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Abstract

The aim of this paper is to present new results on existence theory for per-

turbed BVPs for first order ordinary differential systems. A nonlinear alternative

for the sum of a contraction and a compact mapping is used.
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1 INTRODUCTION

This paper is devoted to the question of existence of solutions for a doubly perturbed
boundary value problem (BVP) associated with first order ordinary differential systems
of the form:

x′(t) = A(t)x(t) + F (t, x(t)) +G(t, x(t)), a.e. t ∈ [0, 1]; (1)

Mx(0) +Nx(1) = η. (2)

Here the functions F,G : [0, 1] × IRn −→ IRn are Carathéodory, A(.) is a continuous
(n× n) matrix function, M and N are constant (n× n) matrices, and η ∈ IRn. Prob-
lem (1)-(2) encompasses second order differential equation with periodic condition or
Sturm-Liouville nonlinear problem (see the example in Section 3). We shall denote by
‖x‖ the norm of any element x of the euclidian space IRn and by ‖A‖ the norm of any
matrix A. The notation : = means throughout to be equal to. In this paper, we shall
prove the existence of solutions for Problem (1)-(2) under suitable conditions on the
nonlinearities F and G. Our approach will be based, for the existence of solutions, on
a fixed point theorem for the sum of a contraction map and a completely continuous
map due to Ntouyas and Tsamatos [7] which we recall hereafter; it can be seen as a
generalization of Burton and Kirk’s Alternative [3]:
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Theorem 1.1 [7] Let (X, ‖ ·‖) be a Banach space, B1, B2 be operators from X into X
such that B1 is a γ−contraction, and B2 is completely continuous. Assume also that

(H) There exists a sphere B(0, r) in X with center 0 and radius r such that for
every y ∈ B(0, r), r(1 − γ) ≥ ‖B10 +B2y‖. Then either

(a) the operator equation x = (B1 +B2)x has a solution with ‖x‖ ≤ r, or

(b) there exists a point x0 ∈ ∂B(0, r) and λ ∈ (0, 1) such that x0 = λB1

(

x0

λ

)

+λB2x0.

Mappings which are equal to the sum of a contraction and a completely continuous
function play an important role in fixed point theory (see [6]). Through Hamerstein
operators, one can construct compact mapping and then apply Theorem 1.1 to BVPs
associated with second order ODEs (see [2, 4, 6, 8]). In this paper, we extend those
results to the case of systems doubly perturbed with contraction and Carathéodory
functions satisfying specific growth.

2 Preliminaries

In this section, we introduce notations, and preliminaries used throughout this paper.
Recall that C([0, 1], IRn) is the Banach space of all continuous functions from [0, 1] into
IRn with the norm

‖x‖0 = sup {‖x(t)‖ : 0 ≤ t ≤ 1} .

Let AC((0, 1), IRn) be the space of differentiable functions x : (0, 1) → IRn, which are
absolutely continuous.

We denote by L1([0, 1], IRn) the Banach space of measurable functions x: [0, 1] −→
IRn which are Lebesgue integrable normed by

‖x‖L1 =
∫ 1

0
‖x(t)‖dt for all x ∈ L1([0, 1], IRn).

Recall the following.

Definition 2.1 A function F : [0, 1] × IRn → IRn is said to be Carathéodory if

(i) t 7−→ F (t, y) is measurable for each y ∈ IRn, and

(ii) y 7−→ F (t, y) is continuous for almost each t ∈ [0, 1].

Definition 2.2 Given a Banach space X, we say that a mapping T : X → X is
totally bounded if it maps each bounded subset of X into a relatively compact subset.
If, further it is continuous, it is called completely continuous.
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3 EXISTENCE OF SOLUTIONS

In this section, we are concerned with the existence of solutions to Problem (1)-(2).
We first state an auxiliary result from linear differential systems theory [1].

Lemma 3.1 Consider the following linear mixed boundary value problem

x′(t) = A(t)x(t) + h(t), a.e. t ∈ (0, 1), (3)

Mx(0) +Nx(1) = 0. (4)

Let Φ(t) be a fundamental matrix solution of x′(t) = A(t)x(t), such that Φ(0) = I, the
(n × n) identity matrix. We can easily show that if det(M + NΦ(1)) 6= 0, then the
linear inhomogeneous problem (3)-(4) has a unique solution given by

x(t) =
∫ 1

0
k(t, s)h(s)ds

where k(t, s) is the Green function defined by

k(t, s) =

{

Φ(t)J(s), 0 ≤ t ≤ s,

Φ(t)Φ(s)−1 + Φ(t)J(s), s ≤ t ≤ 1

and
J(t) = −(M +NΦ(1))−1NΦ(1)Φ(t)−1.

As for the inhomogeneous boundary conditions, the following Lemma is easily verified:

Lemma 3.2 Consider the following inhomogeneous linear boundary value problem

x′(t) = A(t)x(t) + h(t), a.e. t ∈ (0, 1), (5)

Mx(0) +Nx(1) = η. (6)

Let xh be the solution of the homogeneous boundary value problem (3)-(4). Keeping
the same notations as in Lemma 3.1, the solution of Problem (5)-(6) reads

x(t) = xh(t) + Φ(t) (M +NΦ(1))−1
η.

Next, we transform BVP (1)-(2) into a fixed point problem. Consider the Banach
space X = C([0, 1], IRn) endowed with the sup-norm. Let the operator T : X −→ X

be defined by

Tx(t) =
∫ 1

0
k(t, s)[F (s, x(s)) +G(s, x(s))] ds.

It is clear that fixed points of T are solutions for BVP (1)-(2). Let us introduce the
following hypotheses which are assumed hereafter:
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• (H1) The function F : [0, 1] × IRn → IRn is Carathéodory and satisfies:

∃ l ∈ L1([0, 1], IR+), ‖F (t, y1) − F (t, y2)‖ ≤ l(t)‖y1 − y2‖

for almost each t ∈ [0, 1] and all y1, y2 ∈ IRn.

• (H2) The function G is continuous and there exist a function q ∈ L1([0, 1], IR)
with q(t) > 0 for almost each t ∈ [0, 1] and a continuous nondecreasing function
ψ : IR+ −→ (0,∞) such that

‖G(t, y)‖ ≤ q(t)ψ(‖y‖) a.e t ∈ [0, 1] and for all y ∈ IRn.

• (H3) Set k∗: = sup
(t,s)∈[0,1]×[0,1]

‖k(t, s)‖ and assume that

k∗‖l‖L1 < 1.

• (H4) Set F ∗: =
∫ 1
0 ‖F (s, 0)‖ ds and assume there exists r > 0 such that

r >
k∗ (F ∗ + ‖q‖L1Ψ(r))

1 − k∗‖l‖L1

· (7)

Our main result is:

Theorem 3.1 Under hypotheses (H1)-(H4), BVP (1)-(2) has at least one solution
x ∈ AC([0, 1], IRn).

Proof. Define the two operators B1 and on B2 on X by

B1x(t): =
∫ 1

0
k(t, s)F (s, x(s))ds, B2x(t): =

∫ 1

0
k(t, s)G(s, x(s)) ds.

We are going to show that the operators B1 and B2 satisfy all conditions of Theorem
1.1.

Claim 1. B1 is a contraction.

Let x, y ∈ X and t ∈ [0, 1]; then

‖B1x(t) − B1y(t)‖ = ‖
∫ 1
0 k(t, s) [F (s, x(s)) − F (s, y(s))]ds‖

≤
∫ 1
0 ‖k(t, s)‖‖F (s, x(s)) − F (s, y(s))‖

≤ k∗‖l‖L1‖x− y‖0 < ‖x− y‖0.

Thus
‖B1x− B1y‖0 ≤ ‖x− y‖0.
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Claim 2. B2 is continuous.

Let xn, x ∈ X such that xn −→ x in X, that is

∀ ε > 0, ∃n0 ∈ IN∗, (n ≥ n0 ⇒ ‖xn − x‖0 < ε).

For each t ∈ [0, 1], we have

‖B2xn(t) −B2x(t)‖ ≤
∫ 1
0 ‖k(t, s)‖ · ‖G(s, xn(s)) −G(s, x(s))‖ ds

≤ k∗
∫ 1
0 ‖G(s, xn(s)) −G(s, x(s))‖ ds.

Since the convergence of a sequence implies its boundedness, there is a number L > 0
such that

‖xn(t)‖ ≤ L, ‖x(t)‖ ≤ L, ∀ t ∈ [0, 1].

Now, the function G is uniformly continuous on the compact set
{

(t, x) ∈ IR+ × IRn, t ∈ [0, 1], ‖x‖ ≤ L
}

.

It follows that
‖G(s, xn(s)) −G(s, x(s))‖ ≤

ε

k∗
·

Therefore, we infer that

‖B2xn − B2x‖0 ≤ ε, ∀n ≥ n0.

The continuity of B2 is proved.

Claim 3. B2 is totally bounded.

Consider the closed ball C = {x ∈ X; ‖x‖0 ≤ M}. We prove that the image B2(C)
is relatively compact in X. We have, by (H2)

‖B2x(t)‖ = ‖
∫ 1

0
k(t, s)G(s, x(s))ds‖

≤ k∗
∫ 1

0
‖G(s, x(s))‖ds

≤ k∗
∫ 1

0
q(s)ψ(‖x(s)‖)ds

≤ k∗ψ(‖x‖0)‖q‖L1

≤ k∗ψ(M)‖q‖L1 .

Then B2(C) is uniformly bounded. In addition, the following estimates hold true:

‖B2x(t2) − B2x(t1)‖ = ‖
∫ 1

0
[k(t2, s) − k(t1, s)]G(s, x(s))ds‖

≤
∫ 1

0
‖k(t2, s) − k(t1, s)‖q(s)ψ(M)ds

≤ ψ(M)
∫ 1

0
q(s)‖k(t2, s) − k(t1, s)‖ ds;
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the right-hand side term tends to 0 as t2 −→ t2 for any x ∈ C. Then, B2(C) is equicon-
tinuous. By the Arzela-Ascoli Theorem, the mapping B2 is completely continuous on
X.

Claim 4. Now, we prove that, under Assumption (7), the second alter-
native of Theorem 1.1 is not valid.

Consider the sphere B(0, r), r being defined by (H4). For x ∈ B(0, r), we have

‖B10 +B2x‖0 = sup
t∈[0,1]

‖
∫ 1

0
k(t, s)F (s, 0) ds +

∫ 1

0
k(t, s)G(s, x(s)) ds‖

≤ k∗F ∗ + k∗‖q‖L1Ψ(‖x‖0)
≤ k∗F ∗ + k∗‖q‖L1Ψ(r)
< r(1 − k∗‖l‖L1).

Now, argue by contradiction and assume that there exist λ ∈ (0, 1) and x ∈ ∂B(0, r)

with x = λB1

(

x

λ

)

+ λB2x. Then x verifies the estimates

‖x(t)‖ ≤ k∗‖l‖L1‖x‖0 + k∗F ∗ + k∗‖q‖L1Ψ(‖x‖0).

Hence

r = ‖x‖0 ≤
k∗ (F ∗ + ‖q‖L1Ψ(r))

1 − k∗‖l‖L1

contradicting Assumption (7). We then conclude that Assertion (a) in Theorem 1.1 is
satisfied, proving the claim of Theorem 3.1.

3.1 Example

Consider the second order boundary value Sturm-Liouville problem

−x′′ + qx′ + rx = f(t, x(t), x′(t)) + g(t, x(t), x′(t)), 0 < t < 1 (8)

a0x(0) − a1x
′(0) = c0 (9)

b0x(1) + b1x
′(1) = c1 (10)

where a0, a1 and b0, b1 are nonnegative real numbers satisfying a0 + a1 > 0, b0 + b1 > 0
and (c0, c1) ∈ IR2. The functions f, g: [0, 1] × IR2 → IR are assumed Carathéodory;
the function f satisfies Lipschitz condition with respect to the last two arguments while
g verifies a growth condition as in Assumption (H2). The functions q, r: [0, 1] → IR

are continuous.
vt being the transpose of the vector v, we adopt the notations x′ = y, X = (x, y)t

F = (0,−f)t G = (0,−g)t
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as well as

A =

(

0 1
r q

)

, M =

(

a0 −a1

0 0

)

, N =

(

0 0
b0 b1

)

,

and finally c = (c0, c1)
t.

Problem (8) − (10) is then rewritten under the matrix form

{

X ′ = AX + F +G

MX(0) +NX(1) = c.

Under Assumption (H4) both with det(M + NΦ(1)) 6= 0, Problem (8) − (10) has a
solution x.

Remark 3.1 In case q, r are constant, notice that condition det(M + NΦ(1)) 6= 0 is
nothing but a0(a1e

r2 + b1r2e
r2) 6= b0(a1e

r2 + b1rre
r2) where r1 and r2 are the roots of the

characteristic equation −s2 + qs+ r = 0.

4 Existence of Extremal Solutions

In this section we shall prove the existence of maximal and minimal solutions of BVP
(1)-(2) under suitable monotonicity conditions on the functions involved in it. We de-
fine the usual co-ordinate-wise order relation ≤ in IRn as follows. Let x = (x1, x2, ..., xn)
and y = (y1, y2, ..., yn) be any two elements. Then by x ≤ y, we mean xi ≤ yi for all
i = 1, ..., n. We equip the space X = C([0, 1], IRn) with the order relation ≤ induced
by the natural positive cone C in X, that is,

C = {x ∈ X | x(t) ≥ 0, ∀ t ∈ [0, 1]}.

It is known that the cone C is normal in X. Cones and their properties are detailed in
[5]. Let a, b ∈ X be such that a ≤ b. Then, by an order interval [a, b] we mean a set of
points in X given by

[a, b] = {x ∈ X | a ≤ x ≤ b}.

Definition 4.1 Let X be an ordered Banach space. A mapping T : X → X is called
isotone increasing if T (x) ≤ T (y) for any x, y ∈ X with x < y. Similarly, T is called
isotone decreasing if T (x) ≥ T (y) whenever x < y.

Definition 4.2 [5] We say that x ∈ X is the least fixed point of G in X if x = Gx

and x ≤ y whenever y ∈ X and y = Gy. The greatest fixed point of G in X is defined
similarly by reversing the inequality. If both least and greatest fixed point of G in X

exist, we call them extremal fixed point of G in X.

The following fixed point theorem is due to Heikkila and Lakshmikantham:

EJQTDE, 2006 No. 11, p. 7



Theorem 4.1 [5] Let [a, b] be an order interval in an order Banach space X and let
Q : [a, b] → [a, b] be a nondecreasing mapping. If each sequence (Qxn) ⊂ Q([a, b]) con-
verges, whenever (xn) is a monotone sequence in [a, b], then the sequence of Q−iteration
of a converges to the least fixed point x∗ of Q and the sequence of Q−iteration of b con-
verges to the greatest fixed point x∗ of Q. Moreover

x∗ = min{y ∈ [a, b], y ≥ Qy} and x∗ = max{y ∈ [a, b], y ≤ Qy}

As a consequence, Dhage and Henderson have proved the following

Theorem 4.2 [4]. Let K be a cone in the Banach space X and let [a, b] be an order
interval in a Banach space and let B1, B2: [a, b] → X be two functions satisfying

(a) B1 is a contraction,

(b) B2 is completely continuous,

(c) B1 and B2 are strictly monotone increasing, and

(d) B1(x) +B2(x) ∈ [a, b], ∀x ∈ [a, b].

Further if the cone K in X is normal, then the equation x = B1(x) + B2(x) has a
least fixed point x∗ and a greatest fixed point x∗ ∈ [a, b]. Moreover x∗ = lim

n→∞
xn and

x∗ = lim
n→∞

yn, where {xn} and {yn} are the sequences in [a, b] defined by

xn+1 = B1(xn) +B2(xn), x0 = a and yn+1 = B1(yn) +B2(yn), y0 = b.

We need the following definitions in the sequel.

Definition 4.3 A function v ∈ AC([0, 1], IRn) is called a strict lower solution of BVP
(1)-(2) if v′(t) ≤ A(t)v(t) + F (t, v(t)) +G(t, v(t)) a.e. t ∈ [0, 1], Mv(0) +Nv(1) ≤ η.
Similarly a strict upper solution w of BVP (1)-(2) is defined by reversing the order of
the above inequalities.

Definition 4.4 A solution xM of BVP (1)-(2) is said to be maximal if for any other
solution x of BVP (1)-(2) on [0, 1], we have that x(t) ≤ xM (t) for each t ∈ [0, 1].
Similarly a minimal solution of BVP (1)-(2) is defined by reversing the order of the
inequalities.

Definition 4.5 A function F (t, x) is called strictly monotone increasing in x almost
everywhere for t ∈ J , if F (t, x) ≤ F (t, y) a.e. t ∈ J for all x, y ∈ IRn with x < y.
Similarly F (t, x) is called strictly monotone decreasing in x almost everywhere for
t ∈ J , if F (t, x) ≥ F (t, y) a.e. t ∈ J for all x, y ∈ IRn with x < y.

We consider the following assumptions in the sequel.
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(H5) The functions F (t, y) and G(t, y) are strictly monotone nondecreasing in y for
almost each t ∈ [0, 1].

(H6) The BVP (1)-(2) has a lower solution v and an upper solution w with v ≤ w.

(H7) The kernel k preserves the order, that is k(t, s)v(s) ≥ 0 whenever v ≥ 0.

Remark 4.1 If we assume that there exist some constant vectors y ≤ y such that for
each t ∈ [0, 1]

A(t)y + F (t, y) +G(t, y) ≥ 0, (M +N)y ≤ η,

A(t)y + F (t, y) +G(t, y) ≤ 0, (M +N)y ≥ η,

then y, y are respectively lower and upper solutions for Problem (1)-(2).

Theorem 4.3 Assume that Assumptions (H1)-(H6) hold true. Then BVP (1)-(2) has
minimal and maximal solutions on [0, 1].

Proof. It can be shown, as in the proof of Theorem 3.1 that B1 and B2 are
respectively a contraction and compact on [a, b]. We shall show that B1 and B2 are
isotone increasing on [a, b]. Let x, y ∈ [a, b] be such that x ≤ y, x 6= y. Then by
Assumptions (H5), (H7), we have for each t ∈ [0, 1]

B1(x)(t) =
∫ 1

0
k(t, s)F (s, x(s)) ds

≤
∫ 1

0
k(t, s)F (s, y(s)) ds

= B1(y)(t).

Similarly, B2(x) ≤ B2(y). Therefore B1 and B2 are isotone increasing on [a, b]. Finally,
let x ∈ [a, b] be any element. By Assumptions (H6), we deduce that

a ≤ B1(a) +B2(a) ≤ B1(x) +B2(x) ≤ B1(b) +B2(b) ≤ b,

which shows that B1(x) + B2(x) ∈ [a, b] for all x ∈ [a, b]. Thus, the functions B1 and
B2 satisfy all conditions of Theorem 4.2. It follows that BVP (1)-(2) has maximal and
minimal solutions on [0, 1]. This completes the proof of Theorem 4.3.
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