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Abstract

The aim of this paper is to present new results on existence theory for per-
turbed BVPs for first order ordinary differential systems. A nonlinear alternative
for the sum of a contraction and a compact mapping is used.
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1 INTRODUCTION

This paper is devoted to the question of existence of solutions for a doubly perturbed
boundary value problem (BVP) associated with first order ordinary differential systems
of the form:

' (t) = A(t)z(t) + F(t,z(t)) + G(t,z(t)), ae. tel0,1]; (1)

Mz(0) + Nz(1) =n. (2)

Here the functions F,G : [0,1] x IR"™ — IR"™ are Carathéodory, A(.) is a continuous
(n x n) matrix function, M and N are constant (n x n) matrices, and n € IR". Prob-
lem (1)-(2) encompasses second order differential equation with periodic condition or
Sturm-Liouville nonlinear problem (see the example in Section 3). We shall denote by
||| the norm of any element x of the euclidian space IR" and by ||A|| the norm of any
matrix A. The notation : = means throughout to be equal to. In this paper, we shall
prove the existence of solutions for Problem (1)-(2) under suitable conditions on the
nonlinearities F' and G. Our approach will be based, for the existence of solutions, on
a fixed point theorem for the sum of a contraction map and a completely continuous
map due to Ntouyas and Tsamatos [7] which we recall hereafter; it can be seen as a
generalization of Burton and Kirk’s Alternative [3]:
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Theorem 1.1 [7] Let (X, ||-||) be a Banach space, By, By be operators from X into X
such that By is a y—contraction, and Bs is completely continuous. Assume also that

(H) There exists a sphere B(0,r) in X with center 0 and radius v such that for
every y € B(0,r), r(1 —~) > ||B10+ Bayl||. Then either

(a) the operator equation x = (B, + Bs2)x has a solution with ||z|| < r, or

(b) there exists a point xy € OB(0,7) and A € (0, 1) such that xo = A\B; (%0) +ABsxg.

Mappings which are equal to the sum of a contraction and a completely continuous
function play an important role in fixed point theory (see [6]). Through Hamerstein
operators, one can construct compact mapping and then apply Theorem 1.1 to BVPs
associated with second order ODEs (see [2, 4, 6, 8]). In this paper, we extend those
results to the case of systems doubly perturbed with contraction and Carathéodory
functions satisfying specific growth.

2 Preliminaries

In this section, we introduce notations, and preliminaries used throughout this paper.
Recall that C([0, 1], IR") is the Banach space of all continuous functions from [0, 1] into
IR"™ with the norm

leflo = sup {Jlz(B)]] -0 <t <1}

Let AC((0,1),IR") be the space of differentiable functions x : (0,1) — IR", which are
absolutely continuous.

We denote by L'([0, 1], IR") the Banach space of measurable functions z: [0, 1] —
IR"™ which are Lebesgue integrable normed by

1
||gc||L1:/0 lz(®)|dt for all = € L([0,1], IR™).

Recall the following.
Definition 2.1 A function F: [0,1] x IR" — IR" is said to be Carathéodory if

(i) t — F(t,y) is measurable for each y € IR", and

(ii) y —— F(t,y) is continuous for almost each t € [0, 1].

Definition 2.2 Given a Banach space X, we say that a mapping T : X — X is
totally bounded if it maps each bounded subset of X into a relatively compact subset.
If, further it is continuous, it is called completely continuous.
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3 EXISTENCE OF SOLUTIONS

In this section, we are concerned with the existence of solutions to Problem (1)-(2).
We first state an auxiliary result from linear differential systems theory [1].

Lemma 3.1 Consider the following linear mized boundary value problem
2'(t) = A(t)z(t) + h(t), ae. te(0,1), (3)

Mz(0) + Nz(1) = 0. (4)

Let ®(t) be a fundamental matrixz solution of ' (t) = A(t)x(t), such that ®(0) = I, the
(n x n) identity matriz. We can easily show that if det(M + N®(1)) # 0, then the
linear inhomogeneous problem (3)-(4) has a unique solution given by

1

(t) = / k(t, s)h(s)ds

0

where k(t, s) is the Green function defined by

@(t)J(S), 0<t<s,
Kt 5) = { O()P(s) ! + (1) J(s), s<t<1

and
J(t)=—(M + NCID(l))*INCI)(l)CI)(t)*l.

As for the inhomogeneous boundary conditions, the following Lemma is easily verified:
Lemma 3.2 Consider the following inhomogeneous linear boundary value problem
2'(t) = At)z(t) + h(t), a.e. te(0,1), (5)

Mz(0) + Nz(1) =n. (6)

Let xp, be the solution of the homogeneous boundary value problem (3)-(4). Keeping
the same notations as in Lemma 3.1, the solution of Problem (5)-(6) reads

o(t) = xp(t) + O(t) (M + N(1)) " 7.

Next, we transform BVP (1)-(2) into a fixed point problem. Consider the Banach
space X = C([0,1],IR") endowed with the sup-norm. Let the operator T : X — X
be defined by

Ta(t) = /0 L (t, $)[F (s, 2(5)) + G (s, 2(s))] ds.

It is clear that fixed points of 7" are solutions for BVP (1)-(2). Let us introduce the
following hypotheses which are assumed hereafter:
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e (H1) The function F : [0,1] x IR" — IR" is Carathéodory and satisfies:
A€ LY([0,1],Ry), [F(t,y1) — F(ty) | < U)]lyr — el
for almost each ¢ € [0, 1] and all 31,92 € IR".

e (H2) The function G is continuous and there exist a function ¢ € L'([0, 1], IR)
with ¢(t) > 0 for almost each t € [0,1] and a continuous nondecreasing function
¢ : IR* — (0, 00) such that

G <a®)p(lyl) ae t€0,1] and forall ye R"

e (H3) Set k*: = sup ||k(t, s)|| and assume that
(t,5)€[0,1][0,1]

E Nz < 1.
e (H4) Set F*:= [y ||F(s,0)|| ds and assume there exists r > 0 such that

B (F + gl ¥()
T k1] (@)

Our main result is:

Theorem 3.1 Under hypotheses (H1)-(H4), BVP (1)-(2) has at least one solution
x € AC([0,1],IR").

Proof. Define the two operators By and on Bs; on X by

Bua(t): = /0 (t, $)P(s,2(s))ds,  Box(t): — /0 k()G (s, 2(s)) ds.

We are going to show that the operators By and By satisfy all conditions of Theorem
1.1.

Claim 1. B; is a contraction.

Let 2,y € X and ¢ € [0, 1]; then

1Bra(t) = Buy()ll = |l Jy k(t,) [F(s,2(s)) = F(s,y(s))] ds]|
< Jo Ikt SIEF (s, 2(s) = Fs,y(s))ll
<

kUl = yllo < [l = yllo.

Thus
| Biz — Biyllo < [[z — ylfo-
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Claim 2. B, is continuous.

Let x,,x € X such that x,, — x in X, that is
Ve>0,3dng € N, (n>ng = |z, —z|o <e).
For each ¢ € [0, 1], we have

[ Ban (t) — Ba(t)]] Jo I1E(t, s)I| - 1G(s, 2a(s)) = G(s,2(s)) || ds

K Jo IG(s, 2a(s)) — G(s,2(5)) | ds.
Since the convergence of a sequence implies its boundedness, there is a number L > 0
such that

IAINA

lzn @) < L, [lz@)| <L, Vite[0,1].
Now, the function G is uniformly continuous on the compact set
{t,2) e R" xR, t€[0,1], 2| < L}.

It follows that
|G (s, 2n(s)) — G(s,2(s))[| <

Therefore, we infer that
||Bgl‘n — BQIL‘HQ S g, \V/TL Z ng.

The continuity of By is proved.
Claim 3. B, is totally bounded.

Consider the closed ball C' = {z € X;||z|lo < M}. We prove that the image By(C)
is relatively compact in X. We have, by (H2)

|Box(t)]| = w/ (t,5)G(s, 2(s))ds]
/nGsx )ds

b [ als)olats) s

Fe(llzllo)l gl
ko(M)llgll -

Then By(C') is uniformly bounded. In addition, the following estimates hold true:

| Bua(tz) = Bua(t)| = n/ (t2,5) = k{t1, )] G(s. 2(s))ds|
/Hkm k(tr, ) ()0 (M) ds
o) [ a(5) (2 ) — k(1 )] ds:

IANIA TN

IN

IN
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the right-hand side term tends to 0 as ty — t5 for any x € C'. Then, By(C) is equicon-
tinuous. By the Arzela-Ascoli Theorem, the mapping Bs is completely continuous on

X.

Claim 4. Now, we prove that, under Assumption (7), the second alter-
native of Theorem 1.1 is not valid.

Consider the sphere B(0,r), r being defined by (H4). For x € B(0,r), we have

H310 —+ BQ.T”O

sup || 1 k(t,s)F(s,0)ds + /01 k(t,s)G(s,x(s))ds||

tefo,1] /O

k' F™ 4 K {|q|| .2V ([|lo)
K F 4 g 0 ()
r(1— k*||||1)-

AVANIVAN

Now, argue by contradiction and assume that there exist A € (0,1) and = € 9B(0,r)
with z = AB; (f) + AByx. Then x verifies the estimates

[z < K[z Jzllo + £ F* + E*{|q]| L W ([|2lo)-
Hence
k* (F* + |lgll ¥ (r))
1— ]{Z*Hl”Ll

contradicting Assumption (7). We then conclude that Assertion (a) in Theorem 1.1 is
satisfied, proving the claim of Theorem 3.1.

r=|zflo <

3.1 Example

Consider the second order boundary value Sturm-Liouville problem

—a" +qi’ +re = f(t,x(t), 2 (1) + g(t, x(t), 2'(t), 0 <t <1 (8)
aoz(0) — a12'(0) = ¢ 9)
box (1) + b1z’ (1) = ¢4 (10)

where ag, a; and by, b; are nonnegative real numbers satisfying ag +a; > 0, bg+ by > 0
and (co,c;) € IR?% The functions f,g: [0,1] x IR* — IR are assumed Carathéodory;
the function f satisfies Lipschitz condition with respect to the last two arguments while
g verifies a growth condition as in Assumption (H2). The functions ¢, r: [0,1] — IR
are continuous.

v' being the transpose of the vector v, we adopt the notations 2/ =y, X = (z,y)"

F= (07 _f)t G = (07 _g)t
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as well as

. 0 1 . apg —ap . 0 0
= (Pa) e () =)
and finally ¢ = (cg, ¢1)".

Problem (8) — (10) is then rewritten under the matrix form

X' =AX+F+G
MX(0)+ NX(1) =c.

Under Assumption (H4) both with det(M + N®(1)) # 0, Problem (8) — (10) has a

solution z.

Remark 3.1 In case q,r are constant, notice that condition det(M + N®(1)) # 0 is
nothing but ag(a€™ + byree™) # bo(are™ + byr.€"™) where r1 and ro are the roots of the
characteristic equation —s* + qs +1r = 0.

4 Existence of Extremal Solutions

In this section we shall prove the existence of maximal and minimal solutions of BVP
(1)-(2) under suitable monotonicity conditions on the functions involved in it. We de-
fine the usual co-ordinate-wise order relation < in IR" as follows. Let z = (x1, zo, ..., 7,)
and y = (y1, Y2, ..., Yn) be any two elements. Then by z < y, we mean z; < y; for all
i=1,...,n. We equip the space X = C([0, 1], IR") with the order relation < induced
by the natural positive cone C in X, that is,

C={reX|z(t)>0,Vte]0,1]}.

It is known that the cone C is normal in X. Cones and their properties are detailed in
[5]. Let a,b € X be such that a < b. Then, by an order interval [a, b] we mean a set of
points in X given by

[a,b0] ={r € X |a<x<b}.

Definition 4.1 Let X be an ordered Banach space. A mapping T : X — X 1is called
isotone increasing if T'(x) < T'(y) for any z,y € X with v < y. Similarly, T is called
isotone decreasing if T'(x) > T (y) whenever x < y.

Definition 4.2 [5] We say that x € X is the least fized point of G in X if v = Gx
and v <y whenever y € X and y = Gy. The greatest fived point of G in X is defined
similarly by reversing the inequality. If both least and greatest fixed point of G in X
exist, we call them extremal fixed point of G in X.

The following fixed point theorem is due to Heikkila and Lakshmikantham:
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Theorem 4.1 [5] Let [a,b] be an order interval in an order Banach space X and let
Q : [a,b] — [a,b] be a nondecreasing mapping. If each sequence (Qx,) C Q([a,b]) con-
verges, whenever (x,,) is a monotone sequence in [a, b], then the sequence of Q—iteration
of a converges to the least fized point x, of Q) and the sequence of QQ—iteration of b con-
verges to the greatest fived point x* of Q). Moreover

As a consequence, Dhage and Henderson have proved the following

Theorem 4.2 [4]. Let K be a cone in the Banach space X and let [a,b] be an order
interval in a Banach space and let By, Bs: [a,b] — X be two functions satisfying

(a) By is a contraction,

(b) By is completely continuous,

(¢) By and By are strictly monotone increasing, and
(d) By(x)+ By(x) € [a,b], Yo € [a,b].

Further if the cone K in X is normal, then the equation x = Bi(x) + Ba(x) has a
least fized point x,. and a greatest fized point x* € [a,b]. Moreover x, = nh_)IrC}O Tn and

ot = lim y,, where {z,} and {y,} are the sequences in |a,b] defined by

Tn1 = Bi(2,) + Ba(2s), o =a and yni1 = Bi(Yn) + B2(yn), Yo =0
We need the following definitions in the sequel.

Definition 4.3 A function v € AC([0,1],IR") is called a strict lower solution of BVP
(1)-(2) if V' (t) < A(t)v(t) + F(t,v(t)) + G(t,v(t)) a.e. t € [0,1], Mv(0) + Nov(1) <.
Similarly a strict upper solution w of BVP (1)-(2) is defined by reversing the order of
the above inequalities.

Definition 4.4 A solution xy of BVP (1)-(2) is said to be mazximal if for any other
solution x of BVP (1)-(2) on [0, 1], we have that x(t) < xp(t) for each t € [0, 1].
Similarly a minimal solution of BVP (1)-(2) is defined by reversing the order of the
inequalities.

Definition 4.5 A function F(t,x) is called strictly monotone increasing in x almost
everywhere for t € J, if F(t,x) < F(t,y) a.e. t € J for all z,y € R"™ with = < y.
Similarly F(t,x) is called strictly monotone decreasing in x almost everywhere for
teld,if F(t,z) > F(t,y) a.e. t € J for all z,y € IR" with x < y.

We consider the following assumptions in the sequel.
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(H5) The functions F(t,y) and G(t,y) are strictly monotone nondecreasing in y for
almost each ¢ € [0, 1].

(H6) The BVP (1)-(2) has a lower solution v and an upper solution w with v < w.

(H7) The kernel k preserves the order, that is k(t, s)v(s) > 0 whenever v > 0.

Remark 4.1 If we assume that there exist some constant vectors y < 7% such that for
each t € [0, 1]
Alt)y+ F(t,y) + G(t,y) =20, (M+N)y<n,

Ay + F(t,y) +G(ty) <0, (M +N)y =1,
then y, 7 are respectively lower and upper solutions for Problem (1)-(2).

Theorem 4.3 Assume that Assumptions (H1)-(H6) hold true. Then BVP (1)-(2) has
minimal and mazimal solutions on [0, 1].

Proof. It can be shown, as in the proof of Theorem 3.1 that B; and By are
respectively a contraction and compact on [a,b]. We shall show that B; and B, are
isotone increasing on [a,b]. Let x,y € [a,b] be such that © < y, z # y. Then by
Assumptions (H5), (H7), we have for each t € [0, 1]

(t,s)F(s,x(s))ds

Bi(x)(t) = /1k:
k(t,s)F(s,y(s))ds
) ().

01
)
By(
Similarly, Bs(z) < Bs(y). Therefore By and By are isotone increasing on [a, b]. Finally,
let « € [a,b] be any element. By Assumptions (H6), we deduce that

IN

Y

a S Bl(a) + BQ((I) S Bl(l‘) + BQ(ZL‘) S Bl(b) + Bg(b) S b,

which shows that By(z) 4+ Ba(z) € [a,b] for all € [a,b]. Thus, the functions B; and
B, satisty all conditions of Theorem 4.2. It follows that BVP (1)-(2) has maximal and
minimal solutions on [0, 1]. This completes the proof of Theorem 4.3.
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