
(M1+M2r

p) ≤
r which is fulfilled by Assumptions (5.7), (5.8). We have then proved that
‖Fu‖θ ≤ ‖u‖θ.

• Moreover, if u ∈ C ∩ ∂Ω2, then take ‖u‖θ = R = α where α is as
defined in Assumption (5.9) and find that minx∈[γ,δ] u(x) ≥ mα. Hence, for

any x ∈ [γ, δ] , mα ≤ u(x) ≤ αeθδ. Furthermore, it holds that:

Fu(x0) =
∫ +∞
0 e

c
2
(x0−s)K(x0, s)h(s, u(s)) ds

≥
∫ δ

γ
e

c
2
(x0−s)K(x0, s)h(s, u(s)) ds

≥
[

minx∈[γ,δ],u∈[mα,αeθδ] h(x, u)
]

αeθx0
∫ δ

γ
e

c
2
(x0−s)K (x0, s) ds

≥ αeθx0 .

Consequently, e−θx0Fu(x0) ≥ α that is ‖Fu‖θ ≥ ‖u‖θ for any u ∈ K ∩ ∂Ω2.

Thanks to Theorem 4, the operator F has a fixed point in C ∩ (Ω2 \Ω1)
and so Problem (5.1) admits a positive solution u in the cone C.

6 WEAK SOLUTIONS

In contrast with the previous results, we look here for solutions in the
Lebesgue Space Lp(R). We first need a compactness criterion in Lp(R)
due to Fréchet-Kolmogorov:
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Theorem 5. ([10], p. 275) A set S ⊂ Lp(R) (1 ≤ p < +∞) is relatively
compact if and only if S is bounded and for every ε > 0, we have:

(i) ∃ δ > 0 such that
∫ +∞
−∞ |u(x+ h) − u(x)|p dx < ε, ∀u ∈ S, ∀ 0 < h < δ.

(ii) There exists a number N > 0 such that
∫

R\[−N,N ] |u(x)|p dx < ε, ∀u ∈ S.

Let us recall a

Definition 6.1 We say that f : I × R −→ R is a Carathéodory function if
(i) the map x −→ f(x, y) is measurable for all y ∈ R.
(ii) the map y −→ f(x, y) is continuous for almost every x ∈ I.
(iii) there exists h ∈ L1(I) such that |f(x, y)| ≤ h(x), for a.e. x ∈ I and

for all y ∈ R.

Now, we are now in position to state an existence result for weak solu-
tions:

Theorem 6.1 Assume the separated-variable nonlinear function h(x, u) =
q(x)g(u) is of Carathéodory type with q ∈ Lp(R) (1 < p < +∞), and g
satisfies the general polynomial growth condition:

∃ k, σ > 0, |g(y)| ≤ k|y|σ, for a.e. x ∈ R and for all y ∈ R.

α: =
∫ +∞
−∞

(

∫ +∞
−∞ |G(x, y)|pqp(y)dy

)
σ

p−1
dx <∞,

with (θ 6= 1) or (θ = 1 and kα
p−1
pσ ≤ 1) with θ: = (p−1)2

p2σ
·

(6.1)

Then problem (1.1) has a solution in Lr(R) with r = pσ
p−1 ·

Remark 6.1 The sublinear case σ = 1 was studied in [2] with p = 2; the
solutions are then found to be L2(R).

Proof :
Consider the Banach space E = Lr(R) endowed with the usual norm ‖u‖r =

(
∫ +∞
−∞ |u(s)|r ds) 1

r ; hereafter, the notation ‖u‖r will be shorten to ‖u‖. The
mapping T : E −→ E is as defined in subsection 2.1. We will make use of
Hölder inequality ‖fg‖1 ≤ ‖f‖p.‖g‖p∗ with p∗ = p

p−1 the conjugate of p,
that is p∗ = r

σ
·

Claim 1: T is continuous:
Consider some u0 ∈ Lr(R) and prove the continuity of T at u0. By Hölder
inequality, we have:

|Tu(x) − Tu0(x)|r =

∣

∣

∣

∣

∫ +∞

−∞
G(x, y)q(y)[g(u(y)) − g(u0(y))] dy

∣

∣

∣

∣

r

≤
(

∫ +∞

−∞
|G(x, y)|pqp(y) dy

)

r
p

.

(
∫ +∞

−∞
|g(u(y)) − g(u0(y))|p

∗

dy

)

r
p∗

.
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Therefore, noting that r
p

= σ
p−1 , it holds that

‖Tu− Tu0‖r =
∫ +∞
−∞ |Tu(x) − Tu0(x)|r dx

=
∫ +∞
−∞

∣

∣

∣

∫ +∞
−∞ G(x, y) q(y)[g(u(y)) − g(u0(y))] dy

∣

∣

∣

r

dx

≤
∫ +∞
−∞

(

∫ +∞
−∞ |G(x, y)|pqp(y) dy

)
r
p

(

∫ +∞
−∞ |g(u(y)) − g(u0(y))|p

∗

dy
)

r
p∗

dx

≤ α
(

∫ +∞
−∞ |g(u(y)) − g(u0(y))|p

∗

dy
)

r
p∗

.

Let ε > 0. From the growth condition satisfied by the function g in As-
sumption (6.1), we know that the Nemytskii operator G defined by Gu(x) =
g(u(x)) is continuous from Lr(R) to Lp∗(R) (see [4], Theorem 12.10, p. 78).
Then for the given ε, there exists some δ > 0 such that ‖u − u0‖ < δ ⇒
∫ +∞
−∞ |g(u(s)) − g(u0(s))|p

∗

ds < εp∗

α
, whence ‖Tu − Tu0‖r < εr, and the

continuity of T on Lr(R) follows.

Claim 2: The mapping T is completely continuous, that is for any
M > 0, the image {T (u), ‖u‖ ≤M} is relatively compact in E. Using again
Hölder inequality, we find that:

‖Tu‖r =
∫ +∞
−∞ |Tu(x)|r dx

=
∫ +∞
−∞ |

∫ +∞
−∞ G(x, s)q(s)g(u(s))ds|r dx

≤
(

∫ +∞
−∞ |g(u(y))|p∗dy

)
r

p∗ ∫ +∞
−∞

(

∫ +∞
−∞ |G(x, y)|pqp(y) dy

)
r
p
dx

≤ αkr
(

∫ +∞
−∞ |u(s)|σp∗ ds

)
r

p∗

= αkr
(

∫ +∞
−∞ |u(s)|r ds

)
r

p∗

≤ αkr‖u‖
1

p∗ .

We deduce that ‖Tu‖ ≤ kα
1
r |u‖

1
rp∗ . Putting S = {u ∈ E; ‖u‖ ≤ M}, we

finally get ‖Tu‖ ≤ kα
1
rM

1
rp∗ , for any u ∈ S. Then the image S′ = T (S)

is bounded in Lr(R). Moreover, for any u ∈ S, we have, again by Hölder
Inequality:

∫ +∞
−∞ |Tu(x+ h) − Tu(x)|r dx

=
∫ +∞
−∞ |

∫ +∞
−∞ (G(x+ h, y) −G(x, y))q(y)g(u(y))dy|r dx

≤
∫ +∞
−∞

(

∫ +∞
−∞ |G(x+ h, y) −G(x, y)|pqp(y) dy

)
r
p

(

∫ +∞
−∞ |g(u(y))|p∗dy

)
r

p∗

dx

≤ krM
1

p∗

(

∫ +∞
−∞

∫ +∞
−∞ |G(x+ h, y) −G(x, y)|pqp(y) dydx

)
r
p
.

Since 0 < α < ∞, we infer that ∀ ε > 0,∃ δ > 0, ∀u ∈ S, ∀h (0 < h < δ),
∫ +∞
−∞ |Tu(x+ h) − Tu(x)|r dx < εr.

In addition, it holds that for any u ∈ S

∫

R\[−N,N ]
|Tu(x)|r dx ≤ krM

1
p∗

∫

R\[−N,N ]

(
∫ +∞

−∞
|G(x, s)|pqp(s) ds

)

σ
p−1

dx.
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In conclusion for any u ∈ S, and for any ε > 0, there is some N = N(ε)
such that

∫

R\[−N,N ] |Tu(x)|r dx < εr. Thanks to Theorem 5, we deduce that

the image set T (S) is relatively compact in Lr(R).

Claim 3: There exists some R > 0 such that T maps the closed ball
B(0, R) into itself. Indeed, for all u ∈ E satisfying ‖u‖ ≤ R, we have that

‖Tu‖ ≤ kα
1
r ‖u‖

(p−1)2

p2σ ≤ kα
1
rR

(p−1)2

p2σ . Now, for any σ 6= 1, there exists some

R > 0 such that kα
1
rRσ ≤ R and this still holds true if σ = 1 and kα

1
r ≤ 1.

Then, the following implications hold true

‖u‖ ≤ R ⇒ ‖Tu‖ ≤ R,

proving that T (B) ⊂ B.

The claim of Theorem 6.1 then follows from Schauder’s fixed point the-
orem.

References

[1] R.P. Agarwal, O.G. Mustafa & Yu.V. Rogovchenko, Existence and
Asymptotic Behavior of Solutions of a Boundary Value Problem on
an Infinite Interval, Mathematical and Computer Modelling 41 (2005),
135-157.

[2] S. Djebali & T. Moussaoui, Qualitative Properties and Existence of
Solutions for a Generalized Fisher-like Equation, submitted.

[3] M. Furi & P. Pera, A Continuation Method on Locally Convex Spaces
and Applications to ODE on Noncompact Intervals, Annales Polonici
Mathematici, XLVII (1987), 331-346.

[4] S. Fucik & A. Kufner, Nonlinear Differential Equations, Studies in Ap-
plied Mechanics 2, Elsevier Scientific Publishing Company, 1980.

[5] D. Guo & V. Lakshmikantham, Nonlinear Problems in Abstract Cones,
Academic Press, New York, 1988.

[6] W.M. Hirsch, H. Hanish & J.P. Gabriel, Differential Equation models
of some parasitic infectious: methods for the study of asymptotic be-
haviour, Communication on Pure and Appl. Math., 38 (1985), 733-753.

[7] E. Kaufmann, P. Eloe & C.C. Tisdell, Multiple solutions of a boundary
value problem on an unbounded domain, Dynam. Systems Appl., 15,
no. 1 (2006), 53-63.

EJQTDE, 2006 No. 4, p. 18



[8] M.A. Krasnoselskii, Topological Methods in the Theory of Nonlinear
Integral Equations, Cambridge University Press, New york, 1964.

[9] B. Przeradzki, Travelling Waves for Reaction-diffusion Equations with
Time Depending Nonlinearities, J. Math. Anal. and Appl., 281 (2003),
164-170.

[10] K. Yoshida, Functional Analysis, third edition, Springer Verlag, Berlin,
1971.

[11] E. Zeidler, Nonlinear Functional Analysis, T1, Fixed Point Theory,
1985.

[12] K. Zima, Sur l’Existence des Solutions d’une équation Intégro-
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