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1. Introduction

Situations of contact between deformable bodies are very common in the industry and everyday

life. Contact of braking pads with wheels, tires with roads, pistons with skirts or the complex metal

forming processes are just a few examples. The constitutive laws with internal variables has been

used in various publications in order to model the effect of internal variables in the behavior of real

bodies like metal and rocks polymers. Some of the internal state variables considered by many authors

are the spatial display of dislocation, the work-hardening of materials, the absolute temperature and

the damage field. See for examples [6, 26, 27, 28, 29, 35, 36] for the case of hardening, temperature

and other internal state variables and the references [18, 20, 27] for the case of damage field and the

adhesion field which is denoted in this paper by β. It describes the pointwise fractional density of

active bonds on the contact surface, and sometimes referred to as the intensity of adhesion. Following

[15, 16], the bonding field satisfies the restrictions 0 ≤ β ≤ 1. When β = 1 at a point of the contact

surface, the adhesion is complete and all the bonds are active. When β = 0 all the bonds are inactive,

severed, and there is no adhesion. When 0 < β < 1 the adhesion is partial and only a fraction β of

the bonds is active. We refer the reader to the extensive bibliography on the subject in [31, 33, 34].

In this paper we deal with the study of a dynamic problem of frictionless adhesive contact for

general thermo-elastic-viscoplastic materials. For this, we consider a rate-type constitutive equation

with two internal variables of the form

σ(t) = A
(
ε(u̇(t))

)
+ E

(
ε(u(t))

)
+

∫ t

0

G
(
σ(s)−A

(
ε(u̇(s))

)
, ε
(
u(s)

)
, θ(s), ς(s)

)
ds, (1.1)

in which u, σ represent, respectively, the displacement field and the stress field where the dot above

denotes the derivative with respect to the time variable, θ represents the absolute temperature, ς

is the damage field, A and E are nonlinear operators describing the purely viscous and the elastic

properties of the material, respectively, and G is a nonlinear constitutive function which describes

the visco-plastic behavior of the material. It follows from (1.1) that at each time moment, the stress

tensor σ(t) is split into two parts: σ(t) = σV (t) + σR(t), where σV (t) = A(ε(u̇(t))) represents the
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purely viscous part of the stress, whereas σR(t) satisfies a rate-type elastic-viscoplastic relation with

absolute temperature and damage

σR(t) = E
(
ε(u(t))

)
+

∫ t

0

G
(
σR(s), ε

(
u(s)

)
, θ(s), ς(s)

)
ds. (1.2)

When G = 0 in (1.1) reduces to the Kelvin–Voigt viscoelastic constitutive law given by

σ(t) = A
(
ε(u̇(t))

)
+ E

(
ε(u(t))

)
. (1.3)

The damage is an extremely important topic in engineering, since it affects directly the useful life

of the designed structure or component. There exists a very large engineering literature on it. Models

taking into account the influence of the internal damage of the material on the contact process have

been investigated mathematically. General models for damage were derived in [17, 18] from the virtual

power principle. Mathematical analysis of one-dimensional problems can be found in [19]. In all these

papers the damage of the material is described with a damage function ς, restricted to have values

between zero and one. When ς = 1 there is no damage in the material, when ς = 0 the material

is completely damaged, when 0 < ς < 1 there is partial damage and the system has a reduced load

carrying capacity. In this paper the inclusion used for the evolution of the damage field is

ρς̇ − k1∆ς + ∂Kϕ(ς) 3 φ
(
σ −A

(
ε(u̇(s))

)
, ε(u), θ, ς

)
where K denotes the set of admissible damage functions defined by

K = {ξ ∈ V : 0 ≤ ξ(x) ≤ 1 a.e. x ∈ Ω},

k1 is a positive coefficient, ∂Kϕ(ς) represents the subdifferential of the indicator function of the set

K and φ is a given constitutive function which describes the sources of the damage in the system.

Examples and mechanical interpretation of elastic-viscoplastic can be found in [12, 21]. Dynamic and

quasistatic contact problems are the topic of numerous papers, e.g. [1, 2, 4, 11, 14, 32]. More recently

in [5], we study an electro-elastic-visco-plastic frictionless contact problem with damage and adhesion.

The mathematical problem modelled the quasi-static evolution of damage in thermo-viscoplastic ma-

terials has been studied in [27].

We model the material’s behavior with an elastic-viscoplastic constitutive law with damage. We

derive a variational formulation of the problem and prove the existence of a unique weak solution. The

paper is organized as follows. In Section 2 we present the mechanical problem of the dynamic evolution

of damage and adhesion in thermo-elastic-viscoplastic materials. We introduce some notations and

preliminaries and we derive the variational formulation of the problem. We prove in Section 3 the

existence and uniqueness of the solution.

2. Statement of the Problem

Let Ω ⊂ Rn (n = 2, 3) be a bounded domain with a Lipschitz boundary Γ, partitioned into three

disjoint measurable parts Γ1, Γ2 and Γ3 such that meas(Γ1) > 0. We denote by Sn the space of

symmetric tensors on Rn. We define the inner product and the Euclidean norm on Rn and Sn,

respectively, by

u · v = uivi ∀u, v ∈ Rn, σ · τ = σijτij ∀σ, τ ∈ Sn,

|u| = (u · u)1/2 ∀u ∈ Rn, |σ| = (σ · σ)1/2 ∀σ ∈ Sn.
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Here and below, the indices i and j run from 1 to n and the summation convention over repeated

indices is used. We shall use the notation

H = L2(Ω)n = {u = {ui} : ui ∈ L2(Ω)},

H = {σ = {σij} : σij = σji ∈ L2(Ω)},

H1 = {u ∈ H : ε(u) ∈ H},

H1 = {σ ∈ H : Div(σ) ∈ H},

V = H1(Ω).

Here ε : H1 → H and Div : H1 → H are the deformation and divergence operators, respectively,

defined by

ε(u) = (εij(u)), εij(u) =
1

2
(ui,j + uj,i), Div(σ) = (σij,j).

The sets H, H, H1, H1 and V are real Hilbert spaces endowed with the canonical inner products:

(u, v)H =

∫
Ω

uividx, (σ, τ)H =

∫
Ω

σijτijdx,

(u, v)H1
= (u, v)H + (ε(u), ε(v)H,

(σ, τ)H1
= (σ, τ)H + (Div(σ),Div(τ))H ,

(f, g)V = (f, g)L2(Ω) + (fxi
, gxi

)L2(Ω) .

The associated norms are denoted by ‖ · ‖H , ‖ · ‖H, ‖ · ‖H1
, ‖ · ‖H1

and ‖ · ‖V . Since the boundary

Γ is Lipschitz continuous, the unit outward normal vector field ν on the boundary is defined a.e. For

every vector field v ∈ H1 we denote by vν and vτ the normal and tangential components of v on the

boundary given by

vν = v · ν, vτ = v − vνν.

Let HΓ = (H1/2(Γ))n and γ : H1 → HΓ be the trace map. We denote by V the closed subspace of H1

defined by

V = {v ∈ H1 : γv = 0 on Γ1}.

We also denote by H ′Γ the dual of HΓ. Moreover, since meas(Γ1) > 0, Korn’s inequality holds and

thus, there exists a positive constant C0 depending only on Ω, Γ1 such that

‖ε(v)‖H ≥ C0‖v‖H1
∀v ∈ V.

On the space V we consider the inner product given by

(u, v)V = (ε(u), ε(v))H,

and let ‖ · ‖V be the associated norm, defined by

‖v‖V = ‖ε(v)‖H. (2.1)

It follows from Korn’s inequality that ‖ ·‖H1 and ‖ ·‖V are equivalent norms on V . Therefore (V, | · |V)

is a real Hilbert space. Moreover, by the Sobolev trace theorem there exists a positive constant C0

which depends only on Ω, Γ1 and Γ3 such that

‖v‖L2(Γ3)n ≤ C0‖v‖V ∀v ∈ V. (2.2)

Furthermore, if σ ∈ H1 there exists an element σν ∈ H ′Γ such that the following Green formula holds

(σ, ε(v))H + (Div(σ), v)H = (σν, γv)H′Γ×HΓ
∀v ∈ H1.
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In addition, if σ is sufficiently regular (say C1), then

(σ, ε(v))H + (Div(σ), v)H =
∫

Γ
σν · γvdΓ ∀v ∈ H1, (2.3)

where dΓ denotes the surface element. Similarly, for a regular tensor field σ : Ω → Sn we define its

normal and tangential components on the boundary by

σν = σν · ν, στ = σν − σνν.

Moreover, we denote by V ′ and V ′ the dual of the spaces V and V , respectively. Identifying H,

respectively L2(Ω), with its own dual, we have the inclusions

V ⊂ H ⊂ V ′, V ⊂ L2(Ω) ⊂ V ′.

We use the notation 〈·, ·〉V′×V , 〈·, ·〉V ′×V to represent the duality pairing between V ′,V and V ′, V ,

respectively. Let T > 0. For every real space X, we use the notation C(0, T ;X), and C1(0, T ;X)

for the space of continuous an continuously differentiable functions from [0, T ] to X respectively,

C(0, T ;X) is a real Banach space with the norm

|f |C(0,T ;X) = max
t∈[0,T ]

|f(t)|X .

While C1(0, T ;X) is a real Banach space with the norm

|f |C1(0,T ;X) = max
t∈[0,T ]

|f(t)|X + max
t∈[0,T ]

|ḟ(t)|X .

Finally, for k ∈ N and p ∈ [1,∞], we use the standard notation for the Lebesgue space Lp(0, T ;X)

and for the Sobolev spaces W k,p(0, T ;X). Moreover, for a real number r, we use r+ to represent its

positive part that is r+ = max(0, r), and if X1 and X2 are real Hilbert spaces, than X1 ×X2 denotes

the product Hilbert space endowed with the canonical inner product (·, ·)X1×X2
.

The physical setting is the following. A body occupies the domain Ω, and is clamped on Γ1 and so

the displacement field vanishes there. Surface tractions of density f0 act on Γ2 × (0, T ) and a volume

force of density f is applied in Ω× (0, T ). We assume that the body is in adhesive frictionless contact

with an obstacle, the so-called foundation, over the potential contact surface Γ3. We admit a possible

external heat source applied in Ω× (0, T ), given by the function q. Moreover, the process is dynamic,

and thus the inertial terms are included in the equation of motion. We use an elastic-viscoplastic

constitutive law with damage to model the material’s behaviour and an ordinary differential equation

to describe the evolution of the adhesion field.

The mechanical formulation of the frictionless problem with normal compliance is as follow.

Problem P. Find the displacement field u : Ω × [0, T ] → Rn, the stress field σ : Ω × [0, T ] → Sn,

the temperature θ : Ω × [0, T ] → R, the damage field ς : Ω × [0, T ] → R and the adhesion field

β : Ω× [0, T ]→ R such that

σ(t) = A
(
ε(u̇(t))

)
+ E

(
ε(u(t))

)
+
∫ t

0
G
(
σ(s)−A

(
ε(u̇(s))

)
, ε
(
u(s)

)
, θ(s), ς(s)

)
ds

in Ω a.e. t ∈ (0, T ),
(2.4)

ρü = Div(σ) + f in Ω× (0, T ), (2.5)

ρθ̇ − k0∆θ = ψ
(
σ −A

(
ε(u̇)

)
, ε(u), θ, ς

)
+ q in Ω× (0, T ), (2.6)

ρς̇ − k1∆ς + ∂Kϕ
(
ς) 3 φ

(
σ −A

(
ε(u̇)

)
, ε(u), θ, ς

)
in Ω× (0, T ), (2.7)

u = 0 on Γ1 × (0, T ), (2.8)

σν = f0 on Γ2 × (0, T ), (2.9)
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−σν = pν(uν)− γνβ2Rν(uν) on Γ3 × (0, T ), (2.10)

−στ = pτ (β)Rτ (uτ ) on Γ3 × (0, T ), (2.11)

β̇ = −
(
β
[
γν(Rν(uν))2 + γτ |Rτ (uτ )|2

]
− εa

)
+

on Γ3 × (0, T ), (2.12)

k0
∂θ
∂ν + αθ = 0 on Γ× (0, T ), (2.13)

∂ς
∂ν = 0 on Γ× (0, T ), (2.14)

u(0) = u0, u̇(0) = w0, θ(0) = θ0, ς(0) = ς0 in Ω, (2.15)

β(0) = β0 on Γ3. (2.16)

This problem represents the dynamic evolution of damage and adhesion in thermo-elastic-viscoplas-

tic materials. Equation (2.4) is the thermo-elastic-viscoplastic constitutive law where A and E are

nonlinear operators describing the purely viscous and the elastic properties of the material, respec-

tively, and G is a nonlinear constitutive function which describes the viscoplastic behavior of the

material. (2.5) represents the equation of motion in which the dot above denotes the derivative with

respect to the time variable and ρ is the density of mass. Equation (2.6) represents the energy conser-

vation where ψ is a nonlinear constitutive function which represents the heat generated by the work of

internal forces and q is a given volume heat source. Inclusion (2.7) describes the evolution of damage

field. Equalities (2.8) and (2.9) are the displacement-traction boundary conditions, respectively. Con-

dition (2.10) represents the normal compliance condition with adhesion where γν is a given adhesion

coefficient and pν is a given positive function which will be described below. In this condition the

interpenetrability between the body and the foundation is allowed, that is uν can be positive on Γ3.

The contribution of the adhesive to the normal traction is represented by the term γνβ
2Rν(uν) the

adhesive traction is tensile and is proportional, with proportionality coefficient γν , to the square of

the intensity of adhesion and to the normal displacement, but only as long as it does not exceed the

bond length L. The maximal tensile traction is γνL. Rν is the truncation operator defined by

Rν (s) =


L if s < −L,
−s if − L ≤ s ≤ 0,

0 if s > 0.

Here L > 0 is the characteristic length of the bond, beyond which it does not offer any additional

traction. The contact condition (2.10) was used in various papers, see e.g. [9, 10, 34, 37]. Condition

(2.11) represents the adhesive contact condition on the tangential plane, in which pτ is a given function

and Rτ is the truncation operator given by

Rτ (v) =

v if |v| ≤ L,
L v
|v| if |v| > L.

This condition shows that the shear on the contact surface depends on the adhesion field and on the

tangential displacement, but only as long as it does not exceed the adhesion length L. The frictional

tangential traction is assumed to be much smaller than the adhesive one, and therefore omitted.

The introduction of the operator Rν , together with the operator Rτ defined above, is motivated by

mathematical arguments but it is not restrictive for physical point of view, since no restriction on the

size of the parameter L is made in what follows.

Next, equation (2.12) represents the ordinary differential equation which describes the evolution of the

adhesion field and it was already used in [9, 34], see also [33] for more details. Here, besides γν , two
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new adhesion coefficients are involved, γτ and εa. Notice that in this model once debonding occurs,

adhesion cannot be reestablished, since, as it follows from (2.12), β̇ ≤ 0. (2.13) and (2.14) represent,

respectively a Fourier boundary condition for the temperature and a homogeneous Neumann boundary

condition for the damage field on Γ. Finally the functions u0, w0, θ0 and ς0 in (2.15) and β0 in (2.16)

are the initial data. To obtain the variational formulation of the problem(2.4)–(2.16) we introduce for

the adhesive field the set

Z = {ω ∈ L∞
(
0, T ;L2(Γ3)

)
: 0 ≤ ω(t) ≤ 1 ∀t ∈ [0, T ], a.e. on Γ3}.

In the study of the mechanical problem (P), we consider the following hypotheses.

The viscosity operator A : Ω× Sn → Sn satisfies the following properties:



(a) There exists a constant LA > 0 such that

|A(x, ε1)−A(x, ε2)| ≤ LA|ε1 − ε2| for all ε1, ε2 ∈ Sn, a.e. x ∈ Ω.

(b) There exists a constant mA such that

(A(x, ε1)−A(x, ε2)).(ε1 − ε2) ≥ mA|ε1 − ε2|2 for all ε1, ε2 ∈ Sn a.e. x ∈ Ω.

(c) The mapping x 7→ A(x, ε) is Lebesgue measurable on Ω for all ε ∈ Sn.
(d) The mapping x 7→ A(x, 0) ∈ H.

(2.17)

The elasticity operator E : Ω× Sn → Sn satisfies the following properties:


(a) There exists a constant LE > 0 such that

|E(x, ε1)− E(x, ε2)| ≤ LE |ε1 − ε2| for all ε1, ε2 ∈ Sn, a.e. x ∈ Ω.

(b) The mapping x 7→ E(x, ε) is Lebesgue measurable on Ω for all ε ∈ Sn.
(c) The mapping x 7→ E(x, 0) ∈ H.

(2.18)

The viscoplasticity operator G : Ω× Sn × Sn × R× R→ Sn satisfies the following properties:



(a) There exists a constant LG > 0 such that |G(x, σ1, ε1, θ1, ς1)−
G(x, σ2, ε2, θ2, ς2)| ≤ LG(|σ1 − σ2|+ |ε1 − ε2|+ |θ1 − θ2|+ |ς1 − ς2|)
for all σ1, σ2 ∈ Sn, for all ε1, ε2 ∈ Sn for all θ1, θ2 ∈ R,
for all ς1, ς2 ∈ R, a.e. x ∈ Ω.

(b) The mapping x 7→ G(x, σ, ε, θ, ς) is Lebesgue measurable on Ω

for all σ, ε ∈ Sn, for all θ, ς ∈ R.
(c) The mapping x 7→ G(x, 0, 0, 0, 0) ∈ H.

(2.19)

The nonlinear constitutive function ψ : Ω× Sn × Sn × R× R→ R satisfies the following properties:



(a) There exists a constant Lψ > 0 such that |ψ(x, σ1, ε1, θ1, ς1)−
ψ(x, σ2, ε2, θ2, ς2)| ≤ Lψ(|σ1 − σ2|+ |ε1 − ε2|+ |θ1 − θ2|+ |ς1 − ς2|)
for all σ1, σ2 ∈ Sn, for all ε1, ε2 ∈ Sn, for all θ1, θ2 ∈ R,
for all ς1, ς2 ∈ R a.e. x ∈ Ω.

(b) The mapping x 7→ ψ(x, σ, ε, θ, ς) is Lebesgue measurable on Ω

for all σ, ε ∈ Sn, for all θ, ς ∈ R.
(c) The mapping x 7→ ψ(x, 0, 0, 0, 0) ∈ L2(Ω).

(2.20)
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The damage source function φ : Ω× Sn × Sn × R× R→ R satisfies the following properties:

(a) There exists a constant Lφ > 0 such that

|φ(x, σ1, ε1, θ1, ς1)− φ(x, σ2, ε2, θ2, ς2)| ≤ Lφ(|σ1 − σ2|+ |ε1 − ε2|
+|θ1 − θ2|+ |ς1 − ς2|) for all σ1, σ2 ∈ Sn, for all ε1, ε2 ∈ Sn,
for all θ1, θ2 ∈ R, for all ς1, ς2 ∈ R, a.e. x ∈ Ω.

(b) The mapping x 7→ φ(x, σ, ε, θ, ς) is Lebesgue measurable on Ω

for all σ, ε ∈ Sn, for all θ, ς ∈ R.
(c) The mapping x 7→ φ(x, 0, 0, 0, 0) ∈ L2(Ω).

(2.21)

The normal compliance function pν : Γ3 × R −→ R+ satisfies:
(a) There exists a constant Lν > 0 such that

|pν(x, r1)− pν(x, r2)| ≤ Lν |r1 − r2| ∀ r1, r2 ∈ R, a.e. x ∈ Γ3.

(b) The mapping x 7→ pν(x, r) is measurable on, Γ3, ∀r ∈ R.
(c) The mapping x 7→ pν(x, r) = 0 for any r ≤ 0, a.e. x ∈ Γ3.

(2.22)

The tangential contact function pτ : Γ3 × R −→ R+ satisfies:

(a) There exists a constant Lτ > 0 such that

‖pτ (x, d1)− pτ (x, d2)| ≤ Lτ |d1 − d2| ∀ d1, d2 ∈ R, a.e. x ∈ Γ3,

(b) There exists a constantMτ > 0 such that

|pτ (x, d)| ≤Mτ ∀ d ∈ R, a.e. x ∈ Γ3.

(c) The mapping x 7→ pτ (x, d) is measurable on Γ3, ∀ d ∈ R.
(d) The mapping x 7→ pτ (x, 0) ∈ L2(Γ3).

(2.23)

The mass density satisfies:

ρ ∈ L∞(Ω), there exists ρ∗ > 0 such that ρ ≥ ρ∗ a.e. x ∈ Ω. (2.24)

The adhesion coefficient and the limit bound satisfy:

γν , γτ ∈ L∞(Γ3), εa ∈ L2(Γ3), γν , γτ , εa ≥ 0. (2.25)

The body forces, surface tractions and the volume heat source have the regularity

f ∈ L2(0, T ;H), f0 ∈ L2(0, T ;L2(Γ2)n), q ∈ L2(0, T ;L2(Ω)), (2.26)

u0 ∈ V, w0 ∈ H, θ0 ∈ V, ς0 ∈ K, (2.27)

β0 ∈ L2(Γ3), 0 ≤ β0 ≤ 1, a.e on Γ3, (2.28)

ki > 0, i = 0, 1. (2.29)

We denote by F (t) ∈ V ′ the following element

〈F (t), v〉V′×V = (f(t), v)H + (f0(t), γv)L2(Γ2)n ∀v ∈ V, t ∈ (0, T ). (2.30)

The use of (2.26) permits to verify that

F ∈ L2(0, T ;V ′). (2.31)

We introduce the following continuous functionals

a0 : V × V → R, a0(ζ, ξ) = k0

∫
Ω
∇ζ · ∇ξdx+ α

∫
Γ
ζξdΓ, (2.32)

a1 : V × V → R, a1(ζ, ξ) = k1

∫
Ω
∇ζ · ∇ξdx. (2.33)
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Finally, we consider the adhesion functional j : L∞(Γ3)× V × V → R defined by

j(β, u, v) =

∫
Γ3

pν(uν) vνda+

∫
Γ3

(−γνβ2Rν(uν)vν + pτ (β)Rτ (uτ ).vτ )da. (2.34)

Keeping in mind (2.22) and (2.23), we observe that integrals in (2.34) are well defined. Using standard

arguments based on Green’s formula (2.3), we can derive the following variational formulation of the

frictionless problem with normal compliance (2.4)−(2.16) as follows.

Problem PV. Find the displacement field u : [0, T ] → Rn, the stress field σ : [0, T ] → Sn, the

temperature θ : [0, T ]→ R, the damage field ς : [0, T ]→ R and the adhesion field β : [0, T ]→ R such

that

σ(t) = A
(
ε(u̇(t))

)
+ E

(
ε(u(t))

)
+
∫ t

0
G
(
σ(s)−A

(
ε(u̇(s))

)
, ε
(
u(s)

)
, θ(s), ς(s)

)
ds

a.e. t ∈ (0, T ),
(2.35)

〈ρü(t), v〉V′×V + (σ(t), ε(v))H + j(β(t), u(t), v) = 〈F (t), v〉V′×V
∀v ∈ V, a.e. t ∈ (0, T ),

(2.36)

〈ρθ̇(t), ω〉V ′×V + a0(θ(t), ω)

=
〈
ψ
(
σ(t)−A

(
ε(u̇(t))

)
, ε
(
u(t)

)
, θ(t), ς(t)

)
, ω
〉
V ′×V + (q(t), ω)L2(Ω)

∀ω ∈ V, a.e. t ∈ (0, T ),

(2.37)

〈ρς̇(t), ξ − ς(t)〉V ′×V + a1(ς(t), ξ − ς(t))
≥
〈
φ
(
σ(t)−A

(
ε(u̇(t))

)
, ε
(
u(t)

)
, θ(t), ς(t)

)
, ξ − ς(t)

〉
V ′×V

∀ξ ∈ K, a.e. t ∈ (0, T ), ς(t) ∈ K,
(2.38)

β̇(t) = −
(
β(t)

[
γν(Rν(uν(t)))2 + γτ |Rτ

(
uτ (t)|2

)
]− εa

)
+

a.e. t ∈ (0, T ),
(2.39)

u(0) = u0, u̇(0) = w0, θ(0) = θ0, ς(0) = ς0, β(0) = β0. (2.40)

3. Main Results

The existence of the unique solution to Problem PV is proved in the next section. To this end, we

consider the following remark which is used in different places of the paper.

Remark 3.1. We note that, in Problem P and in Problem PV, we do not need to impose explicitly

the restriction 0 ≤ β ≤ 1. Indeed, (2.39) guarantees that β(x, t) ≤ β0(x) and, therefore, assumption

(2.28) shows that β(x, t) ≤ 1 for t ≥ 0, a.e. x ∈ Γ3.

On the other hand, if β(x, t0) = 0 at time t0, then it follows from (2.39) that β(x, t) = β0(x) for all

t ≥ t0, and therefore β(x, t) = 0 for all t ≥ t0, x ∈ Γ3.

We conclude that 0 ≤ β(x, t) ≤ 1 for all t ≥ t0, x ∈ Γ3.

Theorem 3.2 (Existence and uniqueness). Under assumptions (2.17)–(2.29), there exists a unique

solution {u, σ, θ, ς, β} to problem PV. Moreover, the solution has the regularity

u ∈ C0(0, T ;V) ∩ C1(0, T ;H), (3.1)

u̇ ∈ L2(0, T ;V), (3.2)

ü ∈ L2(0, T ;V ′), (3.3)
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σ ∈ L2(0, T ;H), (3.4)

θ ∈ L2(0, T ;V ) ∩ C0(0, T ;L2(Ω)), (3.5)

θ̇ ∈ L2(0, T ;V ′), (3.6)

ς ∈ L2(0, T ;V ) ∩ C0(0, T ;L2(Ω)), (3.7)

ς̇ ∈ L2(0, T ;V ′), (3.8)

β ∈W 1,∞(0, T ;L2(Γ3)) ∩ Z. (3.9)

A quintuple (u, σ, θ, ς, β) which satisfies (2.35)–(2.40) is called a weak solution to the compliance

contact Problem P. We conclude that under the stated assumptions, problem (2.4)–(2.16) has a unique

weak solution satisfying (3.1)–(3.9).

We turn now to the proof of Theorem 3.2, which will be carried out in several steps and is based

on arguments of nonlinear equations with monotone operators, a classical existence and uniqueness

result on parabolic inequalities and fixed-point arguments. To this end, we assume in the following

that (2.17)–(2.29) hold. Below, C denotes a generic positive constant which may depend on Ω, Γ1,

Γ2, Γ3, A, E , G, ψ, φ, pν , pτ , γν , γτ , L and T but does not depend on t nor on the rest of input data,

and whose value may change from place to place. Moreover, for the sake of simplicity we suppress in

what follows the explicit dependence of various functions on x ∈ Ω ∪ Γ.

Let η ∈ L2(0, T ;V ′) be given. In the first step we consider the following variational problem.

Problem PVη. Find the displacement field uη : [0, T ]→ Rn, such that

〈ρüη(t), v〉V′×V +
(
A
(
ε(u̇η(t))

)
, ε(v)

)
H + 〈η(t), v〉V′×V = 〈F (t), v〉V′×V

∀v ∈ V, a.e. t ∈ (0, T ),
(3.10)

uη(0) = u0, u̇η(0) = w0 in Ω. (3.11)

Lemma 3.3. For all η ∈ L2(0, T ;V ′), there exists a unique solution uη to the auxiliary problem PVη

satisfying (3.1)–(3.3).

Proof. Let us introduce the operator A : V → V ′,

〈Au, v〉V′×V =
(
A
(
ε(u)

)
, ε(v)

)
H. (3.12)

Therefore, (3.10) can be rewritten as follows

ρüη(t) +A
(
u̇η(t)

)
= Fη(t) on V ′ a.e. t ∈ (0, T ), (3.13)

where

Fη(t) = F (t)− η(t) ∈ V ′.
It follows from (2.1), (3.12) and hypothesis (2.17) that A is bounded, semi-continuous and coercive on

V. We recall that by (2.31) we have Fη ∈ L2(0, T ;V ′). Then by using classical arguments of functional

analysis concerning parabolic equations [8, 24] we can easily prove the existence and uniqueness of wη
satisfying

wη ∈ L2(0, T ;V) ∩ C0(0, T ;H), (3.14)

ẇη ∈ L2(0, T ;V ′), (3.15)

ρẇη(t) +A(wη(t)) = Fη(t) on V ′ a.e. t ∈ (0, T ), (3.16)

wη(0) = w0. (3.17)
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Consider now the function uη : (0, T ) → V defined by

uη(t) =

∫ t

0

wη(s)ds + u0 ∀t ∈ (0, T ). (3.18)

It follows from (3.16) and (3.17) that uη is a solution of the equation (3.13) and it satisfies (3.1)–(3.3). �

In the second step we use the displacement field uη obtained in Lemma 3.3 and we consider the

following initial value problem.

Problem PVβ. Find the adhesion field βη : [0, T ]→ L2(Γ3) such that

β̇η(t) = −
(
βη(t)

[
γν(Rν(uην)(t))2 + γτ |Rτ (uητ (t))|2

]
− εa

)
+
, (3.19)

βη(0) = β0 in Ω. (3.20)

Lemma 3.4. There exists a unique solution βη ∈W 1,∞(0, T ;L2(Γ3)) ∩ Z to Problem PVβ.

Proof. We use a version of the classical Cauchy–Lipschitz theorem given in [38, p. 60]. �

Problem PVλ. Find the temperature θλ : [0, T ]→ R such that

〈ρθ̇λ(t), ω〉V ′×V + a0(θλ(t), ω) = 〈λ(t) + q(t), ω〉V ′×V ∀ω ∈ V, a.e. t ∈ (0, T ), (3.21)

θλ(0) = θ0 in Ω. (3.22)

Lemma 3.5. For all λ ∈ L2(0, T ;V ′), there exists a unique solution θλ to the auxiliary problem PVλ

satisfying (3.5) and (3.6).

Proof. By an application of the Poincaré–Friedrichs inequality, we can find a constant α′ > 0 such

that ∫
Ω

|∇ζ|2dx+
α

k0

∫
Γ

|ζ|2dγ ≥ α′
∫

Ω

|ζ|2dx ∀ζ ∈ V.

Thus, we obtain

a0(ζ, ζ) ≥ C1‖ζ‖2V ∀ζ ∈ V, (3.23)

where C1 = k0 min(1, α′)/2, which implies that a0 is V -elliptic. Consequently, based on classical

arguments of functional analysis concerning parabolic equations, the variational equation (3.21) has

a unique solution θλ satisfies (3.5) and (3.6). �

Problem PVµ. Find the damage field ςµ : [0, T ]→ R such that

〈ρς̇µ(t), ξ − ςµ(t)〉V ′×V + a1(ςµ(t), ξ − ςµ(t))

≥ 〈µ, ξ − ςµ(t)〉V ′×V ∀ξ ∈ K, a.e. t ∈ (0, T ), ςµ(t) ∈ K,
(3.24)

ςµ(0) = ς0 in Ω. (3.25)

Lemma 3.6. For all µ ∈ L2(0, T ;V ′), there exists a unique solution ςµ to the auxiliary problem PVµ

satisfying (3.7)–(3.8).

Proof. We know that the form a1 is not V -elliptic. To solve this problem we introduce the functions

ς̃µ(t) = e−k1tςµ(t), ξ̃(t) = e−k1tξ(t).

We remark that if ςµ, ξ ∈ K then ς̃µ, ξ̃ ∈ K. Consequently, (3.24) is equivalent to the inequality

〈ρ
·
ς̃µ(t), ξ̃ − ς̃µ(t)〉V ′×V + a1(ς̃µ(t), ξ̃ − ς̃µ(t)) + k1(ρς̃µ, ξ̃ − ς̃µ(t))L2(Ω)

≥ 〈e−k1tµ, ξ̃ − ς̃µ(t)〉V ′×V ∀ξ̃ ∈ K, a.e. t ∈ (0, T ), ς̃µ ∈ K.
(3.26)
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The fact that

a1(ξ̃, ξ̃) + k1(ρξ̃, ξ̃)L2(Ω) ≥ k1 min(ρ∗, 1)‖ξ̃‖2V ∀ξ̃ ∈ V, (3.27)

and using classical arguments of functional analysis concerning parabolic inequalities [8, 13], implies

that (3.24) has a unique solution ς̃µ having the regularity (3.7) and (3.8). �

Let us consider now the auxiliary problem.

Problem PVη,λ,µ. Find the stress field ση,λ,µ : [0, T ]→ Sn which is a solution of the problem

ση,λ,µ(t) = E
(
ε(uη(t))

)
+

∫ t

0

G
(
ση,λ,µ(s), ε

(
uη(s)

)
, θλ(s), ςµ(s)

)
ds ∀t ∈ [0, T ]. (3.28)

Lemma 3.7. There exists a unique solution of Problem PVη,λ,µ and it satisfies (3.4). Moreover,

if uηi , θλi
, ςµi

and σηi,λi,µi
represent the solutions of problems PVηi , PVλi

, PVµi
and PVηi,λi,µi

,

respectively, for i = 1, 2, then there exists C > 0 such that

‖ση1,λ1,µ1(t)− ση2,λ2,µ2(t)‖2H ≤ C
(
‖uη1(t)− uη2(t)‖2V

+

∫ t

0

(‖uη1(s)− uη2(s)‖2V + ‖θλ1(s)− θλ2(s)‖2V + ‖ςµ1(s)− ςµ2(s)‖2V )ds
)
.

(3.29)

Proof. Let Ση,λ,µ : L2(0, T ;H)→ L2(0, T ;H) be the mapping given by

Ση,λ,µσ(t) = E
(
ε(uη(t))

)
+

∫ t

0

G
(
σ(s), ε

(
uη(s)

)
, θλ(s), ςµ(s)

)
ds. (3.30)

Let σi ∈ L2(0, T ;H), i = 1, 2 and t1 ∈ (0, T ).

Using hypothesis (2.19) and Hölder’s inequality, we find

‖Ση,λ,µσ1(t1)− Ση,λ,µσ2(t1)‖2H ≤ L2
GT

∫ t1

0

‖σ1(s)− σ2(s)‖2Hds. (3.31)

By reapplication of mapping Ση,λ,µ, it yields

∥∥Σ2
η,λ,µσ1(t1 − Σ2

η,λ,µσ2(t1)
∥∥2

H ≤ L
4
GT

2

t1∫
0

t2∫
0

‖σ1(s)− σ2(s)‖2H dsdt2.

Reiterating this inequality m times leads to

∥∥Σmη,λ,µσ1(t1)− Σmη,λ,µσ2(t1)
∥∥2

H ≤ L
2m
G Tm

t1∫
0

t2∫
0

...

tm∫
0

‖σ1(s)− σ2(s)‖2H dsdtm...dt2.

Integration on the time interval (0, T ) , it follows that

∥∥Σmη,λ,µσ1 − Σmη,λ,µσ2

∥∥2

L2(0,T ;H)
≤
L2m
G T 2m

m!
‖σ1 − σ2‖2L2(0,T ;H) . (3.32)

It follows from this inequality that form large enough, a powerm of the mapping Ση,λ,µ is a contraction

on the space L2(0, T ;H) and, therefore, from the Banach fixed point theorem, there exists a unique

element ση,λ,µ ∈ L2(0, T ;H) such that Ση,λ,µση,λ,µ = ση,λ,µ, which represents the unique solution of

the problem PVη,λ,µ. Moreover, if uηi , θλi , ςµi and σηi,λi,µi represent the solutions of the problems
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PVηi , PVλi
, PVµi

and PVηi,λi,µi
, respectively, for i = 1, 2, then we use (2.1), (2.17)−(2.19) and

Young’s inequality to obtain

‖ση1,λ1,µ1(t)− ση2,λ2,µ2(t)‖2H

≤C
(
‖uη1(t)− uη2(t)‖2V +

∫ t

0

(‖ση1,λ1,µ1(s)− ση2,λ2,µ2(s)‖2H

+ ‖uη1
(s)− uη2

(s)‖2V + ‖θλ1
(s)− θλ2

(s)‖2V + ‖ςµ1
(s)− ςµ2

(s)‖2V )ds
)
.

Which permits us to obtain, using Gronwall’s lemma, the inequality (3.29).

Second step. Let us consider the mapping

Λ : L2(0, T ;V ′ × V ′ × V ′)→ L2(0, T ;V ′ × V ′ × V ′),

defined by

Λ
(
η(t), λ(t), µ(t)

)
=
(
Λ0(η(t), λ(t), µ(t)),Λ1(η(t), λ(t), µ(t)),Λ2(η(t), λ(t), µ(t))

)
, (3.33)

where the mappings Λ0,Λ1 and Λ2 are given by〈
Λ0
(
η(t), λ(t), µ(t)

)
, v
〉
V′×V =

(
E
(
ε(uη(t)), ε(v)

)
H + j(βη(t), uη(t), v)

+
( ∫ t

0
G
(
ση,λ,µ(s), ε

(
uη(s)

)
, θλ(s), ςµ(s)

)
ds, ε(v)

)
H ∀v ∈ V,

(3.34)

Λ1(η(t), λ(t), µ(t)) = ψ
(
ση,λ,µ(t), ε(uη(t)), θλ(t), ςµ(t)

)
, (3.35)

Λ2(η(t), λ(t), µ(t)) = φ
(
ση,λ,µ(t), ε(uη(t)), θλ(t), ςµ(t)

)
. (3.36)

�

Lemma 3.8. The mapping Λ has a fixed point

(η∗, λ∗, µ∗) ∈ L2(0, T ;V ′ × V ′ × V ′).

Proof. Let (η1, λ1, µ1), (η2, λ2, µ2) ∈ L2(0, T ;V ′ × V ′ × V ′).

We use the notation uηi = ui, u̇ηi = u̇i, üηi = üi, βηi = βi , θλi = θi, ςµi = ςi and σηi,λi,µi = σi,

for i = 1, 2. Let us start by using (2.1), hypotheses (2.17)–(2.19), (2.21)–(2.23) and the definition of

Rη, Rτ and Remark 3.1 we have

‖Λ0
(
η1(t), λ1(t), µ1(t)

)
− Λ0

(
η2(t), λ2(t), µ2(t)

)
‖2V′ ≤ ‖E

(
ε(u1(t))

)
− E

(
ε(u2(t))

)
‖2V

+

∫ t

0

‖G
(
σ1(s), ε

(
uη(s)

)
, θ1(s), ς1(s)

)
− G

(
σ2(s), ε

(
u2(s)

)
, θ2(s), ς2(s)

)
‖2Hds

+ C
(
‖pν(u1ην(t))− pν(u2ην(t))‖2L2(Γ3)

)
+ C

(
‖β2

1(t)Rν(u1ην(t))− β2
2(t)Rν(u2ην(t))‖

2

L2(Γ3)

)
+ C

(
‖pτ (β1(t))Rτ (u1ητ (t))− pτ (β2(t))Rτ (u2ητ (t))‖2L2(Γ3)

)
,

so we obtain

‖Λ0(η1(t), λ1(t), µ1(t))− Λ0(η2(t), λ2(t), µ2(t))‖2V′

≤C
(∫ t

0

(
‖σ1(s)− σ2(s)‖2H + ‖u1(s)− u2(s)‖2V + ‖θ1(s)− θ2(s)‖2L2(Ω)

+ ‖ς1(s)− ς2(s)‖2L2(Ω)

)
ds+ ‖u1(t)− u2(t)‖2V + ‖β1(t)− β2(t)‖2L2(Γ3)

)
.

(3.37)
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We use estimate (3.29) to obtain

‖Λ0
(
η1(t), λ1(t), µ1(t)

)
− Λ0

(
η2(t), λ2(t), µ2(t)

)
‖2V′

≤C
(∫ t

0

(
‖u1(s)− u2(s)‖2V + ‖θ1(s)− θ2(s)‖2L2(Ω)

+ ‖ς1(s)− ς2(s)‖2L2(Ω)

)
ds+ ‖u1(t)− u2(t)‖2V + ‖β1(t)− β2(t)‖2L2(Γ3)

)
.

(3.38)

From the Cauchy problem (3.19)–(3.20) we can write

βi(t) = β0 −
∫ t

0

(
βi(s)

[
γν(Rν(uν(s)))2 + γτ |Rτ

(
uτ (s)|2

)
]− εa

)
+
ds,

and then

‖β1(t)− β2(t)‖L2(Γ3) ≤ C
∫ t

0

‖β1(s)
(
Rν(u1ν(s))

)2 − β2(s)
(
Rν(u2ν(s))

)2‖L2(Γ3)ds

+ C

∫ t

0

‖β1(s)|Rτ (u1τ (s))|2 − β2(s)|Rτ (u2τ (s))|2‖L2(Γ3)ds.

Using the definition of Rν and Rτ and writing β1 = β1 − β2 + β2, we get

‖β1(t)− β2(t)‖L2(Γ3) ≤ C
(∫ t

0

‖β1(s)− β2(s)‖L2(Γ3)ds+

∫ t

0

‖u1(s)− u2(s)‖L2(Γ3)dds
)
.

Next, we apply Gronwall’s inequality to deduce

‖β1(t)− β2(t)‖L2(Γ3) ≤ C
∫ t

0

‖u1(s)− u2(s)‖L2(Γ3)dds,

and from the relation (2.1) we obtain that

‖β1(t)− β2(t)‖2L2(Γ3) ≤ C
∫ t

0

‖u1(s)− u2(s)‖2Vds (3.39)

holds. On the other hand, since ui(t) = u0 +
∫ t

0
u̇i(s)ds, we know that for a.e. t ∈ (0, T ),

‖u1(t)− u2(t)‖V ≤
∫ t

0

‖u̇1(s)− u̇2(s)‖Vds. (3.40)

Applying Young’s and Hölder’s inequalities, (3.38) becomes, via (3.39) and (3.40)

‖Λ0
(
η1(t), λ1(t), µ1(t)

)
− Λ0

(
η2(t), λ2(t), µ2(t)

)
‖2V′

≤C
(∫ t

0

(
‖u̇1(s)− u̇2(s)‖2V + ‖u1(s)− u2(s)‖2V

+ ‖θ1(s)− θ2(s)‖2V + ‖ς1(s)− ς2(s)‖2V
)
ds
)

a.e. t ∈ (0, T ).

(3.41)

Furthermore, we find by taking the substitution η = η1, η = η2 in (3.10) and choosing v = u̇1 − u̇2 as

test function

〈ρ(ü1(t)− ü2(t)) +Au̇1(t)−Au̇2(t), u̇1(t)− u̇2(t)〉V′×V
=〈η2(t)− η1(t), u̇1(t)− u̇2(t)〉V′×V a.e. t ∈ (0, T ).

By virtue of (2.17) and (2.24), this equation becomes

(ρ∗)2

2

d

dt
‖u̇1(t)− u̇2(t)‖2H +mA‖u̇1(t)− u̇2(t)‖2V ≤ ‖η2(t)− η1(t)‖V′‖u̇1(t)− u̇2(t)‖V .
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Integrating this inequality over the interval time variable (0, t), Young’s inequality leads to

(ρ∗)2‖u̇1(t)− u̇2(t)‖2H +mA

∫ t

0

‖u̇1(s)− u̇2(s)‖2Vds ≤
2

mA

∫ t

0

‖η1(s)− η2(s)‖2V′ds.

Consequently, ∫ t

0

‖u̇1(s)− u̇2(s)‖2Vds ≤ C
∫ t

0

‖η1(s)− η2(s)‖2V′ds a.e. t ∈ (0, T ), (3.42)

which also implies, using a variant of (3.40), that

‖u1(t)− u2(t)‖2V ≤ C
∫ t

0

‖η1(s)− η2(s)‖2V′ds a.e. t ∈ (0, T ). (3.43)

Moreover, if we take the substitution λ = λ1, λ = λ2 in (3.21) and subtracting the two obtained

equations, we deduce by choosing ω = θλ1
− θλ2

as test function

(ρ∗)2

2
‖θ1(t)− θ2(t)‖2L2(Ω) + C1

∫ t

0

‖θ1(s)− θ2(s)‖2V ds

≤
∫ t

0

‖λ1(s)− λ2(s)‖V ′‖θ1(s)− θ2(s)‖V ds a.e. t ∈ (0, T ).

Employing Hölder’s and Young’s inequalities, we deduce that

‖θλ1
(t)− θλ2

(t)‖2L2(Ω) +

∫ t

0

‖θλ1
(s)− θλ2

(s)‖2V ds

≤C
∫ t

0

‖λ1(s)− λ2(s)‖2V ′ds a.e. t ∈ (0, T ).

(3.44)

Substituting now {µ = µ1, ξ = ς̃µ1
}, {µ = µ2, ξ = ς̃µ2

} in (3.26) and subtracting the two inequalities,

we obtain

‖ς̃1(t)− ς̃2(t)‖2L2(Ω) +

∫ t

0

‖ς̃1(s)− ς̃2(s)‖2V ds

≤C
∫ t

0

‖e−k1t(µ1(s)− µ2(s))‖2V ′ds a.e. t ∈ (0, T ),

from which also follows that

‖ς1(t)− ς2(t)‖2L2(Ω) +

∫ t

0

‖ς1(s)− ς2(s)‖2V ds

≤C
∫ t

0

‖µ1(s)− µ2(s)‖2V ′ds a.e. t ∈ (0, T ).

(3.45)

We can infer, using (3.41)–(3.45), that

‖Λ0(η1(t), λ1(t), µ1(t))− Λ0(η2(t), λ2(t), µ2(t))‖2V′

≤C
(
‖η1(t)− η2(t)‖2V′ + ‖λ1(t)− λ2(t)‖2V ′ + ‖µ1(t)− µ2(t)‖2V ′

)
.

(3.46)

From hypothesis (2.20), (3.29) and (2.21) it follows

‖Λ1(η1(t), λ1(t), µ1(t))− Λ1(η2(t), λ2(t), µ2(t))‖2V ′

=‖ψ
(
σ1(t), ε(u1(t)), θ1(t), ς1(t)

)
− ψ

(
σ2(t), ε(u2(t)), θ2(t), ς2(t)

)
‖2V ′

≤C
(
‖u1(t)− u2(t)‖2V + ‖θ1(t)− θ2(t)‖2V + ‖ς1(t)− ς2(t)‖2V

)
a.e. t ∈ (0, T ).
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This permits us to deduce, via (3.42), (3.44) and (3.45), that

‖Λ1(η1(t), λ1(t), µ1(t))− Λ1(η2(t), λ2(t), µ2(t))‖2V ′

≤C
(
‖η1(t)− η2(t)‖2V′ + ‖λ1(t)− λ2(t)‖2V ′ + ‖µ1(t)− µ2(t)‖2V ′

)
.

(3.47)

Similarly, using (3.29), (3.43), (3.44) and (3.45), we obtain the following estimate for Λ2

‖Λ2(η1(t), λ1(t), µ1(t))− Λ2(η2(t), λ2(t), µ2(t))‖2V ′

=‖φ
(
σ1(t), ε(u1(t)), θ1(t), ς1(t)

)
− φ

(
σ2(t), ε(u2(t)), θ2(t), ς2(t)

)
‖2V ′

≤C
(
‖η1(t)− η2(t)‖2V′ + ‖λ1(t)− λ2(t)‖2V ′ + ‖µ1(t)− µ2(t)‖2V ′

)
.

(3.48)

From (3.46), (3.47) and (3.48), we conclude that there exists a positive constant C > 0 verifying

‖Λ(η1, λ1, µ1)− Λ(η2, λ2, µ2)‖2V′×V ′×V ′ ≤ C‖(η1 − η2, λ1 − λ2, µ1 − µ2)‖2V′×V ′×V ′ . (3.49)

We generalize this procedure by recurrence on m. Then we obtain the formula

‖Λm(η1, λ1, µ1)− Λm(η2, λ2, µ2)‖2L2(0,T ;V′×V ′×V ′)

≤C
mTm

m!
‖(η1 − η2, λ1 − λ2, µ1 − µ2)‖2L2(0,T ;V′×V ′×V ′).

(3.50)

Thus, for m sufficiently large, Λm is a contraction on L2(0, T ;V ′ × V ′ × V ′). Hence, Banach’s fixed

point theorem shows that Λ admits a unique fixed point (η∗, λ∗, µ∗) ∈ L2(0, T ;V ′ × V ′ × V ′). �

Now, we have all the ingredients to prove Theorem (3.2).

Proof. Let (η∗, λ∗, µ∗) ∈ L2(0, T ;V ′ × V ′ × V ′) be the fixed point of Λ defined by (3.33)–(3.36) and

denote by

(a) u = uη∗ , (b) θ = θλ∗ , (c) ς = ςµ∗ , (3.51)

(a) σ = Aε(u̇) + ση∗λ∗µ∗ , (b) β = βη∗ . (3.52)

We prove that (u, σ, θ, ς, β) satisfies (2.35)–(2.40) and (3.1)–(3.9). Indeed, we write (3.28) for η = η∗ ,

λ = λ∗ and µ = µ∗ using (3.51) and (3.52)(a) to obtain that (2.35) is satisfied. Now we consider

(3.10) for η = η∗ and using (3.51)(a) to find

〈ρü, v〉V ′×V + (A(ε(u̇(t))), ε(v))H + 〈η∗(t), v〉V ′×V = 〈F (t), v〉V ′×V
∀v ∈ V, a.e.t ∈ (0, T ).

(3.53)

Equalities Λ1(η∗, λ∗, µ∗) = η∗ , Λ2(η∗, λ∗, µ∗) = λ∗ and Λ2(η∗, λ∗, µ∗) = µ∗ combined with (3.34)–

(3.36),(3.51) and (3.52) show that

〈η∗(t), v〉V′×V =
(
E(ε(u(t))), ε(v)

)
H + j(β(t), u(t), v)

+
( ∫ t

0
G
(
σ(s)−A(ε(u̇(s))), ε(u(s)), ς(s)

)
ds, ε(v)

)
H ∀v ∈ V,

(3.54)

λ∗(t) = ψ
(
σ(t)−A(ε(u̇(t))), ε(u(t)), θ(t), ς(t)

)
, (3.55)

µ∗(t) = φ
(
σ(t)−A(ε(u̇(t))), ε(u(t)), θ(t), ς(t)

)
. (3.56)

Now we substitute (3.54) in (3.53) and use (2.35) to see that (2.36) is satisfied. We write (3.21) for

λ = λ∗ and use (3.51)(b) and (3.55) to find that (2.37) is satisfied, also we write (3.23) for µ = µ∗ and

using (3.51)(c) and (3.56) to find that (2.38) is satisfied. We consider now (3.19) for η = η∗ and use

(3.51)(a) and (3.52)(b) to obtain that (2.39) is satisfied. Next (2.40) and the regularities (3.1)–(3.3),

(3.5)–(3.9) follow lemmas (3.3), (3.4), (3.5) and (3.6). The regularity (3.4) follows from lemma (3.7).

The uniqueness part of theorem (3.2) is a consequence of the uniqueness of the fixed point of the
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operator Λ defined (3.34)–(3.36) and the unique solvability of the problems PVη, PVβ , PVλ, PVµ and

PVη,λ,µ which completes the proof. �
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18, n◦1, (1968), p. 115–175.

[9] O. Chau, J. R. Fernández, M. Shillor, M. Sofonea; Variational and numerical analysis of a quasistatic viscoelastic

contact problem with adhesion , J. Comput. Appl. Math, 159, pp. 431–465, 2003.

[10] O. Chau, M. Shillor, M. Sofonea; Dynamic frictionless contact with adhesion, Z. Angew. Math.Phys., 55, pp. 32–47,

2004.

[11] O. Chau, J.R. Fernández, W. Han, M. Sofonea, A frictionless contact problem for elastic-visco-plastic materials

with normal compliance and damage, Comput. Methods Appl. Mech. Eng., 191, pp. 5007–5026, 2002

[12] N. Cristescu and I. Suliciu; Viscoplasticity, Martinus Nijhoff Publishers, Editura Tehnica, Bucharest, (1982).

[13] G. Duvaut and J. L. Lions; Les Inéquations en Mécanique et en Physique, Dunod (1976).

[14] J. R. Fernández-Garćıa, M. Sofonea and J. M. Viaño; A Frictionless Contact Problem for Elastic-Viscoplastic

Materials with Normal Compliance, Numerische Mathematik 90 (2002), 689–719.
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