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Abstract

In this paper, we study a generalized Nicholson’s blowflies model with a linear harvest-

ing term, which is defined on the positive function space. Under proper conditions, we

employ a novel proof to establish some criteria for the global dynamic behaviors on exis-

tence of positive solutions, permanence, and exponential stability of the zero equilibrium

point for this model. Moreover, we give two examples and their numerical simulations to

illustrate our main results.
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1. Introduction

Recently, assuming that a harvesting term is a function of the delayed estimate for the

true population, L. Berezansky et al. [1] proposed the following Nicholson’s blowflies model

x′(t) = −δx(t) + px(t− τ)e−ax(t−τ) −Hx(t− σ), δ, p, τ, a,H, σ ∈ (0, +∞), (1.1)

where Hx(t − σ) is the linear harvesting term, x(t) is the size of the population at time t,

p is the maximum per capita daily egg production, 1
a is the size at which the population
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reproduces at its maximum rate, δ is the per capita daily adult death rate, and τ is the

generation time. Moreover, L. Berezansky et al. [1] formulated an open problem: How about

the dynamic behaviors of (1.1). Consequently, some criteria were established in [2−5] to

guarantee the existence of positive periodic solutions for (1.1) and its generalized equations

by applying the method of coincidence degree; some sufficient conditions were also obtained

in [6−8] to ensure that the solutions of its generalized system converge locally exponentially

to a positive almost periodic solution. However, it is difficult to study the global dynamic

behaviors of the Nicholson’s blowflies model with a linear harvesting term. So far, there is no

literature considering the global existence of positive solutions and the global permanence for

(1.1). In particular, there is no research on the global stability of the zero equilibrium point

of (1.1). Thus, it is also a unsolved open problem to reveal the global dynamic behaviors of

Nicholson’s blowflies model (1.1).

Motivated by the above discussions, the main purpose of this paper is to establish some

criteria for the global dynamic behaviors on existence of positive solutions, permanence, and

exponential stability of zero equilibrium point for Nicholson’s blowflies model with a linear

harvesting term. Since the coefficients and delays in differential equations of population

and ecology problems are usually time-varying in the real world, we consider the following

Nicholson’s blowflies model with a linear harvesting term

x′(t) = −a(t)x(t) +
m∑
j=2

βj(t)x(t− τj(t))e
−γj(t)x(t−τj(t))

+β1(t)x(t− τ1(t))e
−γ1(t)x(t) −H(t)x(t− σ(t)), (1.2)

where a(t), H(t), σ(t) and γj(t) are continuous functions bounded above and below by

positive constants, βj(t) and τj(t) are nonnegative bounded continuous functions, and j =

1, 2, · · · ,m. Obviously, (1.1) is a special case of (1.2) with constant coefficients and delays.

For convenience, we introduce some notations. In the following part of this paper, given

a bounded continuous function g defined on R, let g+ and g− be defined as

g+ = sup
t∈R

g(t), g− = inf
t∈R

g(t).

It will be assumed that

r := max{ max
1≤j≤m

τ+j , σ+}. (1.3)

Throughout this paper, let C = C([−r, 0], R) be the continuous functions space equipped

with the usual supremum norm || · ||, and let C+ = C([−r, 0], (0, +∞)). If x(t) is continuous
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and defined on [−r + t0, σ) with t0, σ ∈ R, then we define xt ∈ C where xt(θ) = x(t+ θ) for

all θ ∈ [−r, 0].

Due to the biological interpretation of model (1.2), only positive solutions are meaningful

and therefore admissible. Thus we just consider admissible initial conditions

xt0 = φ, φ ∈ C+. (1.4)

Define a continuous map f : R× C+ → R by setting

f(t, φ) = −a(t)φ(0) +
m∑
j=2

βj(t)φ(−τj(t))e
−γj(t)φ(−τj(t))

+β1(t)φ(−τ1(t))e
−γ1(t)φ(0) −H(t)φ(−σ(t)).

Then, f is a locally Lipschitz map with respect to φ ∈ C+, which ensures the existence and

uniqueness of the solution of (1.2) with admissible initial conditions (1.4).

We write xt(t0, φ)(x(t; t0, φ)) for an admissible solution of the admissible initial value

problem (1.2) and (1.4). Also, let [t0, η(φ)) be the maximal right-interval of existence of

xt(t0, φ).

2. Global existence of the positive solutions

In this section, we establish sufficient conditions on the global existence of the positive

solutions for (1.2).

Theorem 2.1. Assume that

inf
t∈R

{β1(t)−H(t)} > 0, and τ1(t) ≡ σ(t) for all t ∈ R. (2.1)

Then, the solution xt(t0, φ) ∈ C+ for all t ∈ [t0, η(φ)), the set of {xt(t0, φ) : t ∈ [t0, η(φ))}

is bounded, and η(φ) = +∞.

Proof. We first show that

x(t) > 0, for all t ∈ (t0, η(φ)). (2.2)

Suppose, for the sake of contradiction, that (2.2) does not hold. Then, there exists t1 ∈

(t0, η(φ)) such that

x(t1) = 0 and x(t) > 0 for all t ∈ [t0 − r, t1). (2.3)
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From (1.2) and (2.1), (2.3) leads to

0 ≥ x′(t1)

= −a(t1)x(t1) +
m∑
j=2

βj(t1)x(t1 − τj(t1))e
−γj(t1)x(t1−τj(t1))

+β1(t1)x(t1 − τ1(t1))e
−γ1(t1)x(t1) −H(t1)x(t1 − σ(t1))

=
m∑
j=2

βj(t1)x(t1 − τj(t1))e
−γj(t1)x(t1−τj(t1))

+β1(t1)x(t1 − τ1(t1))−H(t1)x(t1 − τ1(t1))

≥ x(t1 − τ1(t1))[β1(t1)−H(t1)]

> 0,

which is a contradiction and implies that (2.2) holds.

For each t ∈ [t0 − r, η(φ)), we define

M(t) = max{ξ : ξ ≤ t, x(ξ) = max
t0−r≤s≤t

x(s)}.

We now show that x(t) is bounded on [t0, η(φ)). In the contrary case, observe that M(t) →

η(φ) as t → η(φ), we have

lim
t→η(φ)

x(M(t)) = +∞. (2.4)

But x(M(t)) = max
t0−r≤s≤t

x(s), and so x′(M(t)) ≥ 0, for all M(t) ≥ t0. Thus,

0 ≤ x′(M(t))

= −a(M(t))x(M(t))

+
m∑
j=2

βj(M(t))x(M(t)− τj(M(t)))e−γj(M(t))x(M(t)−τj(M(t)))

+β1(M(t))x(M(t)− τ1(M(t)))e−γ1(M(t))x(M(t))

−H(M(t))x(M(t)− σ(M(t))), for all M(t) ≥ t0,

which, together with (2.2) and the fact that sup
u≥0

ue−u = 1
e , yields

x(M(t))

≤
m∑
j=2

βj(M(t))

γj(M(t))a(M(t))
γj(M(t))x(M(t)− τj(M(t)))e−γj(M(t))x(M(t)−τj(M(t)))

+
β1(M(t))

γ1(M(t))a(M(t))
γ1(M(t))x(M(t)− τ1(M(t)))e−γ1(M(t))x(M(t))
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≤
m∑
j=2

βj(M(t))

γj(M(t))a(M(t))

1

e
+

β1(M(t))

γ1(M(t))a(M(t))
γ1(M(t))x(M(t))e−γ1(M(t))x(M(t))

≤
m∑
j=1

βj(M(t))

γj(M(t))a(M(t))

1

e
, where M(t) ≥ t0. (2.5)

Letting t → η(φ), (2.4) and (2.5) imply a contradiction. This implies that x(t) is bounded

on [t0, η(φ)). From Theorem 2.3.1 in [9], we easily obtain η(φ) = +∞. This completes the

proof of Theorem 2.1.

3. Global permanence

In this section, we shall derive new sufficient conditions for checking the global permanence

of model (1.2).

Theorem 3.1. Suppose that all conditions in Theorem 2.1 are satisfied. Let

lim inf
t→+∞

{ m∑
j=2

βj(t)

a(t)
+ [

β1(t)

a(t)
− H(t)

a(t)
]

}
> 1. (3.1)

Then model (1.2) is permanent, i.e., there exist two positive constants k and K such that

k ≤ lim inf
t→+∞

x(t) ≤ lim sup
t→+∞

x(t) ≤ K, (3.2)

where x(t) = x(t; t0, φ).

Proof. From the proof of Theorem 2.1, we obtain that there exists a positive constant

K such that

lim sup
t→+∞

x(t) ≤ K. (3.3)

We next prove that there exists a positive constant l such that

lim inf
t→+∞

x(t) = l. (3.4)

Otherwise, we assume that lim inf
t→+∞

x(t) = 0. For each t ≥ t0, we define

m(t) = max{ξ : ξ ≤ t, x(ξ) = min
t0≤s≤t

x(s)}.

Observe that m(t) → +∞ as t → +∞ and that

lim
t→+∞

x(m(t)) = 0. (3.5)

Thus, (2.1) implies that there exists a constant T1 > t0 + r such that

β1(m(t))e−γ1(m(t))x(m(t)) −H(m(t)) > 0, for all m(t) > T1. (3.6)
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However, x(m(t)) = min
t0≤s≤t

x(s), and so x′(m(t)) ≤ 0 for all m(t) > t0. According to (1.2),

we have

0 ≥ x′(m(t))

= −a(m(t))x(m(t)) +
m∑
j=2

βj(m(t))x(m(t)− τj(m(t)))e−γj(m(t))x(m(t)−τj(m(t)))

+x(m(t)− τ1(m(t)))[β1(m(t))e−γ1(m(t))x(m(t)) −H(m(t))], where m(t) > T1. (3.7)

Consequently, (3.6) and (3.7) lead to

a(m(t))x(m(t))

≥ βj(m(t))x(m(t)− τj(m(t)))e−γj(m(t))x(m(t)−τj(m(t))), j = 2, 3, · · · ,m, (3.8)

and

a(m(t))x(m(t))

≥ x(m(t)− τ1(m(t)))[β1(m(t))e−γ1(m(t))x(m(t)) −H(m(t))], (3.9)

where m(t) > T1. This, together with (3.5), implies that

lim
t→+∞

x(m(t)− τj(m(t))) = 0, j = 1, 2, · · · ,m. (3.10)

Noting that the continuities and boundedness of the functions a(t), H(t) and βj(t), we can

select a sequence {tn}+∞
n=1 such that lim

n→+∞
tn = +∞, and

lim
n→+∞

βj(m(tn))

a(m(tn))
= a∗j , lim

n→+∞

H(m(tn))

a(m(tn)
= H∗, j = 1, 2, · · · ,m. (3.11)

In view of (3.7), for sufficiently large n, we get

a(m(tn))

≥
m∑
j=2

βj(m(tn))
x(m(tn)− τj(m(tn)))e

−γj(m(tn))x(m(tn)−τj(m(tn)))

x(m(tn))

+
x(m(tn)− τ1(m(tn)))

x(m(tn)
[β1(m(tn))e

−γ1(m(tn))x(m(tn)) −H(m(tn))]

≥
m∑
j=2

βj(m(tn))
x(m(tn)− τj(m(tn)))e

−γj(m(tn))x(m(tn)−τj(m(tn)))

x(m(tn)− τj(m(tn)))

+
x(m(tn)− τ1(m(tn)))

x(m(tn)− τ1(m(tn)))
[β1(m(tn))e

−γ1(m(tn))x(m(tn)) −H(m(tn))]

=
m∑
j=2

βj(m(tn))e
−γj(m(tn))x(m(tn)−τj(m(tn)))

+[β1(m(tn))e
−γ1(m(tn))x(m(tn)) −H(m(tn))],
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and

1 ≥
m∑
j=2

βj(m(tn))

a(m(tn))
e−γj(m(tn))x(m(tn)−τj(m(tn)))

+[
β1(m(tn))

a(m(tn))
e−γ1(m(tn))x(m(tn)) − H(m(tn))

a(m(tn))
]. (3.12)

Letting n → +∞, (3.11) and (3.12) yield that

1 ≥
m∑
j=2

lim
n→+∞

βj(m(tn))

a(m(tn))
lim

n→+∞
e−γj(m(tn))x(m(tn)−τj(m(tn)))

+ lim
n→+∞

[
β1(m(tn))

a(m(tn))
e−γ1(m(tn))x(m(tn)) − H(m(tn))

a(m(tn))
]

= lim
n→+∞

{ m∑
j=2

βj(m(tn))

a(m(tn))
+ [

β1(m(tn))

a(m(tn))
− H(m(tn))

a(m(tn))
]

}

≥ lim inf
t→+∞

{ m∑
j=2

βj(t)

a(t)
+ [

β1(t)

a(t)
− H(t)

a(t)
]

}
, (3.13)

which contradicts to (3.1). Hence, (3.4) holds. This completes the proof of Theorem 3.1.

4. Global exponential stability for the zero equilibrium point

In this section, we establish sufficient conditions on the global exponential stability of the

zero equilibrium point for (1.2).

Theorem 4.1. Suppose that all conditions in Theorem 2.1 are satisfied. Let

max
1≤j≤m

γ+j ≤ 1, lim sup
t→+∞

{ m∑
j=2

βj(t)

a(t)
+ [

β1(t)

a(t)
− H(t)

a(t)
]

}
< 1. (4.1)

Then 0 is a globally exponentially stable equilibrium point on C+, i.e., there exist two con-

stants M > 0 and T > t0 such that

0 < x(t; t0, φ) < Me−λt for all t > T. (4.2)

Proof. Let x(t) = x(t; t0, φ). In view of Theorem 2.1, the set of {xt(t0, φ) : t ∈ [t0,+∞)}

is bounded, and

0 < x(t) for all t > t0. (4.3)

From (4.1), we obtain that there exist T > t0 and 0 < η0 < 1 such that

m∑
j=2

βj(t)

a(t)
+ [

β1(t)

a(t)
− H(t)

a(t)
] < η0 < 1, for all t ≥ T. (4.4)
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Define a continuous function Γ(u) by setting

Γ(u) =
u

a(t)
+

m∑
j=2

βj(t)

a(t)
euτ

+
j + [

β1(t)

a(t)
− H(t)

a(t)
]euτ

+
1 , u ∈ [0, 1], t ∈ [T, +∞). (4.5)

Then, from (4.4), we have

Γ(0) =
m∑
j=2

βj(t)

a(t)
+ [

β1(t)

a(t)
− H(t)

a(t)
] < η0 < 1, for all t ∈ [T, +∞),

which implies that there exist two constants η > 0 and λ ∈ (0, 1] such that

Γ(λ) =
λ

a(t)
+

m∑
j=2

βj(t)

a(t)
eλτ

+
j + [

β1(t)

a(t)
− H(t)

a(t)
]eλτ

+
1 < η < 1, for all t ∈ [T, +∞). (4.6)

We consider the Lyapunov functional

V (t) = x(t)eλt. (4.7)

Calculating the derivative of V (t) along the solution x(t) of (1.2), in view of (2.1) and (4.3),

we have

V ′(t) = −a(t)x(t)eλt + [
m∑
j=2

βj(t)x(t− τj(t))e
−γj(t)x(t−τj(t))

+β1(t)x(t− τ1(t))e
−γ1(t)x(t) −H(t)x(t− σ(t))]eλt + λx(t)eλt

= (λ− a(t))x(t)eλt +
m∑
j=2

βj(t)x(t− τj(t))e
λte−γj(t)x(t−τj(t))

+[β1(t)e
−γ1(t)x(t) −H(t)]x(t− τ1(t))e

λt

≤ (λ− a(t))x(t)eλt +
m∑
j=2

βj(t)x(t− τj(t))e
λt

+[β1(t)−H(t)]x(t− τ1(t))e
λt, for all t ≥ T. (4.8)

Now, we claim that

V (t) = x(t)eλt < eλT ( max
t∈[t0−r, T ]

x(t) + 1) := M for all t > T. (4.9)

Contrarily, there must exist t∗ > T such that

V (t∗) = M and V (t) < M for all t < t∗, (4.10)
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which, together with (4.8) implies that

0 ≤ V ′(t∗)

≤ (λ− a(t∗))x(t∗)e
λt∗ +

m∑
j=2

βj(t∗)x(t∗ − τj(t∗))e
λt∗

+[β1(t∗)−H(t∗)]x(t∗ − τ1(t∗))e
λt∗

= (λ− a(t∗))x(t∗)e
λt∗ +

m∑
j=2

βj(t∗)x(t∗ − τj(t∗))e
λ(t∗−τj(t∗))eλτj(t∗)

+[β1(t∗)−H(t∗)]x(t∗ − τ1(t∗))e
λ(t∗−τ1(t∗))eλτ1(t∗)

≤ {(λ− a(t∗)) +
m∑
j=2

βj(t∗)e
λτ+j + [β1(t∗)−H(t∗)]e

λτ+1 }M. (4.11)

Thus,

0 ≤ (λ− a(t∗)) +
m∑
j=2

βj(t∗)e
λτ+j + [β1(t∗)−H(t∗)]e

λτ+1 ,

and

1 ≤ λ

a(t∗)
+

m∑
j=2

βj(t∗)

a(t∗)
eλτ

+
j + [

β1(t∗)

a(t∗)
− H(t∗)

a(t∗)
]eλτ

+
1 ,

which contradicts with (4.6). Hence, (4.9) holds. It follows that

x(t) < Me−λt for all t > T.

This completes the proof.

5. Examples and remarks

In this section, we present two examples to check the validity of our results we obtained

in the previous sections.

Example 5.1. Consider the following Nicholson’s blowflies model with a linear harvesting

term:

x′(t) = −(1 +
1

1 + t2
)x(t) + (10 + cos2 t)x(t− 2e| arctan t|)e−x(t−2e| arctan t|)

+(30 + cos4 t)x(t− e| arctan t|)e−x(t) − (20 + cos4 t)x(t− e| arctan t|). (5.1)

Then

a(t) = 1 +
1

1 + t2
, β2(t) = 10 + cos2 t, β1(t) = 30 + cos4 t, H(t) = 20 + cos4 t
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τ2(t) = 2e| arctan t|, τ1(t) = σ(t) = e| arctan t|, r = 2e
π
2 .

Thus

inf
t∈R

{β1(t)−H(t)} = 10 > 0, and τ1(t) ≡ σ(t) for all t ∈ R,

and

lim inf
t→+∞

{
β2(t)

a(t)
+ [

β1(t)

a(t)
− H(t)

a(t)
]

}
> 10.

It follows that the Nicholson’s blowflies model (5.1) satisfies all the conditions in Theorem

3.1. Hence, the model (5.1) is globally permanent on C+ = C([−2e
π
2 , 0], (0, +∞)). This

fact is verified by the numerical simulation in Figs. 1–2.

Example 5.2. Consider the following Nicholson’s blowflies model with a linear harvesting

term:

x′(t) = −(10 +
1

1 + t2
)x(t) + (1 + cos2 t)x(t− 2e| arctan t|)e−x(t−2e| arctan t|)

+(3 + cos4 t)x(t− e| arctan t|)e−x(t) − (2 + cos4 t)x(t− e| arctan t|). (5.2)

Then

a(t) = 10 +
1

1 + t2
, β2(t) = 1 + cos2 t, β1(t) = 3 + cos4 t, H(t) = 2 + cos4 t

τ2(t) = 2e| arctan t|, τ1(t) = σ(t) = e| arctan t|, r = 2e
π
2 .

Thus, inf
t∈R

{β1(t)−H(t)} = 1 > 0, and τ1(t) ≡ σ(t) for all t ∈ R, and

lim sup
t→+∞

{
β2(t)

a(t)
+ [

β1(t)

a(t)
− H(t)

a(t)
]

}
<

2

5
.

It follows that the Nicholson’s blowflies model (5.2) satisfies all the conditions in Theorem

4.1, and the zero equilibrium point of the model (5.2) is globally exponentially stable on

C+ = C([−2e
π
2 , 0], (0, +∞)). Numerical simulations are given in Figs. 3–4.

Remark 5.1. To the best of our knowledge, few authors have considered the problems

on the global dynamic behaviors of Nicholson’s blowflies model with a linear harvesting

term. It is clear that all the results in [2−9] and the references therein cannot be applicable

to prove the global permanence of (5.1) and the global stability of (5.2). Moreover, in this

present paper, we proposed a new approach to deal with the global dynamic behaviors for

Nicholson’s blowflies model with a linear harvesting term. Thus, the results of this present

paper give a good reply to the open problem in [1] on the Nicholson’s blowflies model with the
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linear harvesting term. Whether or not our results and method in this paper are available

for studying the global stability on the periodic solutions or almost periodic solutions of

Nicholson’s blowflies model with a linear harvesting term, it is an interesting problem and

we leave it as our work in the future.
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Fig. 1: Numerical solution x(t) of equation (5.1) for initial value φ(s) ≡ 0.75, s ∈ [−2e
π
2 , 0].
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Fig. 2: Numerical solution x(t) of equation (5.1) for initial value φ(s) ≡ 2.5, s ∈ [−2e
π
2 , 0].
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Fig. 3: Numerical solution x(t) of equation (5.2) for initial value φ(s) ≡ 0.75, s ∈ [−2e
π
2 , 0].
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Fig. 4: Numerical solution x(t) of equation (5.2) for initial value φ(s) ≡ 2.5, s ∈ [−2e
π
2 , 0].
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