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LOCALIZED SOLUTIONS OF ELLIPTIC
EQUATIONS: LOITERING AT THE HILLTOP

JOSEPH A. IAIA

ABSTRACT. We find an infinite number of smooth, localized, radial solutions of Apu + f(u) =0 in RY - one with
each prescribed number of zeros - where Apu is the p-Laplacian of the function wu.

1. INTRODUCTION

In this paper we will prove the existence of smooth, radial solutions with any prescribed number of zeros to:
Apu+ f(u) =0in RY, (1.1)

u(z) — 0 as |z| — oo, (1.2)

where A,u = V- (|[Vu|P~2Vu) (p > 1) is the p-Laplacian of the function u (note that p = 2 is the usual
Laplacian operator), f is the nonlinearity described below, and N > 2..

Solutions of (1.1)-(1.2) arise as critical points of the functional J : S — R defined by:

() = /RN %|vu|p ~ F(u)dz

where F(u) = [/ f(t)dt and S = {u € W'P(RY) | F(u) € L*(RN)}.
Setting r = |z| and assuming that v is a radial function so that u(z) = u(|z|) = u(r) then:
N -1 1

Apu = |U/|p_2[(p — 1" + , u] = FN—1

(TN_l |ul|p—2u/)l

where ’ denotes differentiation with respect to the variable r.

We consider therefore looking for solutions of:

1

P2~ D+ ]+ f ) = o NP+ () =0 (13)
Tlir(r)1+ u'(r) =0, (1.4)
Tlirrgo u(r) = 0. (1.5)

Remark: The case p = 2 was examined in [2]. There the authors proved the existence of an infinite number
of solutions of (1.3)-(1.5) - one with each precribed number of zeros - for nonlinearities f similar to the ones
examined in this paper. In this paper we have weaker assumptions than those in [2] and we also have only
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that p > 1. Existence of ground states of (1.3)-(1.5) for quite general nonlinearities f was established in [1].
Our extra assumptions on f allow us to prove the existence of an infinite number of solutions of (1.3)-(1.5).

For p # 2, equation (1.3) is degenerate at points where v’ = 0 and we will see later that in some instances

this prevents u from being twice differentiable at some points. We see however that by multiplying (1.3) by

V=1 integrating on (0,r), and using (1.4) we obtain:

—r N () P20 () = "yt u ) )
WP ) = [ ) (1.6)

Therefore, instead of seeking solutions of (1.3)-(1.5) in C2[0,00) we will attempt to find u € C*0,0)
satisfying (1.4)-(1.6).

The type of nonlinearity we are interested in is one for which F'(u) = fou f(¢) dt has the shape of a “hilltop.”
We require that f : [—d,d] — R and:

f is odd, there exists K > 0 such that |f(z) — f(y)| < K|z — y| for all z,y € [-4, ] and (1.7)
there exists 3,8 such that 0 < 8 < § with f <0 on (0,3), f > 0on (8,6), and f(§) =0. (1.8)

We also require:
there exists v with 8 < v < § such that F < 0 on (0,7v) and F' > 0 on (v, ). (1.9)

Finally we assume:
=o00if p>2 (1.10)

1
| oI

and:

=o0ifp>2. (1.11)

J 1
/ VF(@©) — F(t) dt

Main Theorem. Let f be a function satisfying (1.7)-(1.11). Then there exist an infinite number of solutions
of (1.4)-(1.6), at least one with each prescribed number of zeros.

Remark: Assumption (1.8) can be weakened to allow f to have a finite number of zeros, 0 < 31 < (2 <
- < B < d where f <0 on (0,81), f >0 on (8,—1,0,) and we still require assumption (1.9). A key fact
that we would then need to prove is that the solution of a certain initial value problem is unique. Sufficient
conditions to assure this are (1.10)-(1.11) and the following:

Bi+1

1

dt = oo if p>2andif f > 0on (8, 01+1)
EBrer) — F(t)
and )

————— dt=oc0if p>2andif f <0on (3, Gi+1).
B F(B) — F(t)

Remark: Let 0 < 8 < § and suppose ¢; > 1 for ¢ = 1,2,3. If p > 2 then also suppose ¢g;1 > p — 1 and
g3 > p—1. Let f be an odd function such that f(u) = u®|u — 8|2~ (u — B3)(6 —u)® for 0 < u < § and
suppose F(4) > 0. Then (1.7)-(1.11) are satisfied and the Main Theorem applies to all such functions f.
Remark: If 1 < p < 2 then it follows from the fact that f is locally Lipschitz that (1.10) and (1.11) are
satisfied. Since f is locally Lipschitz at u = 0, it follows that |F(u)] < Cu? in some neighborhood of u = 0
for some C > 0. Then since 1 < p < 2:

1 1 1
——dt > — / — = 00.
/0 YIE@)] Cv Jots
A similar argument shows that (1.11) also holds for 1 < p < 2.
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2. EXISTENCE, UNIQUENESS, AND CONTINUITY
We denote C(S) = {f: S — R| f is continuous on S.}
Let f be locally Lipschitz and let d € R with |d| < §. Denote u(r, d) as a solution of the initial value problem:

N () P2 () = /0 N f(u(t)) d. (2.1)

u(0) = d. (2.2)
We will show using the contraction mapping principle that a solution of (2.1)-(2.2) exists.

For p > 1 we denote ®,(z) = |z[P°~?z. Note that ®, is continuous for p > 1 and &' = &, where %Jr 1% =1.

For future reference we note that @ (z) = (p — 1)[z[P~2 and |®,(z)| = |z[P~.
We rewrite (2.1) as:
1 T
= gty [ () di) (2.3)
r1 0

Integrating on (0,7) and using (2.2) gives:

"o "N
u:d—/o ﬁ@p/[/o sY T f(u(s)) ds] dt. (2.4)

o

Thus we see that solutions of (2.1)-(2.2) are fixed points of the mapping;:

T 1 t

Tu=d-— / &y [/ sV f(u(s)) ds) dt. (2.5)
0 tr-1 0

Lemma 2.1. Let f be locally Lipschitz and let d be a real number such that |d| < §. Then there exists a

solution u € C[0,¢€) of (2.1)-(2.2) for some € > 0. In addition, u'(0) = 0.

Proof.
First, if f(d) = 0 then u = d is a solution of (2.1)-(2.2) and v/(0) = 0.

So we now assume that f(d) # 0. Denote B:(d) = {u € C[0,¢€) such that |ju — d|| < R} where || - || is the

supremum norm. We will now show that if € > 0 and R > 0 are small enough then 7" : B§;(d) — Bf(d) and

that T is a contraction mapping. Since f is bounded on [%, WTH], say by M, it follows from (2.5) that:

L | MtN 4 p—1 M, 1 p p—1 M 1 _»
Tu—d| < -  (—— )1 =(——)(—)p—1pp—1T < (——)(—)p—Tep—1,
ru-d < [ o et - Gt < G e

Therefore we see that | Tu — d|| < R if € is chosen small enough and hence T : BG(d) — B§(d) for € small
enough.

Next by the mean value theorem we see that for some h with 0 < h < 1 we have:

B[ 5 () ds) = 0y | (o) as]| =

1 [t + = w1 as ] [ ) = pw) s (26)

Case 1: 1<p<2
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Using again that f is bounded on [d — 1,d + 1] by M and that the local Lipschitz constant is K (i.e. for
u,v € B$(d) we have |f(u) — f(v)] < K|u — v|) we obtain by (2.5)-(2.6):

" 1 2-p tN 2-p tN
Tu—"T < — — Mp»-1(—)p-1T —
|| u UH — p_lHu U” o t]I\)I:II P (N)p N

" 1 P
= Chllu—v| / t7=1 dt < Caer—T1||u — v
0

where C, C5 are constants depending only on p, N, K, and M.
Case 2: p>2

Since f(d) # 0 and f is continuous we may choose R small enough so that:

L= min |f|>0.
[d— R,d+R]

Therefore,

t N
[ s+ @ r)ds] = (27)

0
Thus, by (2.5)-(2.7) we have

1 ~Ne-ntV
t 1 —dt
N

K L 2—p T

”TU_T'UH < H(N)P*HU—UH/O t%

K 1 o .,

- ol [ 67 dt < Coer o
0

1

(P =1 NeTLv
where C5 depends only on p, N, K, and M.

Therefore in both cases we see that T is a contraction for R and e small enough. Thus by the contraction
mapping principle, there is a unique u € C[0, €1) such that Tw = u. That is, there is a continuous function
u such that u satisfies (2.4) on [0, 1) for some €; > 0. In addition, since f(d) # 0 we see that the right hand
side of (2.4) is continuously differentiable on (0,¢€) for some € with 0 < € < ¢; and therefore u € C*(0, ).
Also, subtracting d from (2.4), dividing by 7, and taking the limit as r — 07 gives «/(0) = 0. Finally, dividing
(2.1) by ¥V~! and taking the limit as 7 — 0% we see that 111%1+ u'(r) = 0. Therefore, u € C1[0,¢). O

Note we see from (2.3) that u € C? at all points where u’ # 0.
If w/(rg) = 0 then using (2.1) we obtain:
1 T
-2 _ N-1
P ) = o [ ()

To

It then follows that:

lim
r—ro r—rg

WP =utr) _ [ dtud s —
| —f(u(ro)) if ro > 0.
Remark: If 1 < p < 2 then we see from (2.8) that u”(rg) exists and rewriting (1.3) as:

(2.8)

N -1
(p—u” + Tul + [/ > f(u) =0,

we see that u € C?[0,¢).

Remark: If p > 2 then u might not be twice differentiable at points where v’ = 0. In fact if v/(rg) = 0 and
f(u(ro)) # 0 then by (2.8) we see that lim |f_—(:Z| = oo and so u is not twice differentiable at ry.
7T
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Lemma 2.2. Let f satisfy (1.7)-(1.9). If u is a solution of the initial value problem (2.1)-(2.2) with |d| <6
on some interval (0, R) with R < oo, then:

F(u) < F(d) on (0,R) (2.9)
and )
p—
TIU'IP S F(d) +|F(B)| < F(0) + |[F(B)] on (0, R). (2.10)
Proof.
We define the “energy” of a solution as:
-1
E=C""/p+ Fu). (2.11)
p
Differentiating F and using (2.1) gives:
N -1
E = - [/ P <O0. (2.12)

Integrating this on (0,r) and using (1.8) gives:

p—1

[u'|P+ F(u) = E < E(0) = F(d) < F(§) for r > 0. (2.13)

Inequalities (2.9)-(2.10) follow from (1.8)-(1.9) and (2.13).

Now by (1.9) we know that F' is negative on (0,7) and by (1.8) we know that F is increasing on (8, 9).
Therefore if |d| < ¢ then F(d) < F(J). On the other hand if |u(rg)| = ¢ for some 1y > 0 then by (2.9)
F(6) < F(d) - a contradiction. Hence if |d| < § then |u| < 4. O

Lemma 2.3. Let f satisfy (1.7)-(1.9). Let d be a real number such that |d| < 6. Then a solution of (2.1)-
(2.2) exists on [0,00).

Proof.

If |d| = 0 then w = d is a solution on [0, c0) and so we now suppose that |d| < d.

Let [0, R) be the maximal interval of existence for a solution of (2.1)-(2.2). From lemma 2.1 we know that
R > 0. Now suppose that R < oo. By lemma 2.2, it follows that v and «' are uniformly bounded by
M =0+ F(5) + |F(B)| on [0, R). Therefore by the mean value theorem |u(z) — u(y)| < M|z — y| for all
z,y € [0, R).
Thus, there exists b; € R such that:
li =b;.
A e =h
By (2.3) there exists by € R such that:
li "(r) = ba.
g ) =
If by # 0 we can apply the standard existence theorem for ordinary differential equations and extend our
solution of (2.1)-(2.2) to [0, R + ¢€) for some € > 0 contradicting the maximality of [0, R).

If b, = 0 and f(b1) # 0 we can again apply the contraction mapping principle as we did in lemma 2.1 to
extend our solution of (2.1)-(2.2) to [0, R + €) for some € > 0 contradicting the maximality of [0, R).

Finally, if b = 0 and f(b1) = 0, we can extend our solution by defining u(r) = by for r > R contradicting
the maximality of [0, R).

Thus in each of these cases we see that R cannot be finite and so a solution of (2.1)-(2.2) exists on [0, 00). O
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Lemma 2.4. Let f satisfy (1.7)-(1.10). Let d be a real number such that |d| < §. Then there is a unique
solution of (2.1)-(2.2) on [0,00).

Proof.
Case 1: d =10

In this case we have E(0) = F(8) (recall that F' is even) and since E’ < 0 (by (2.12)) we have E(r)
E(0) = F(f) for r > 0. On the other hand, F' has a minimum at v = £ and so we see that E(r)
pp%l|u’|p + F(u) > F(B). Thus E = F(8). Thus, —~=|u/|P = E' = 0 and hence u(r) = £0.

Case 2: d =0.
Here we have E(0) = 0 and since E’ < 0 we have E(r) <0 for r > 0.
Let r1 =sup{r > 0| E(r) = 0}. If 11 = oo then u(r) = 0.

I IA

So suppose r; < co. If 11 = 0 then we have u(ry) = 0 and v'(ry) = 0.

If ry > 0 then since £/ < 0 we have E(r) = 0 on [0,71] hence —¥=L[/[P = E = 0 and so u = 0 on [0, ).
Therefore we also have u(r;) = 0 and «/(r1) = 0.

Now using (2.1) we obtain:

fTN_1|u/|p_2u':/ N1 (u) dt. (2.15)

T1

Since: .
p—|u’|p+F(u) =E(r) < E(0) =0 for r > ry, (2.16)
p

it follows that |u(r)| > 0 for » > r1. Combining this with the fact that u(r1) = 0, we see that there exists an
e > 0 such that 0 < |u(r)| < 8 for 1y <r <71 +e By (1.8) it follows that |f(u)] > 0 for r; <r <r; +e.
Therefore, by (2.15) we see that |u'| > 0 for 71 < r < r; + €. Using this fact and rewriting (2.16) we see that:
|| P 1
<(=—7)"

[Fw)] p—1

forri <r<ri+e (2.17)

Integrating (2.17) on (r1,71 + €), using (1.10), and that F is even gives:

[u(rite)l 1 ri+e /
OO:/ [u| < (P )i
0

- dt=
vEo L e s -t

a contradiction. Thus we see that r; = oo and hence uv = 0.
Case 3: f(d) #0.

We saw that the mapping 7" defined in lemma 2.1 is a contraction mapping. Therefore, T has a unique fixed
point so that if u; and ug are solutions of (2.1)-(2.2) then there exists an ¢ > 0 such that uq(r) = ua(r)
on [0,¢). Let [0, R) be the maximal half-open interval such that ui(r) = us(r) on [0, R). By continuity,
u1(r) = ua(r) on [0, R] and v} (r) = ub(r) on [0, R].

As in the proof of lemma 2.3, if u} (R) # 0 then it follows from the standard existence-uniqueness theorem of
ordinary differential equations that uy(r) = ua(r) on [0, R 4 €) for some e > 0 contradicting the maximality
of [0, R).

If ui(R) =0 and f(u1(R)) # 0 then we can again apply the contraction mapping principle as in lemma 2.1
and show that uq(r) = ua(r) on [0, R + €) for some € > 0 contradicting the maximality of [0, R).

If u{(R) = 0 and u;(R) = (3 then as in Case 1 above we can show that uy(r) = 8 for r > R and us(r) =
for r > R. This contradicts the definition of R. A similar argument applies if u}(R) = 0 and u;(R) = —f.
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Finally, if v} (R) = 0 and u;(R) = 0, then as in Case 2 above we can show that uy(r) = 0 for » > R and
uz(r) = 0 for » > R. This contradicts the definition of R.

Thus we see that in all cases we have R = co. This completes the proof. O
Remark: Without assumptions (1.10) and (1.11), solutions of the initial value problem (2.1)-(2.2) are not

necessarily unique! For example, let f(u) = —|u|?"u where 1 < ¢ < p — 1. In addition to u = 0,

u=C(p,q, N)r#=s

where C(p,q, N) = [pp,l[g:rl]vf(';)_pl_q)]]?*i*q is also a solution of (2.1)-(2.2) with »(0) = 0 and »/(0) = 0. Note
however that [, —=2—dt = [, (qgg dt < oo since 1 < ¢ < p— 1. Similarly, if f(u) = —[6 — u|971(5 — u)
t P

VIF®)I

and 1 < ¢ <p—1then u =9 and

u=20— C(p,q,N)rﬁ
(with the same C(p,q, N) as earlier ) are both solutions of (2.1)-(2.2) but (1.11) is not satisfied.

Lemma 2.5. Let u be a solution of (2.1)-(2.2) with v < d < ¢ and suppose there exists an r1 > 0 such that
u(ry) =0. If (1.10) holds then u'(r1) # 0.

Proof.
This proof is from [1].

Suppose by way of contradiction that w(r;) = 0 and u/(r1) = 0. It follows that E(r1) = 0. (In fact, it
follows from lemma 2.4 that w = 0 on [r1,00)). Now let 1o = inf{r < r; | E(r) = 0}. Since E is continuous,
decreasing, and F(0) = F(d) > 0 we see that ro > 0 and that E(r) > 0 for 0 < r < ry.

If ro < r1 then E(r) = 0 on (ro,r1) and thus —&=Lu/|P = E’(r) = 0 on (rg,r1). Therefore u =0 on (ro,71)
and thus u(rg) = u/(ro) = 0.

Integrating (2.12) on (r,79) and using that E(rg) = 0 gives:

~1 N -1
P= P+ Fu) = / WPt (2.18)
p T r
Letting w = [ 2=/ |P dt, we see that w' = —~=L|u/|P. Thus (2.18) becomes:
N -1
W+ S = gF(u) where a = u (2.19)
r r p—1

By (1.9) it follows that there is an € with 0 < € < $rg such that F(u(r)) < 0 on (rg — €,70). and so solving
the first order linear equation (2.19) gives:

ro
w= g/ t* Y F(u)|dt for ro — e <1 < 1.
r* J,
Rewriting (2.18) we obtain:
ro
[u'|P = L1[|F(u)| + g/ t*"HF(u(t))| dt] for ro — e < 1 < 1o. (2.20)
p— re T

In addition, since E(r) > 0 for r < rp, we see that:

[u'| > (le)% Y/|F(u)| >0 forrg —e < r <ro.
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Thus w is monotone on (rg — €,79).
Since F/ = f < 0 on (0, 3) (by (1.8)) we see that:

|F(u(t))] < |F(u(r))] for ro —e <r <t <. (2.21)
Substituting (2.21) into (2.20) gives:

(e}
o

pry

Ip< p
W< (2

F(u)] < (—2=) (-2

- ) E )] < QQ(I%MF(UM for 7o — € < 7 < 7.

Finally, dividing by |F(u)|, taking roots, integrating on (r,79), and using (1.10) we obtain:
)l q )
o= [ T <2 G-
0

a contradiction. Thus u'(r1) # 0 and this completes the proof. [

Lemma 2.6. Let u be a solution of (2.1)-(2.2) where v < d < 4. Then v’ < 0 on a mazimal nonempty open
interval (0, Mg 1), where either:
(a) Mgy = o0, lim v/ (r) =0, lim u(r) = L where |L| < d and f(L) =0,

or
(b) Mg is finite, v (Mg1) =0, and f(u(Mg1)) <O0.

In either case, it follows that there exists a unique (finite) number 74 € (0, Mg1) such that u(rq) = v and
u' <0 on (0,74].

Proof.

From (2.8) we have:
WP f)
r—0+ r N~

For v < d < ¢ the right hand side of the above equation is negative by (1.8). Hence for small values of r > 0
we see that u(r,d) is decreasing.

If w is not everywhere decreasing, then there is a first critical point, r = Mg > 0, with u/(My1) = 0 and
u < 0on (0, Mg1). From (2.1) we have:

AP ) = [ ) dr

If f(u(Mg,1)) > 0 then the above equation implies v’ > 0 for r < Mg ; and r sufficiently close to Mg ; which
contradicts that ' < 0 on (0, My.1). Therefore f(u(Mg1)) <0 and so u(My1) < 3 < . Thus, there exists
74 € (0, Mg,1) with the stated properties.

On the other hand, suppose that u(r) is decreasing for all » > 0. We showed in lemma 2.2 that |u(r)| < d < ¢
for r > 0. Thus lim u(r) = L with |L| < d < 4.

Dividing (2.1) by 7% and taking limits as r — oo we see that:

I L f(L)
1 -\
ri»nolo r N

(2.22)
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We know from (2.10) that ' is bounded for all » > 0 and so the limit of the left hand side of (2.22) is 0.
Thus f(L) = 0 and since |L| < d < § we see that L = —(3,0, or 5. Thus there exists a (finite) 74 with the
stated properties.

Finally, the fact that lim «'(r) = 0 can be seen as follows. In lemma 2.2 we saw that the energy F(r) =
pp%l|u’(r)|p+F(u(r)) is decreasing and bounded below by F'(/3), therefore lim FE(r) exists. Since lim u(r) =
L, we see that lim F(u(r)) = F(L). Also, since pT?l|u'(r)|p = E(r) — F(u(r)) and both E(r) and F(u(r))

have a limit as r — oo, it follows that |u'| has a limit as 7 — oo. This limit must be zero since u is bounded.
This completes the proof. [

Lemma 2.7. Suppose v < d* < §. Then dlir{il* u(r,d) = u(r,d*) uniformly on compact subsets of R and
lim u'(r,d) = u/(r,d*) uniformly on compact subsets of R. Further, if (1.11) holds then dlirlrsli u(r,d) =6

d—d

uniformly on compact subsets of R.
Proof.

If not, then there exists an ¢g > 0, a compact set K, and sequences r; € K, d; with v < d; < § and
lim d; = d* such that
J—00

lu(rj,d;) — u(rj,d*)| > e > 0 for every j. (2.23)
However, by lemma 2.2 we know that |u(r,d;)| < § and |u/(r,d;)| < (pfl)% [F(6)+ |F(6)|]% for all j so that
by the Arzela-Ascoli theorem there is a subsequence of the d; (still denote d;) such that u(r,d;) converges
uniformly on K to a function u(r) and |u(r)] < é. From (2.3) we see that v'(r,d;) converges uniformly on
K a function v(r) where —v = —g— @[ [y "1 f(u(t)) dt).

rp—1

Taking limits in the equation u(r,d;) = d; + [, w'(s,d;)ds, we see that u(r) = d + [ v(s)ds. Hence
u'(r) = v(r), that is —u’ = —g=rPp [ [y "1 f(u(t)) dt], and thus u is a solution of (2.1)-(2.2) with d = d*.

So by lemma 2.4, u(r) = u(r,d*). Therefore, given € = ¢y > 0 and the compact set K we see that for all
r € K we have:
[u(r,d;) —u(r,d")| < eo
which contradicts (2.23). This completes the proof of the first part of the theorem.
An identical argument shows that dlilgli u(r,d) = u(r) uniformly on compact sets where |u(r)] < ¢ and u

solves (2.1)-(2.2) with d = §. To complete the proof we need to show u(r) =9§. Let 1 =sup{r > 0| E(r) =
E(0) = F(9)}. Since E is decreasing we see that if 7y = oo then E is constant and hence u = ¢ and we are
done.

Therefore we suppose r; < .

By the definition of r; we have:
-1
P™ P + F(u) = E(r) < E(0) = F(5) for r > ry. (2.24)
p
Thus, it follows that u(r) < 6 for r > r1. Also by (1.8) it follows that f(u) > 0 for r < r < ry + € for some
€ > 0. Therefore, by (2.15) we see that v’ < 0 for 1 < r < r; + €. Using this fact and rewriting (2.24) we
see that:

o
u < D
FOO)—Fu) p-1
Integrating (2.25) on (r1,71 + €) and using (1.11) gives:
é r1+e€ /
1 1

)% forry <r<r +e (2.25)

- - _ —u p %e
w(ri+e) F((S) - F(f) dat 1 F((S) — F(u) S (p — 1) ’

a contradiction. Hence r; = o0 and u=4. O

o0 =
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3. ENERGY ESTIMATES

From lemma 2.6 we saw for v < d < § that u(r,d) is decreasing on [0, 74]. Therefore u=!(y,d) exists for
y<y<d.

Lemma 3.1. Forv <y <d < we have:

li Ly, d) = 0.
A d) =

NOTE: In particular this implies that 74 — 0o as d — §~ since u=1(v,d) = 74.

Proof.

We fix yg with v < yo < d and suppose by way of contradiction that there exists d with dx < § and dy — 9,
u_l(yo, di) = b, and that the by are bounded.

Then there is a subsequence of the by (still denote by) such that by — by for some real number b. By
lemma 2.2 we have that |u(r, di)| and |u'(r, di)| are uniformly bounded on say [0, b+ 1]. Thus by lemma 2.7,
klim u(r,dg) = & uniformly on [0,b+ 1]. On the other hand, yo = klim u(bg,dr) = d - a contradiction since

Yo <d<d. O

Lemma 3.2.

1 d dt 1
b <u (y,d) for vy <y < d.
v [F(d)

Proof.
Rewriting (2.13) gives:

p—1 ', )l <1 3.1
— [F(d) — Fu(r,d)]» ~ &

Since u'(r,d) < 0 on (0,74), integrating (3.1) on (0,r) where 0 < r < 74 we obtain:

p—1 v ’ —dt <r
( p ) /u(r,d) [F(d) — F(t)]»

Denoting y = u(r, d) and using the fact that I/ = f > 0 on (v, d) we obtain:

pfli d—y < p*I% 4 dt < u Y. d). 3.2
s <) / T <ul(y,d) (3:2)

This completes the proof. [
Lemma 3.3.

Jim [E(0) = E(ra)] = 0.

Integrating (2.12) on (0, 74) gives:

N -1
t

E(0) — E(7a) = /0” (¢, d)|” dt.

Using (2.13) we obtain:

T ] p—

ZIF(d) — Fu(t,d)]" 7 [W/(t, d)| dt.

B0) — B(ra) < (25 (v =) [ 74
EJQTDE, 2006 No. 12, p. 10



Now changing variables with y = u(¢, d) we obtain:

d 5
B0) - Bra) < (L) v -y [T DS TWLE (33)

L [P — Pl
d—o— u"(y,d)

=0fory<y<d. (3.4)

Also, by (3.2) and the mean value theorem we see that:

1F(d) - F(y)T P
/7 u=t(y,d) dyé(p—l)

=

dy < ( b )%(577)maxf.

Yy p—1 [,0]

/dF(d)F(y)
Y d—

Therefore by (3.4) and the dominated convergence theorem it follows that:

Lo [ - Pl
d—o= J u"(y,d)

dy = 0.

Therefore by (3.3):
dm?— [E(0) — E(q)] = 0.

This completes the proof. [
Lemma 3.4. Suppose u is monotonic on (74,t). Then

¢
Td

E(rq) — E(t) <

where C' = 25(N — 1)(%)20_;1 [F(3) + |F(ﬂ)|]p_;1 (Note that C is independent of d).
Proof.

Integrating (2.12) on (74, t), estimating, and using (2.13) gives:

N

Bir) B0 = |

_1|u’|pds§ N -1
S Td

t
[t as
Td
t
N—-1 1»p

< M2 [ Fe) - Pl s = SRS [ ) - P a

. T4 p—1

< BEZD Ly ) + P =S
Td b Td

where €' = 25(N — 1)(327)"7 [F(3) + [F(3)[ "7 -
This completes the proof. O

Lemma 3.5. Suppose v < d* < ¢. Let u(r,d*) be a solution of (2.1)-(2.2) with k zeros and suppose
lim wu(r,d*) = 0. Then for d sufficiently close to d*, u(r,d) has at most k + 1 zeros.

T—00
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Proof.

From (2.12) we know that E’(r,d*) < 0 and since E is bounded from below by F'(3), we see that lim E(r,d*)
exists. Also by assumption lim u(r,d*) = 0 and since F' is continuous we have lim F(u(r,d*)) = 0. Since
pp%l|u'(r, d*)|P = E(r,d*) — F(u(r,d*)) and the limits of both terms on the right hand side of this equation
exist as r — oo we see that lim |u/(r,d*)| exists and since by assumption lim u(r,d*) = 0 (so that u(r,d*)

is bounded) we therefore must have:

lim u'(r,d") = 0. (3.5)
Combining (3.5) with the assumption that lim wu(r,d*) = 0, we see by (2.11) that:
lim E(r,d") = 0. (3.6)

Combining (3.6) with the fact that E'(r,d*) < 0, we see that E(r,d*) > 0 for all > 0.

Claim.
E(r,d*) > 0 for all » > 0. (3.7)

Proof of claim. First note that E(0,d*) = F(d*) > 0. Now suppose E(rg,d*) = 0 for some ¢ > 0. Then
from (3.6) and the fact that E is decreasing it then follows that £ = 0 on [rg, 00). Thus, —2=L[/|P~! = E' =
0 on [rg,00). Therefore u(r,d*) = u(rg,d*) for r > ro and since lim u(r,d*) = 0 we see that u(r,d*) = 0 for
r > ro. This implies u/(rg,d*) = 0. However, by lemma 2.5 u/(rg,d*) # 0 - a contradiction. This completes
the proof of the claim.

By assumption u(r,d*) has k zeros. Let us denote the kth zero of u(r,d*) as y*. Henceforth we assume
without loss of generality that w(r,d*) > 0 for r > y*. By (3.7) we see that %|u’(y*, d*)|P = E(y*,d*) > 0.
Also since lim u(r,d*) = 0 it follows that there exists an M* > y* such that v/(M*,d*) = 0. Again by (3.7)
we see that F(u(M*,d*)) = E(M*,d*) > 0 which implies u(M*,d*) > ~. Now by (2.1) we obtain:

—rN =Y (r, d*) P (r, d¥) = /T sV (u(s, d*)) ds.

By (1.8) we have f(u(M*,d*)) > 0, so from the above equation we see that u(r,d*) is decreasing for r > M*
as long as u(r,d*) remains greater than . In particular, since lim u(r,d*) = 0, we see that there exists s*,

T —00

t* with M* < s* < ¢* such that u(s*) = w and u(t*) = .

Now let d,, be any sequence such that lim d,, = d*. Then by lemmas 2.4 and 2.7, for some subsequence of

n—oo

d,, (still denoted d,,) we see that u(r,d,) converges uniformly on compact sets to u(r,d*) and that u'(r,d,)
converges uniformly on compact sets to u'(r, d*).

In particular we see that wu(r, d,) converges uniformly to u(r,d*) on [0,t* 4+ 1]. Since v < d < §, we see by
lemma 2.5 that if u(rg,d*) = 0 and ro > 0 then u'(rp,d*) # 0 and so by lemma 2.7 for sufficiently large n we
see that u(r, d,,) has exactly k zeros on [0, t* +1]. Further for sufficiently large n there exists a t,, € [s*,t* +1]
such that u(t,,d,) =+ and nlLII()lo ty, = t*.

We now assume by way of contradiction that wu(r,d,) has at least (k + 2) interior zeros. We denote z, as
the (k + 1)st zero of u(r,d,) and w, as the (k4 2)nd zero of u(r,d,). Since u(r,d,) converges uniformly to
u(r,d*) on [0,t* + 1], we see that for large n we have z, > t* 4+ 1 and in fact:

dlim Zn = 00, (3.8)
EJQTDE, 2006 No. 12, p. 12



for if some subsequence of z, (still denoted z,) were uniformly bounded by some B < oo then a further
subsequence (still denoted z,) would converge to some z* with y* < t*+1 < z* < B. Since u(r, d,,) converges
uniformly to u(r,d*) on [0, z* 4+ 1], we would then have that u(z*,d*) = 0 and since z* > t* +1 > y*, z*
would then be a (k+ 1)st zero of u(r, d*). However by assumption u(r,d*) has only k zeros - a contradiction.
Thus (3.8) holds.

By assumption v < d* < § so that for sufficiently large n we have that v < d,, < § so by lemma 2.5 we

have that u/(wy,d,) # 0. Thus pTTl|u’(zn)|p = E(zn) > E(wy,) = pp%l|u’(wn)|p > 0 so we see that there

exists m,, with z, < m, < w,, v'(r,d,) < 0 on [z,,m,), and v (my,,d,) = 0. Also |u(my,d,)| > v since

F(u(my)) = E(my) > E(wy,) > 0. Hence there exists an, by, ¢, with z, < ap, < b, < ¢, < my, such that

u(an) = =0, u(b,) = —@ =7, and u(e,) = —7.

Now as in the proof of lemma 2.7 with a = p(N—?) we have (r*E) = ar®"!F(u). Integrating this on [t,, ¢,],
<F

using the fact that F'(u) < 0 on [ty, ¢,], and that F(u(r,dy)) (1) < 0 on [an,by] we obtain:

1 cn bn
0<? cnlt (en)|P = X E(cy) = t2E(ty,) —|—/ ar“ Y F(u)dr <tOB(t,) —|—/ ar® 1 F(u) dr
p t a

<tYBE(t,) + F(T)[bY — a®] < tOE(ty) + F ()02 b, — ay). (3.9)

From lemma 2.2 we know that |u/| < (pfl)% [F(0) + |F(ﬁ)|]% Integrating this on [a,, by,] gives:

bn — Qn Z c> 0 (310)

where ¢ = (52)(=£1) 7 [F(8) + |[F(8)[] 7 . Substituting (3.10) into (3.9) and using the fact that F(r) < 0

we see that we obtain:
0 < t2E(t,) + cF(T)b2 1. (3.11)

In addition, since b,, > z, we see from (3.8) that:

lim b,, = oco. (3.12)

n—oo

Finally, by lemma 2.7 we know that wu(r,d,) converges uniformly to u(r,d*) on [0,t* + 1] and u/'(r,d,)
converges uniformly to u/(r,d*) on [0,t* + 1] and ¢,, — t*. Therefore, we see that:

lim 9B (tn, dn) = () E(t*, d*) (3.13)

n—oo

Substituting (3.12)-(3.13) into (3.11) and recalling that F(r) < 0, and a = 251 > 1 (since N > 2), we
see that the right hand side of (3.11) goes to —oco as n — oo which contradicts the inequality in (3.11).
This completes the proof. [

4. PROOF OF THE MAIN THEOREM
Proof.
For k € NU {0}, define

A = {d € (B, d)|u(r,d) has exactly k zeros on [0,00)}.

Observe first that (5,7) C A because for any d € (4,7) we have E(0,d) = F(d) < 0 so that by (2.12)
E(r,d) < 0 for all > 0. Thus u(r,d) > 0 for if u(rg,d) = 0 then E(rg,d) = %|u’(r0,d)|p >0-a
contradiction. Thus we see that Ay is nonempty.
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We now assume that d > v and we apply lemma 3.4 at t = My where My ; is defined in lemma 2.6 and we
combine this with lemma 3.3 to obtain:

th}sl— F(u(Mg1)) = F(6) > 0.
Thus
|u(Mg,1)| > «v for d sufficiently close to 4. (4.1)

This implies that Mg < oo for if Mg; = oo, then from lemma 2.6 we see that u(Mg 1) = lim wu(r),
|u(Mg1)| < d < 6, and f(u(Mg,1)) = 0 which implies |u(Mg1)| < 5 - contradicting (4.1). Thus My < oo
and by lemma 2.6 we see that f(u(Mg,1)) < 0 so by (1.8) we have u(Mg1) < . Combining this with (4.1)
we see that we must have u(Mg1) < —y < 0. Therefore for d < § and d sufficiently close to §, we see that
u(r, d) must have a first zero, zq,1.

Thus we see that Ag is bounded above by a quantity that is strictly less than 6. We now define:
dog = sup 4p

and we note that dy < 6.

Lemma 4.1.
u(r,do) > 0 for r > 0.

Proof.

Suppose there exists a smallest value of 7, rg, such that u(rg,dp) = 0. By Lemma 2.5, u/(rg,dy) # 0 thus
u(r, dp) becomes negative for r slightly larger than ro. By lemma 2.7 it follows that if d < dj is sufficiently
close to dy then wu(r,d) must also have a zero close to ro. However by the definition of dy if d < dp then
u(r,d) > 0 - a contradiction. This completes the proof. O

Lemma 4.2
u'(r,dy) < 0 for r > 0.

Proof

We will show that Mg, 1 = oo where My, 1 is defined in lemma 2.6. If My, 1 < oo then by lemma 2.7
for d slightly larger than dy we also have My < oo. Also, since u(r,dp) > 0 then u(Mgy,1,do) > 0 and
again by lemma 2.7 we also have u(My1,d) > 0 for d sufficiently close to dy. By lemma 2.6 it follows
that f(u(Mg,1,d)) < 0 so that 0 < u(Mgy1,d) < 8 thus E(Mg1,d) < 0. Since E is decreasing we see that
E(r,d) <0 for r > Mgy ;.

For d slightly larger than do, u(r,d) must have a first zero, z4,1, (by definition of dy) and z41 > Mg 1 since
u(r,d) > 0 on [0, Mg41]. Thus, we have 0 < E(z1,d) < E(Mg1,d) <0 - a contradiction. This completes the
proof. O

From lemmas 2.6, 4.1, and 4.2 we see that lim u(r,dy) = L where f(L) = 0 where L < dy < ¢ and since

T —00

u(r,dg) > 0 we have that L =0 or L = . We also see that lim E(r,dy) = F(L).

Lemma 4.3.

lim 241 =00
d—df

Proof.

If z41 < C for d > dp then as in the proof of (3.8) there would be a subsequence d,, with d,, — dp and
Zd,1 — #. By lemma 2.7 it then would follow that u(z,dp) = 0 which contradicts that u(r,dp) > 0. This
completes the proof. O
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Lemma 4.4. L =0
Proof.

We know that L =0 or L = 3 so suppose L = 3. Then lim E(r,dy) = F(L) = F() < 0 so there exists an
ro such that E(rg,dp) < 0. Thus for d > dy and d sufﬁcierrl?f; close to dy we have by lemma 2.7 E(rg,d) < 0.
Since E(zq41,d) > 0 we see that z41 < 79 which contradicts lemma 4.3. Thus lim u(r,dp) = 0 and this
completes the proof. [ T

By definition of dy, if d > dy then u(r,d) has at least one zero. By lemma 3.4, if d is close to dy then u(r,d)

has at most one zero. Therefore for d > dy and d sufficiently close to dy, u(r, d) has exactly one zero. Thus
the set A; is nonempty and dy < sup A;.

As we saw in the first part of the proof of the main theorem, My 1 < oo and u(Mg 1) < —~ for d sufficiently
close to §. By a similar argument as in lemma 2.6, it can be shown that there exists an My with Mg, <
M2 < oo such that u/(r,d) > 0 on (Mg, Mg 2). Also, by lemma 3.4 we see that

0 < E(0) — E(Mqg,2) = [E(0) — E(1a)] + [E(74) — E(Mgn)] + [E(Ma,1) — E(Ma,2]

C C
< [E(0) — E(1a4)] + - + Mt

where C' is independent of d.

By lemmas 3.1, 3.3 and the fact that 7q < Mg, we see:

dhr?f F(u(Mgz2)) = E(0) = F(4) > 0.
As at the beginning of the proof of the main theorem we may also show that Mg o < oo and u(Mgz2) > 7y
for d sufficiently close to §. Therefore, there exists zq2 such that My1 < zq2 < Mg2 and u(z42,d) = 0.
Therefore A; is bounded above by a quantity strictly less than §.

Let:
d; = sup 4

and note that dy < dy < 6.

In a similar way in which we proved that u(r,dp) > 0 and lim u(r,dy) = 0 we can show that u(r,d;) has

T—00

exactly one zero and that lim wu(r,d;) = 0.
T—00

In a similar way we may show by induction that Ay is nonempty and bounded above by a quantity strictly
less than §. Let

dk = sup Ak.
It can be shown that u(r,dy) has exactly k zeros and that lim wu(r,dy) = 0.

T—00

This completes the proof of the main theorem. [
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