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1 Introduction

Recently, fractional differential calculus has attracted a lot of attention by many researchers of different
fields, such as: physics, chemistry, biology, economics, control theory and biophysics, etc. [11, [15] [16].
In particular, study of coupled systems involving fractional differential equations is also important in
several problems.

Many authors have investigated sufficient conditions for the existence of solutions for the following
coupled systems of nonlinear fractional differential equations with different boundary conditions on
finite domain.

and more generally,

DBu(t) = g(t,u(t), D" u(t)),

see for example [11 2, [4, [7, [8 (9] 10} 17, 2T), 22} 23]. However, to the best of our knowledge few papers
consider the existence of solutions of fractional differential equations on the half-line. Arara et al. [3]
studied the existence of bounded solutions for differential equations involving the Caputo fractional
derivative on the unbounded domain given by

cDu(t) = f(t,u(t)), te]|0,00),
u(0) = wo, (1)
u is bounded on [0, c0),
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where a € (1,2], ¢cD® is the Caputo fractional derivative of order «,up € R, and f: [0,00) x R - R
is continuous.

Zhao and Ge [24] considered the following boundary value problem for fractional differential
equations

D*u(t) + f(t,u(t)) =0, t € (0,00),
u(0) =0, (2)
limg 00 D tu(t) = Bu(€),

where a € (1,2),0 < £ < 00,8 > 0, f is a given function and D? is the Riemann-Liouville fractional
derivative.
Su, Zhang [19] considered the following boundary value problem

Du(t) = f(t,u(t), DY tu(t)), t € [0,0),
u(0) =0, (3)
DY lu(00) = ug, ug € R,

where a € (1,2], f € C([0,00) x R x R,R) and D% D*! are the Riemann-Liouville fractional
derivatives.

In [13], Liang and Zhang investigated the existence of three positive solutions for the following
m-point fractional boundary value problem

Du(t) + a(t) f(u(t)) =0, te (0,00),
u(0) = u/(0) =0, (4)
D u(oo) = 3277 Biu(&),

where a € (2,3),0 < & < & < - <§m2<ooB,205uchthat0<Ezl 1{‘”1 I'(a) and D*
is the Riemann—Liouville fractional derivative.

Wang et al. [20] by using Schauder’s fixed point theorem investigated the existence and unique-
ness of solutions for the following coupled system of nonlinear fractional differential equations on an
unbounded domain

DPu(t) + f(t,v(t)) =0, 2<p<3, teJ:=]0,00),
+

Div(t) + g(t,u(t)) =0, 2<qg<3, t 6 J :=10,00), (5)
u(0) =u/(0) =0, DPlu(oo) = 331 1 iu(&i),
v(0) = v'(0) =0, DT 'v(o0) = 31y (&),

where f,g € C(J xR,R), 0 < & < & < -+ < &2 < 00, DP and D? denote Riemann-Liouville
fractional derivatives of order p and q, respectively, as well as 5; > 0, 7; > 0 are such that 0 <

S BTN < T(p) and 0 < 2T yig! T < T(g).

Our aim in this paper is to generalize the above works on an infinite interval and more general
boundary conditions, so we discuss the existence of the solutions of a coupled system of nonlinear
fractional differential equations on an unbounded domain

“u(t) = f(t,v(t), D 1u(t)), teJ:=][0,00),
D%(t) g(t,u(t), Do Lu(t)), teJ:=[0,00),
u(0) =0,
v(0) =0, (©)
D tu(oo) = ug + Yo7 agul&) + S biD tu(&),
Dﬁ_lv(oo) = + 2?512 GU (77@) + Z?:f dzDﬁ 1”(771')7
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where 1 < a,0<2,0<& < < <&po<00, 0<n << < Mpog <00, a;,b;,¢,d; >0,
ug,vg > 0 are real numbers and f,g € C(J x R x R,R) and D is the Riemann-Liouville fractional
derivative.

This paper is organized as follows: in Section 2, some facts and results about fractional calculus
are given, while inspired by [19] we prove the main result and some corollaries in Section 3, and we
conclude this paper by considering an example in Section 4.

2 Preliminaries
In this section, we present some definitions and results which will be needed later.
Definition 2.1. [I1I] The Riemann—Liouville fractional integral of order o > 0 of a function f :

(0,00) — R is defined by

o) = F(la) /O (t— )21 f(s)ds, t>0,

provided that the right-hand side is pointwise defined.

Definition 2.2. [11] The Riemann—Liouville fractional derivative of order o > 0 of a continuous
function f: (0,00) — R is defined by

Do (1) = F(nl_a) <jt>n/0t(t _ L (s)ds £ >0,

where n = [a] + 1, provided that the right-hand side is pointwise defined. In particular, for a = n,

D f(t) = f™ ().

Remark 1. The following properties are well known:

DOICf(t) = f(t), a >0, f(t) € L'(0,00),
DOIf(t) = 1B f(t), a> B >0, f(t) € L1(0,00).

The following two lemmas can be found in [5] 1T].

Lemma 2.1. Let o > 0 andu € C(0,1)NLY(0,1). Then the fractional differential equation D%u(t) = 0
has a unique solution

u(t) =t P et P b gt G EeR, i=1,...,n,
wheren =[o]+1ifa ¢ Nandn =« if a € N,

Lemma 2.2. Assume that v € C(0,1) N LY(0,1) with a fractional derivative of order a > 0 that
belongs to C(0,1) N L(0,1). Then

IDu(t) = u(t) + et et 2 4 oot ™,
for somec; e Rji=1,....nandn=[a]+1ifa¢Nandn=aifa € N.

For the forthcoming analysis, we define the spaces

t
X = {u(t)‘u(t),Daflu(t) € C(J,R), sup L)L < oo, sup | D> tu(t)] < oo},
teg 1412 ted
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with the norm .
Jullx = max {sup L sup (Do)},
te

Ltem17 ey
and .
Y = {U(t)‘U(t),Dﬁ_l’U(t) e C(J,R), SupLg’_1 < o0, sup |DPLu(t)| < oo},
teg 1+1 teJ

with the norm

()]

o]y :max{sup sup]Dﬁflv(t)\}.
teJ eJ

1+ tﬂ_l ’ t
By Lemma 2.2 of [19], (X,||-||x), (Y,||-|ly) are Banach spaces. For (u,v) € X xY, let ||(u,v)||xxy =
max{||u||x,]||v||y}, then (X X Y,|| - ||xxy) is a Banach space. The Arzela—Ascoli theorem fails to

work in the Banach space X, Y due to the fact that the infinite interval [0, 00) is noncompact. The
following compactness criterion will help us to resolve this problem.

Lemma 2.3. [19] Let Z C X(Y) be a bounded set. Then Z is relatively compact in X (Y') if the
following conditions hold.

(i) For any u(t) € Z, lft(fy),l and D tu(t) are equicontinuous on any compact interval of J.

(ii) Given € > 0, there exists a constant T = T(€) > 0 such that

' u(t) u(ts)

< €,
IR

and
’Do‘_lu(tl) - Do‘_lu(tg)‘ < €,

for any t1,to > T and u(t) € Z.

3 Main result

In this section, we investigate sufficient conditions for the existence and uniqueness solutions for the
boundary value problem @ Before we state our main result, for the convenience, we introduce the
following notations:

m—2 m—2
Ao =T(a) = Y @& =T(a) > b,
=1 i=1
Xé S /0 ((1 + s Da(s) + b(s))ds,
= OOO b(s)ds,
&
o= [ 6= (5 als) + b(s) s
&
X = /0 (& — )7 16(s)ds

By replacing a;, b;, &, ¢, a(s), b(s) with ¢;, d;, ni, ¥, c(s), d(s) respectively, and « with § we can
introduce Ag, x5, X?/), X% ., and X%-
Now, we state sufficient conditions which allow us to establish the existence results for the system

(©).
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(Hy) There exist nonnegative functions a(t),b(t), ¢(t) € C|[0,00) such that
[f(t.z,9)] < a(t)]a] +b(O)]yl + 6(t),  Aa > 0,x5 < oo
(H2) There exist nonnegative functions ¢(t), d(t),¥(t) € C|[0,00) such that

l9(t, 2, y)| < et)e| + d(t)]y] + (), Ag>0,x3 < co.

1 Zz 1 aﬂ m— 2 aXﬁ

H 1
( 3) Aa <1,
1, Tl eixha n—2 Apxs

Xo + =T + 2is dix}, + 5
(Hy) T'(B) X 1 L(8) <1
B

Lemma 3.1. Let h € C|0,00), then the boundary value problem

(Du)(t) = h(t), 0<t<oo, l<a<2,
u(0) =0, (7)
D u(o0) = ug + Z;ZIQ au(&) + 2205 b Dt u(&i),

has a unique solution

a—1 00 m—Q i & B
u(t) = tAa (uo—/o h(S)dS‘f‘Zf:(;)/o (& — 5)* th(s)ds (8)

+ Z b, / ) + F(la)/ot(t_ ) h(s)ds,

where Ay #0, 0 <& <& <+ <&no2 <00 and a;, bi,ug >0 fori={1,...,m —2}.
Proof. We apply Lemma (2.2)) to convert the boundary value problem into the integral equation

u(t) = et 4 et 2 + I%h(2).

Since u(0) = 0, so ca = 0 and
D Yu(t) = e1T'(a) + I h(2).

Now using the second boundary condition we obtain ¢;. Since

0o m—2
T(a) + /0 ht) = uﬁZai(cﬁ?*H‘*h(&))

m—2
—i—Zb(ch +Ilh(§i)),
i=1
then
1 [ee] Zﬁi—lQai /fi 1
= —(uw— [ hls)ds+ ==L D [T (g — 5)* h(s)d
1 AL o /0 (s)ds + ) J, (& —s) (s)ds
m-—2 &i
+ bi/ h(s)ds
i=1 0
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Therefore

m—2 t
a—1
+;b2/0 h(s)ds) +F(a)/0 (t — s)*Th(s)ds
and
a—1 _ F(a) > E:ZSZGi & . a—1
DY tu(t) = AL (uo —/0 h(s)ds + F(a)/o (& — s)“ “h(s)ds
m=2 &i t

+;bi/0 h(s)ds) +/0 h(s)ds,

and the proof is completed. O

Define the operator T: X x Y — X x Y by
T (u,v)(t) = (Av(t), Bu(t)),

where

tafl

Av(t) = AL Uo—/Ooof(sav(s)’D’B_lU(s))dS

Z;ZIQC“ & el fs u(s B=Lu(s))ds
Bl A@1> f(s,0(s), DP~1u(s))d

m—2 &i
+ Z bi/ f(s,v(s), Dﬂ_lv(s))d8>
i=1

0

1 t — 5)* L f(s,v(s), DPu(s))ds
e [ =97 0. D ()i,

and

n—=2 .,
+Zri(51)cz /0 (i — )" g(s,u(s), D* " tu(s))ds
n—2 i
s,u(s), D" tu(s))ds
+;@Agu<>D <w>

Note that by conditions (Hy)—(Hy),
h f(s,0(s), D" u(s))|ds < ||v]]y h (14 % Ha(s) +b(s)|ds + h o(s)ds < oo.
0 0 0
h g(s,u(s), D tu(s))|ds < ||ul|x h (1+s* Ye(s) +d(s)|ds + h P(s)ds < oo.
0 0 0
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Theorem 3.1. Assume that the conditions (H1)~(H4) hold. Then the coupled system (6] has at least
one solution.

Proof. Take

A%(“OJFX%FZZH azx“rzm 2 bix3 + r(a))

R > max
ET-ril 1X B 2 Aax é ’
1— Xpt— T i bt T
Ao
1 PDHy 1 zXﬁ m—2 XwAB
As <U0+X¢+ +Z de¢ + TG,
ZZL 12 ’LX o4 2 XCz
1_ X4+ (3 g 3oy dixg+ 1‘6(5)

Ap

and define a ball
Br = {(w0) € X x¥| l|(uv)llxxy < R}.

First, we prove that T': Bgr — Bpg. In view of

D Ay(t) = FA(O‘ ( / F(s,0(s), DP~Ly(s))ds

m—2

P B [ 6 ) (s, 0(6), Do)
m—2 &

b [ flsu(s). Do ) /f” R
i=1 70

together with the definition of Av(t) and continuity of f we have Av(t), D ! Av(t) and similarly
Bu(t), D~ Bu(t) are continuous on .J.
For any (u,v) € Bg, we have

|Av(t)| 1 o1 / 8—1
_— < — ——ug+ ’ S,U(S ,D VS ‘ds
1 toz—l - éa 1 ta_l 0 0 f( ( ) ( ))

+E?52 a; / &
F(Oé) 0

+Zbi/'

i=1 0

+r<1o<> /o (;2&_11 £(s.0(s), DP~u(s))|ds

! up + /000 ‘f(s,v(s),DBflv(s))‘ds

m—2 13

+Zbi/

i=1 0

up + /0 h (a(3)|v(3)| +b(s)| DPLu(s)| + <Z>(s))ds

(€ — )% F (s (s), DP~"o(s)|ds

f(s,v(s), Dﬁ_lv(s)) ‘ds]

IN

(& — )" F(s,0(s), D7 o(s))|ds

f(s,v(s),D’B_lv(s))‘ds

+ 1“(1a) /000 ‘f(s,v(s),Dﬁ_lv(s)) ds

IN
|
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‘ RS B -
h) / (& — )27 (als)le(s)] + b(s) D o(s)| + 6(s) ) ds

0

+m2_2m /0 ) (a<s>\v<s>\ +0(s)| D o(s)| + ¢(s))ds]

=1
L & a(s)|v(s s B=1u(s s <
+F(a)/0 (()I()|+b( DA Lu(s)| + o ))d

IN

Aa ““”””Y/m(ﬂﬂﬁ ats) + b(s))ds + [~ ol

||3
\

—sal (1+ s~ )(s)—l—b(s))ds‘

Z?ll aq )2 Ly(s)ds
2L /(éz 1 o(s)d

0

m—2 3 — &
+3 biHva/O ((1+35—1)a(s) —i—b(s))ds—i— 3o ¢(s)ds]

i=1 0

e}

lolly [ -

m—2
m—2 Aa

1 Dic1 i 3 1 1
i= b; )

Ao

IN

o+ [Jolly (xb +

In a similar way, we can get

Now, we show that D"‘_lAv(t)‘ <R, ‘Dﬁ LBu(t )’ < R. To do it note that,

)Da_lAv(t)‘ < FA(? uO+/OOO‘f(s,v(s)vDﬁ‘lv(S))‘dS
SEEL [ e ot e, (e), D (e
L) Jo 7
+Zl2bi/0£i‘f s,v(s), DP~1 ‘d.s]
flstustor 0> tepf
0
< FA(C;) qurHvlhv(xﬂZ K meb )

+<Xq2b+21 1 @ 4+251X¢+ Aq ¢>] <T'(e)R < R.

Similarly, we can get
‘Dﬁ_lBu(t)‘ <R.
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Hence, ||T(u,v)||xxy < R, and this shows that T : Bg — Bpg.
Now, we show that T : B — Bp is a continuous operator. Let (uy,v,), (u,v) € Bg,n=1,2,...
and ||(un, vy) — (u,v)||xxy — 0 as n — oo. Then we have to show that ||T(up,v,) —T(u,v)||xxy — 0
as n — 0o.
Avy, (t) Av(t)

L+t 14t

1
< &

+ 1) (bl +1hlly) + 23)

Ay T(a)

m—2 m—2

i=1 Qi 3 Z a;

Tl Xaplvally +vlly) + 25751 Xa

T()Ag I'(a )A
m—2 m—2

i= bi Zi: b;
7&1 X5(l[vnlly + [lv]ly) + 27Al X5

1 1 m2a m2p,
(a, " U>M+%>AXW+ZE1X@

IN
N
Pl ~

MM

IN

[\]

=
7~ N\~ ~N

1 1 S22 23 P
o =4 = )2y glui=l T4 i=1 Y 2 ¢
ALt F(a)) Xo P2 ()a, Xe T T A Xt T A
Also
r el a m2p,T
D> Au, (t) — Da‘lAv(t)‘ < 2R (( A(O‘) + 1) X5+ Zzzl & X5+ Zz:lA (a)xé>
() 2 Z;ZQ i 4 22_12 bil'(a) o

Similar process can be repeated for B and then Lebesgue’s dominated convergence theorem asserts
that T is continuous.

Now we show that 7" maps bounded sets of X x Y to relatively compact sets of X x Y. It suffices
to prove that both A and B map bounded sets to relatively compact sets.

Now, for a bounded subset V of Y and U of X, by Lemma , we show that AV, BU are
relatively compact. Let I C J be a compact interval, ¢1,to € I and t1 < tg; then for any v(t) € V', we
have

Avty)  Av(ty) 1| ! o1 /00 51
— — + ,v(s), D d
IR Ao [1T+t571 144971 A ‘f(s v(s) v(s))| ds
&i _ 3 a 1
+Z%/§)ﬂMUD“(w%
=1
m—1
+sz/ w(s), DP~ Ly ))‘ds]
=1 0
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1

t2 —_ g)o— 1
/o (t12+t3 —f(s,0(s), D’ 1o(s))ds

1—|—to‘ Ty a1 f( v(s), DPu(s))ds

e
S
(/ b_;],ﬂsw>Jﬂ”N@W3
i

t1

(s,0(s), D7 tu(s))ds

1+t0‘ 14l f

=S
Aq

5! B ¢!
Lyt 14!
AP A (G
+ ) ay =
o P

m—1

+Zm/ >DW<»4

+1[”””MMWMW%MW

IA

up + /000 ’f(s,v(s),Dﬂ_lv(s)) ds

f(s,v(s), D’B_lv(s))’ ds

T(e) Jo 1+t57
1 t (tz — 8)a_1 (tl — 8 1
+ — ‘ S,V DA~ ds,
I() /0 Trg T g | DT

and

(Da—lAv(tQ) — Da_lAv(tl)‘ < /t2

t1

f(s,v(s), Dﬁ_lv(s))’ds.

Also for v(t) € V, f(t,v(t), D’ tv(t)) is bounded on I. Then it is easy to see that to(f)l and
D1 Ay(t) are equicontinuous on I.

Next we show that for any v(t) € V, functions lﬁ’,ﬁ Y- and D" L Av(t) satisfy the condition (ii)
of Lemma ({2.3]). Based on condition (H;)

/OOO )f(t,v(t),Dﬁ’lv(t))’dt <Ilvlly /OOO ((1 + 5 Da(t) + b(t))dt + /OOO $(t)dt < oo,

we know that for given e > 0, there exists a constant L > 0 such that

/OO 70 00), D7 o)t < e

On the other hand, since lim; .o, T J:;all = 1, there exists a constant 77 > 0 such that for any
tla t? Z Tl)
it ! ot gt ‘
IR 141971 1+t57!

Similarly, limg_, . % = 1 and thus there exists a constant T > L > 0 such that for any t1,t5 > 15

and 0 <s<L
<(1_ (tl . S)a—l (1o (tg o S)a—l
- 1 _{_ta*l 1 _’_tafl
1 2

‘ (ti—5)*"" (2 —s)*!

1491 141571
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Now choose T' > max{T1,T»}; then for t1,ty > T, we can obtain

A’U(tz) _ A’U(tl)
IR

1
A,

—1 —1
ty 1]
IR

(uo + /000 ‘f(s,v(s),DB_lv(s)) ds

a—1

—l—Zaz/gll_S))‘f(sv()Dﬁl ’ds

m—1 &
+> bi/
i=1 0
1
[(a)

t1 — s a—1
—/0 % (s,v(s),Dﬂ_lv(s))ds

F(s,0(s), Dﬁlv(s))‘ds>

t2 _ a—1
/0 %‘f(s, v(s), Dﬁ_lv(s))ds

1+t

< A 1it ‘112;—1 <UO+ /0 " | Flsv(s). D7 Tu(s)as
Jfa@' / ) @Eiy))l\f (8’v<s>,Dﬁ‘1v(s>)\ds
+sz/0 v(s), Do ))‘ds)
+r<1a>/ <t12;;3a11 (tf;fa 1 (), D" o(s))|ds
+r<1oz> /L (tll T 21_1 765 0(6), Dﬂ””@)\ds
v o s D e

= AL 1ft:—1 N 1—t§t“1‘1 <UO+/OOO‘f(s’”(s)’pﬁ_lv(s)) ds

+Zal/&§_s))al‘f(sv()Dﬁl ‘ds

[

v(s), D7 Mu(s >>ds\>

+maXte[0L] uEV‘f( ), D~ (ty — )1 (t; —s)*7!
I'(a) 141971 141971
1 o0

- =1, B-1
+F(a)/L [t (), Do) |at + a)/L [t 0(t), D7 o)) |de
L tg—l B toc 1
Ao [1+t571 1497t

maxiep, i uev | £(E ot >,Dﬁ—1v<t>>] 2
i I(a) ()"
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and

D Av(ts) — D Au(tn)| < /t2

t1

F(s,0(s), Dﬁflv(s))‘ds

< /L°° ‘f(s,v(s),Dﬁ_lv(s))‘ds <e.

Similar process can be repeated for B, thus T is relatively compact. Therefore, by Schauder’s fixed
point theorem the boundary value problem @ has at least one solution. ]

Corollary 3.1. Assume that conditions (H1),(H2) (Aq =T'(a),Ag =T(8)) and

()

X5 < 5

holds. Then there exists at least one solution (u(t),v(t)) € X x Y solving the following problem.

Deu(t) = f(t,v(t), D u(t)), ¢ € [0,50),
Du(t) = g(t,u(t), D~ < D, teloo),

9
u(0) = 0, DP~u(c0) = ©)
v(0) =0, D ty(c0) =
where o, B € (1,2], f € C([0,00) x R x R, R).
Corollary 3.2. Assume that
e There exist nonnegative functions a(t), ¢(t) € C[0,00) such that
[tz y)| < al®)|z] + (1), Aa=T(a)—a€* >0, xj < oo
e There exist nonnegative functions c(t), ¥ (t) € C[0,00) such that
lg(t, 2, )| < c(®)|z] +(t), Ag=T(8)—cn’ ' >0, x < 0.
1 aX:;,B Ao¢Xé
o LB Tl T Tl _ 1,
1 + CX% e + ABX})
o X T TR TTH) _
Ag
Then
Du(t) = f(t,0(t), D o(t),  t€(0,00),
DPu(t) = g(t,u(t), D* 'u(t)),  t€[0,00), (10)

u(0) = 0, DY 1u(o0) = au(§),
v(0) = 0, D7~ (o0) = cv(n),

has at least one solution, where o, 5 € (1,2],0 < §,n < 00,a,c >0, f is a continuous function.
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Corollary 3.3. Assume that

e There exist nonnegative functions a(t), ¢(t) € C[0,00) such that

m—2

F(ta )] < aldlel +6(), A =T(0)~ 3w >0, 13 < oo.
=1

e There exist nonnegative functions c(t),y(t) € C[0,00) such that

lg(t, 2, y)| < ct)|z| +9(t), Ag=T(B) =D em >0, x} < oc.

z;ﬁ; 2aiXa Aax
X,B + i"(a) 2 + F(a)B
] <1,
Aq
1, s cixba | Asxd
J et TTE - TTE
Ap
Then
Du(t) = f(t,v(t), D’ u(t)), t e 0,00),
DBu(t) = f(t,u(t), D tu(t)), t€0,00),
u(0) =0, v(0) =0,
Do u(o0) = % au(&),
DF 1y (o0) = Y02 oo (ny),

has at least one solution, where o, 3 € (1,2],0 < & < & < - < &noa < 00,0 < <My < - -+

Np—2 < 00,a4,¢; > 0.

4 An example

Consider the following boundary value problem on an unbounded domain.

1.5 [v(t)] In(1+|D%2v(t)|) L
D u(t) = 10+20t2 + (10+20¢2) (1+t9-2) + 10+20t2 teJ:=10,00),

20t |u(®)] 4 Lsin DOPu(p)]

) = (t+2)2(1+¢0-9) t+8)2
(0) 0, D%u(o0) = 3 + gu(2) + 15 D*?u(2),
v(0) =0, D°2v(c0) = g + 5v(3) + :D*?u(3).
Here,
1 |z| In(1 + Jy|)
¢ .
J29) = 357500 + Ao+ 200) 1 1 02) T 10 1 202
For

1 1 1
)= arenaoron) "W 502 YT 050

<

(12)
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by easy calculation we have

A, = 0.61 > 0,
% 1 1
1 0.2
= 1
XB /0 <( e >(1+30-2)(10+2032) T 1071 202

©
=/ —  _ds=01
/0 10 + 2052 ’
1 1

2
3 0.5 0.2
— [ (2- 1 ds = 0.19
Xa,p /0 (2=5) (( ts )(1+30-2)(10+2032) + 10+2032) s :

)ds —0.2,

NN

X

and it is easy to verify that condition (H3) holds.

Similarly, we can show that for the second equation condition (H4) holds. Thus all the conditions

of theorem ([3.1)) are satisfied and the problem has at least one solution.
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