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Abstract

In the paper, sufficient conditions are given under which all nontrivial

solutions of (g(a(t)y′))′+r(t)f(y) = 0 are proper where a > 0, r > 0, f(x)x >

0, g(x)x > 0 for x 6= 0 and g is increasing on R. A sufficient condition for

the existence of a singular solution of the second kind is given.
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1 Introduction

Consider the differential equation

(g(a(t)y′))′ + r(t)f(y) = 0, (1)

where a ∈ C0(R+), r ∈ C0(R+), g ∈ C0(R), f ∈ C0(R), R+ = [0,∞), R =
(−∞,∞), g is increasing on R and

a > 0, r > 0 on R+, f(x)x > 0 and g(x)x > 0 for x 6= 0. (2)

Sometimes the following condition will be assumed.

lim
z→∞

g(z) = − lim
z→−∞

g(z) = ∞. (3)

Definition. A function y defined on J ⊂ R+ is called a solution of (1) if
y ∈ C1(J), g(a(t)y′) ∈ C1(J) and (1) holds on J .

It is clear that (1) is equivalent to the system y1 = y, y2 = g(a(t)y′),

y′
1 =

g−1(y2)

a(t)
, y′

2 = −rf(y1), (4)

where g−1 is the inverse function to g. Hence, as the right-hand sides of (4)
are continuous, the Cauchy problem for (1) has a solution.

Definition. Let y be a continuous function defined on [0, τ) ⊂ R+. Then y

is called oscillatory if there exists a sequence {tk}∞k=1, tk ∈ [0, τ), k = 1, 2, . . .
of zeros of y such that limk→∞ tk = τ and y is nontrivial in any left neigh-
bourhood of τ .

Definition. A solution y of (1) is called proper if it is defined on R+ and
supτ≤t<∞ |y(t)| > 0 for every τ ∈ (0,∞). It is called singular of the first
kind if it is defined on R+, there exists τ ∈ (0,∞) such that y ≡ 0 on [τ,∞)
and supT≤t<τ |y(t)| > 0 for every T ∈ [0, τ). It is called singular of the
second kind if it is defined on [0, τ), τ < ∞, and cannot be defined at t = τ .
A singular solution y is called oscillatory if it is an oscillatory function on
[0, τ).

In the sequel we will investigate only solutions that are defined either on
R+ or on [0, τ), τ < ∞ and cannot be defined at = τ .
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Remark 1. (i) According to (2) every nontrivial solution of (1) is either
proper, singular of the first kind, or singular of the second kind.
(ii) A solution is singular of the second kind if and only if

lim
t→τ−

sup |y′(t)| = ∞.

(iii) If y is a singular solution of the first kind then y(τ) = y′(τ) = 0.
Consider the equation with p-Laplacian

(A(t)|y′|p−1y′)′ + r(t)f(y) = 0, (5)

where p > 0, A ∈ C0(R+) and A > 0 on R+. This is a special case of (1)

with g(z) = |z|p−1z and a = A
1

p . It is widely studied now; see e.g. [3], [4],
[8] and the references therein.

Recall the following sufficient conditions for the nonexistence of singular
solutions of (5).

Theorem A. (i) If M > 0, M1 > 0 and |f(x)| ≤ M1|x|p for |x| ≤ M ,
then there exists no singular solution of the first kind of (5).
(ii) If M > 0, M1 > 0 and |f(x)| ≤ M1|x|p for |x| ≥ M , then there exists no
singular solution of the second kind of (5).

(iii) Let the function A
1

p r be locally absolutely continuous on R+. Then every
solution of (5) is proper.

Proof. Cases (i) and (ii) are simple applications of results in [8, Theorems
1.1 and 1.2] (also see [1]). Case (iii) is proved in [3, Theorem 2] .

Theorem A (iii) shows that if A and r are smooth enough, singular solu-
tions do not exist. But the following theorem shows that singular solutions
may exist.

Theorem B ([3] Theorem 4). Let 0 < λ < p (0 < p < λ). Then there exists
a positive continuous function r defined on R+ such that the equation

(|y′|p−1y′)′ + r(t)|y|λ sgn y = 0 (6)

has a singular solution of the first (of the second) kind.
Note that the proof of Theorem B uses ideas from [5] and [6] for the case

p = 1.
The goal of this paper is to generalize results of Theorems A and B to

Eq. (1).
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2 Main results

We begin our investigations with simple properties of singular solutions.

Lemma 1. Let y be a singular solution of (1) and τ be the number in its
definition. Then y is oscillatory if and only if y′ is an oscillatory function
on [0, τ).

Proof. It follows directly from system (4) since, due to (2), y′ is an oscillatory
function on [0, τ) if and only if y2 = g(a(t)y′) is oscillatory on the same
interval.

Theorem 1. (i) Every singular solution of the first kind of (1) is oscillatory.
(ii) If (3) holds, then every singular solution of the second kind of (1) is
oscillatory.

Proof. (i) Let y be a singular solution of the first kind of (1) and τ < ∞
be the number from its definition. Suppose, contrarily, that y > 0 in a left
neighborhood of τ (the case y < 0 can be studied similarly). Then (1) and
(2) yield g(ay′) is decreasing and hence, ay′ is decreasing on I. From this
and from Remark 1 (iii), we have y′(τ) = 0 and hence y′ > 0 on I; this
contradicts the fact that y > 0 on I and y(τ) = 0.
(ii) Let y be a singular solution of the second kind of (1) defined on [0, τ), τ <

∞. Suppose, contrarily, that y > 0 in a left neighbourhood I = [τ1, τ) of
τ (the case y < 0 can be studied similarly). Then (1) and (2) yield ay′ is
decreasing on I and according to Remark 1 (ii) and Lemma 1 limt→τ− y′(t) =
−∞. Hence y is positive and decreasing in a left neighbourhood of τ and
rf(y) is bounded on I. From this, we have

−∞ = g(a(τ)y′(τ)) − g(a(τ1)y
′(τ1)) = −

∫ τ

τ1

r(t)f(y(t))dt > −∞.

This contradiction proves the statement.

The following example shows that singular solutions of the second kind
may be nonoscillatory if (3) does not hold.

Example 1. The differential equation
((

1 − 1

(|y′| + 1)2

)

sgn y′
)′

+ r(t)y = 0

with r(t) = 8
(2
√

1−t+1)4
for t ∈ [0, 1] and r(t) = 8 for t > 1 has a nonoscillatory

singular solution of the second kind of the form y = 1
2

+
√

1 − t.
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The first result for the nonexistence of singular solutions follows from
more common results of Mirzov [8] that are specified for (1).

Theorem 2. Let d1(z) = max(|g−1(z)|, |g−1(−z)|) and

d2(z) = max

(

max
0≤s≤|z|

f(s),− min
0≤s≤|z|

f(−s)

)

for z ∈ R.

(i) If for every t∗ ∈ R+ the problem

z′ =
1

a(t)
d1(d2(z)

∫ t

t∗
r(s)ds), y(t∗) = 0 (7)

has the trivial solution on [t∗,∞) only, then (1) has no singular solution of
the first kind.
(ii) If for every c1 ≥ 0 and c2 ≥ 0 the Cauchy problem

z′ =
1

a(t)
d1

(

c1 + d2(z)

∫ t

0

r(s)ds

)

, z(0) = c2 (8)

has the upper solution defined on R+, then (1) has no singular solution of
the second kind.

Proof. This follows from [8, Theorems 1.1 and 1.2 and Remark 1.1] setting
ϕ1(t, z) = 1

a(t)
d1(z) and ϕ2(t, z) = r(t)d2(z).

Corollary 1. Let g(z) = −g(−z), f(z) = −f(−z), and let f be nondecreas-
ing on R+.
(i) If there exists a continuous function R(t) and a right neighbourhood I of
z = 0 such that

f(z)

∫ t

0

r(s) ds ≤ g(R(t)z)

for t ∈ R+ and for z ∈ I, then (1) has no singular solution of the first kind.
(ii) For any c > 0 let there exist a continuous function R1(c, t) and a neigh-
bourhood I1(c) of ∞ such that c+ f(z)

∫ t

0
r(s) ds ≤ g(R1(c, t)z), t ∈ R+, z ∈

I1(c). Then there exists no singular solution of the second kind of (1).

Proof. In our case, d1(z) = g−1(z) and d2(z) = f(z), z ∈ R+. Moreover,

d1(z) = d1(−z) and d2(z) = d2(−z). (9)
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(i) It is clear that (7) can be studied only for |z| ∈ I. Then

0 ≤ d1

(

d2(z)

∫ t

t∗
r(s)ds

)

= g−1
(

f(z)

∫ t

t∗
r(s)ds

)

≤ g−1
(

f(z)

∫ t

0

r(s)ds
)

≤ R(t)z,

t ∈ R+ and z ∈ I. From this and from (9), Eq. (7) is sublinear in I, the
trivial solution z ≡ 0 is unique, and the statement follows from Th. 2 (i).
(ii) We have 0 ≤ d1

(

c1 + d2(z)
∫ t

0
r(s)ds

)

= g−1
(

c1 + f(z)
∫ t

0
r(s)ds

)

≤
R1(c1, t)z, t ∈ R+, z ∈ I1(c1). From this and from (9), Eq. (8) is sub-
linear for large values of z, (8) has the upper solution defined on R+, and
the statement follows from Theorem 2 (ii).

Corollary 2. Let p > 0, M > 0 and M1 > 0.
(i) Let

|g(z)| ≥ M |z|p and |f(z)| ≤ M1|z|p (10)

hold in a neighbourhood I of z = 0. Then (1) has no singular solution of the
first kind.
(ii) Let z0 ∈ R+ be such that (10) holds for |z| ≥ z0. Then (1) has no
singular solution of the second kind.

Proof. Let d1 and d2 be defined as in Theorem 2.

(i) Since (10) yields d1(z) ≤ |z|
1
p

M
and d2(z) ≤ M1|z|p for z ∈ I, we have

0 ≤ d1

(

d2(z)

∫ t

t∗
r(s)ds

)

≤ 1

M

(

M1|z|p
∫ t

t∗
r(s)ds

)

1

p

= M−1
(

M1

∫ t

t∗
r(s)ds

)
1

p |z|, z ∈ I, t∗ ∈ R+.

The remainder of the proof is similar to that of Cor. 1 (i).

(ii) Similarly, d1(z) ≤ |z|
1
p

M
and d2(z) ≤ M1|z|p for |z| ≥ z0, and so

0 ≤ d1

(

c1 + d2(z)

∫ t

0

r(s)ds
)

≤ 1

M

(

c1 + M1|z|p
∫ t

0

r(s)ds

)

1

p

,

t ∈ R+, |z| ≥ z0, c1 ≥ 0.

From this, equation (8) is sublinear for large |z|, the problem (8) has the
upper solution defined on R+, and the statement follows from Theorem 2
(ii).
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Remark 2. Theorem A (i), (ii) is special case of Corollary 2 with g(z) =

|z|p−1z, a = A
1

p , and M = 1.
The following theorem generalizes Theorem A (iii); sufficient conditions

for the nonexistence of singular solutions are posed on the functions a and r

only.

Theorem 3. Let the function ar be locally absolute continuous on R+, y be
a nontrivial solution of (1) defined on [0, b), b ≤ ∞, ar = r0 − r1 on R+, and

ρ(t) =

∫ g(a(t)y′(t))

0

g−1(σ)dσ + a(t)r(t)

∫ y(t)

0

f(σ)dσ ≥ 0, (11)

where r0 and r1 are nonnegative, nondecreasing and continuous functions.
Then, for 0 ≤ s < t < b,

ρ(s) exp

{

−
∫ t

s

r′1(σ)dσ

a(σ)r(σ)

}

≤ ρ(t) ≤ ρ(s) exp

{
∫ t

s

r′0(σ)dσ

a(σ)r(σ)

}

. (12)

Moreover, y is not singular of the first kind, and if (3) holds, then y is proper.

Proof. Since ar is of locally bounded variation, the continuous nondecreasing
functions r0 and r1 exist such that ar = r0 − r1, and they can be chosen to
be nonnegative on R+. Moreover, r′0 ∈ Lloc(R+) and r′1 ∈ Lloc(R+). Then ρ

is absolute continuous on [s, t] and

ρ′(τ) = (a(τ)r(τ))′
∫ y(τ)

0

f(σ)dσ, τ ∈ [s, t] a.e.

Let ε > 0 be arbitrary. Then (2) implies ρ(τ) ≥ 0 on [s, t], both terms in
(11) are nonnegative, and

ρ′(τ)

ρ(τ) + ε
=

a(τ)r(τ)

ρ(τ) + ε

∫ y(τ)

0

f(σ)dσ
r′0(τ) − r′1(τ)

a(τ)r(τ)
;

hence,

− r′1(τ)

a(τ)r(τ)
≤ ρ′(τ)

ρ(τ) + ε
≤ r′0(τ)

a(τ)r(τ)
a.e. on [s, t].

An integration and (11) yield

exp

{

−
∫ t

s

r′1(σ)dσ

a(σ)r(σ)

}

≤ ρ(t) + ε

ρ(s) + ε
≤ exp

{
∫ t

s

r′0(σ)ds

a(σ)r(σ)

}

.
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Since ε > 0 is arbitrary, (12) holds.
Let y be singular of the first kind. Then according to its definition and

Remark 1 (iii), there exists τ ∈ (0,∞) such that y(τ) = 0, y′(τ) = 0, and

sup
T≤t<τ

|y(t)| > 0 for every T ∈ [0, τ). (13)

Hence, (11) and (12) yield ρ(τ) = 0 and ρ(t) = 0 on [0, τ ]. From this and
from (2), we have y = 0 on [0, τ ]. This contradiction to (13) proves that y is
not singular of the first kind.

Let (3) be valid and y be a singular solution of the second kind. Then
according to Remark 1 (ii), there exists a sequence {tk}∞k=1 such that tk ∈
[0, b), limk→∞ tk = b, and limk→∞ |y′(tk)| = ∞. Hence, (3) yields limk→∞
g(a(tk)y

′(tk)) = ∞. From this and from (12) we have for s = 0 and t =
tk, k = 1, 2, . . . , that

∞ = lim
k→∞

ρ(tk) ≤ ρ(0) exp

{
∫ τ

0

r′0(σ)dσ

a(σ)r(σ)

}

.

The contradiction proves that y is not singular of the second kind and, ac-
cording to Remark 1 (i), it is proper.

Theorem 4. Let the assumptions of Theorem 3 be valid and let

ρ1(t) =
1

a(t)r(t)

∫ g(a(t)y′(t))

0

g−1(σ)dσ +

∫ y(t)

0

f(σ)dσ. (14)

Then for 0 ≤ s < t < b we have

ρ1(s) exp

{

−
∫ t

s

r′0(σ)dσ

a(σ)r(σ)

}

≤ ρ1(t) ≤ ρ1(s) exp

{
∫ t

s

r′1(σ)dσ

a(σ)r(σ)

}

. (15)

Proof. The proof is similar to that of Theorem 3 since

ρ′
1(τ) = − (a(τ)r(τ))′

(a(τ)r(τ))2

∫ g(a(τ)y′(τ))

0

g−1(σ)dσ =
r′1(τ) − r′0(τ)

a(τ)r(τ)

∫ g(a(τ)y′(τ))

0
g−1(σ)dσ

a(τ)r(τ)

a.e. on [s, t].

Remark 3. Inequalities (12) and (15) are proved in [7] for Equation (5) with
p = 1 and a ≡ 1, in [3] for g(z) = |z|p−1z with p > 0, and in [8] for Equation
(6).
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Corollary 3. Let ar be locally absolute continuous on R+. Let ρ and ρ1 be
given by (11) and (14), respectively.
(i) If ar is nondecreasing on R+, then for an arbitrary solution y of (1), ρ

is nondecreasing and ρ1 is nonicreasing on R+.
(ii) If ar is nonincreasing on R+, then for an arbitrary solution y of (1), ρ

is nonincreasing and ρ1 is nondecreasing on R+.

Proof. It follows from (12) and (15) as r0 ≡ r and r1 ≡ 0 in case (i), and
r0 ≡ r(0), r1 = r(0) − r in case (ii).

In [1] there is an example of Eq. (1) with a ≡ 1, g(z) ≡ z, f(z) = |z|λ sgn z

and 0 < λ < 1 for which there exists a proper solution y with infinitely
many accumulation points of zeros. The following corollary gives a sufficient
condition under which every solution of (1) has no accumulation point of
zeros in its interval of definition.

Corollary 4. If ar is locally absolute continuous on R+, then every nontrivial
solution y of (1) has no accumulation point of its zeros and has no double
zero in its interval of definition.

Proof. Let τ be an accumulation point of zeros or a double zero of a solution
y of (1) lying in its definition interval. Hence, y(τ) = 0 and y′(τ) = 0. Then,
ȳ(t) = y(t) on [0, τ ] and ȳ(t) = 0 for t > τ is a singular solution of the first
kind of (1) that contradits Theorem 3.

Corollary 5. Let ar be locally absolute continuous and nondecreasing (non-
increasing) on R+. Let y be a solution of (1) defined on [0, b), b ≤ ∞, and
{tk}N

k=1, N ≤ ∞, be a (finite or infinite) increasing sequence of zeros of y′ ly-
ing in [0, b). Then the sequence of local extrema {|y(tk)|}N

k=1 is nonincreasing
(nondecreasing).

Proof. Let ar be nondecreasing on R+. As all assumptions of Corollary 3
are fulfilled, ρ1 is nonincreasing and the statement follows from ρ1(tk) =
∫ y(tk)

0
f(σ)dσ and (2). If ar is nonincreasing, the proof is similar.

The following corollary generalizes Theorem B and it shows that singular
solutions may exist if ar is not locally absolutely continuous on R+.

Corollary 6. Let A ≡ 1, 0 < λ < p (0 < p < λ) and limz→0
f(z)

|z|λ sgn z
= M ∈

(0,∞). Then there exists a positive continuous function r such that Equation
(5) has a singular solution of the first (second) kind.
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Proof. Let 0 < λ < p. Then Theorem B yields the existence of a positive
continuous function r̄ defined on R+ such that (6) (with r = r̄) has a singular
solution y of the first kind. Put

r(t) = r̄(t)
|y(t)|λ sgn y(t)

f(y(t))
if y(t) 6= 0

and r(t) = r̄(t)
M

if y(t) = 0. From this and from (2), the function r is
positive and continuous on R+, and

(

|y′(t)|p−1y′(t)
)′

= −r̄(t)|y(t)|λ sgn y(t) = −r(t)f(y(t));

hence y is also a solution of (5).
If 0 < p < λ, then the proof is similar.

Example 1 shows that the statement of Theorem 3 does not hold if (3)
is not valid; singular solutions of the second kind may exist. The following
theorem gives sufficient conditions for the existence of such solutions.

Theorem 5. Let M ∈ (0,∞), a ≡ 1 on R+, and g ∈ C1(R).
(i) If β ∈ {−1, 1}, λ > 2, and

0 < g′(z) ≤ |z|−λ for βz ≥ M, (16)

then (1) possesses a singular solution of the second kind.
(ii) If

g′(z) ≥ |z|−2 for |z| ≥ M, (17)

then (1) has no nonoscillatory singular solution of the second kind.

Proof. (i) Let β = 1; if β = −1, the proof is similar. Consider the differential
equation

y′′ = −r(t)f(y)G(y′), (18)

where G ∈ C0(R), G(z)z > 0 for z 6= 0, and

G(z) = (g′(z))−1 for z ≥ M. (19)

Put M1 = [(λ − 1) min0≤s≤1 r(s) min−3≤s≤− 1

2

|f(s)|]− 1

λ−1 . Let τ be such that

0 < τ ≤ 1, τ ≤ 2M
−λ−1

λ−2

1 , τ ≤
[

max
0≤s≤1

r(s) max
−3≤s≤− 1

2

|f(s)|
]−1

∫ 2M

M

ds

G(s)
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and

τ ≤ g(M)

[

max
0≤s≤1

r(s) max
−4≤s≤−3

|f(s)|
]−1

. (20)

Then (16) and (19) yield G(z) ≥ zλ for z ≥ M and according to Theorem 1
in [2] (with n = 2, M = M, β = 1, c0 = −1, α = −1, T = τ

2
, N = 3; see the

proof of Theorem 1 and (13) – (17) as well), there exists a solution y of (18)
defined in [ τ

2
, τ) such that

lim
t→τ−

y(t) = −1, lim
t→τ−

y′(t) = ∞,

and

−3 ≤ y(t) ≤ −1

2
, M ≤ y′(t) ≤ M1(τ − t)−

1

λ−1 , t ∈ [
τ

2
, τ). (21)

Hence, (16), (19) and (21) yield y is the solution of Eq. (1) on [ τ
2
, τ). We will

prove that y can be defined on [0, τ) and, thus, y is singular of the second
kind. Let, to the contrary, y be defined on (τ̄ , τ) ⊂ [0, τ) so that it cannot
be defined at τ̄ . Then

lim sup
t→τ̄+

|y′(t)| = ∞. (22)

First, we prove that
y′(t) > 0 on (τ̄ , τ). (23)

Suppose, that τ1 ∈ (τ̄ , τ) exists such that y′(τ1) = 0 and y′(t) > 0 on (τ1, τ);
according to (21), τ1 < τ

2
. Hence, y is increasing on (τ1, τ) and negative.

From this, (1), and (2), the functions g(y′) and y′ are increasing on (τ1, τ).
Further, we estimate y on [τ1,

τ
2
] using (21) and the definition of τ . We have

− 3 ≥ y(t) = y(
τ

2
) +

∫ t

τ
2

y′(s)ds ≥ y
(τ

2

)

− y′
(τ

2

)(τ

2
− t

)

≥ −3 − M1(
τ

2
)−

1

λ−1
τ

2
≥ −3 − M1(

τ

2
)1− 1

λ−1 ≥ −4, t ∈ [τ1,
τ

2
].

(24)

An integration of (1) on [τ1,
τ
2
], (2), (21), (24), and τ ≤ 1, yield

g(M) ≤ g
(

y′(
τ

2
)
)

− g(y′(τ1)) = −
∫ τ

2

τ1

r(s)f (y(s)) ds

≤ max
0≤s≤1

r(s) max
−4≤s≤−3

|f(s)|τ
2
.
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This contradiction to (20) proves that (23) is valid. From this and from (21),
y < 0 on (τ̄ , τ), and (1) yields g(y′) and y′ are incerasing on this interval.
Thus, according to (23), y′ is bounded in a right neighbourhood of τ̄ which
contradicts (22), and so y is defined on so [0, τ).
(ii) Suppose, that y is a nonoscillatory singular solution of (1) of the second
kind defined on [0, τ). Then Lemma 1 and Remark 1 (ii) yield limt→τ− |y′(t)| =
∞ and limt→τ− y(t) = C ∈ [−∞,∞]. Suppose that

lim
t→τ−

y′(t) = ∞ (25)

(the opposite case can be studied similarly).
Let C ∈ (−∞,∞). Due to (1) and (17), y is a solution of Eq. (18) and

(19) on [T, τ) ∈ [0, τ) where T is such that y′(t) ≥ M on [T, τ). But this
contradicts a result in [2, Theorem 2].

Let C = ∞. Then limt→τ− y(t) = ∞. But according to (1) and (2),
the functions g(y′) and y′ are decreasing in a left neighbourhood of τ , which
contradicts (25). Clearly, the case C = −∞ is impossible due to (25).
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