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1 Introduction

In this work, we consider the following periodic boundary value problem for a nonlinear im-
pulsive fractional differential equation

Dδ
tk+

u(t)− λu(t) = f (t, u(t)), t ∈ (tk, tk+1), k = 0, . . . , p, (1.1)

lim
t→t+k

(t− tk)
1−δ(u(t)− u(tk)) = Ik(u(tk)), k = 1, . . . , p, (1.2)

lim
t→0+

t1−δu(t) = u(1), (1.3)

where 0 < δ < 1, 0 = t0 < t1 < t2 < · · · < tp < tp+1 = 1, Dδ
tk+

represent the standard
Riemann–Liouville fractional derivatives, Ik ∈ C(R, R), k = 1, . . . , p, λ ∈ R, λ 6= 0, f is contin-
uous at every point (t, u) ∈ (tk, tk+1]×R, k = 0, . . . , p, and satisfies the following restrictions
concerning its behavior on the limit at t = t0 and the impulse instants: for every k = 0, . . . , p
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and every function v ∈ C(tk, tk+1] such that the limit limt→t+k
v(t) exists and is finite, then there

exists the (finite) limit
lim
t→t+k

f
(
t, (t− tk)

δ−1v(t)
)
.

Note that condition (1.2) is equivalent to

lim
t→t+k

(t− tk)
1−δu(t) = Ik(u(tk)), k = 1, . . . , p. (1.4)

since limt→t+k
(t− tk)

1−δu(tk) = 0. Thus the limit in (1.2) exists if and only if the limit in (1.4)
exists and the value is the same.

The theory of impulsive differential equations has been emerging as an important area of
investigations in recent years. For some general aspects of impulsive differential equations, see
the classical monographs [14, 21], and Chapter 15 of [18]. From a mathematical point of view,
the reader can see, for instance, [6, 8]. Differential equations involving impulsive effects occur
in many applications: control theory [2, 9, 10], population dynamics [17], or chemotherapeutic
treatment in medicine [13].

Fractional order models are, in some cases, more accurate than integer-order models, i.e.,
there are more degrees of freedom in the fractional order models. Furthermore, fractional
derivatives provide an excellent instrument for the description of memory and hereditary prop-
erties of various materials and processes due to the existence of a ‘memory’ term in a model.
This memory term insures the history and its impact to the present and future. For more details,
see [15].

Recently Belmekki et al. [5] investigated the existence and uniqueness of solution to the
(nonimpulsive) problem

Dδu(t)− λu(t) = f (t, u(t)), t ∈ J := (0, 1], 0 < δ < 1,

lim
t→0+

t1−δu(t) = u(1),

by using the fixed point theorem of Schaeffer and the Banach contraction principle. In [23],
the authors consider a different impulsive problem and try to obtain existence and uniqueness
results by using the Banach contraction principle. For δ = 1, we refer the reader to the paper
by Nieto et al. [16]. We cite [1, 7, 22] for some considerations on the concept and existence
of solutions to fractional differential equations with impulses. The purpose of this paper is
to study the existence of solution to the problem (1.1)–(1.3) by using Schaeffer’s fixed point
theorem. The results obtained extend in some sense those in [5, 16] and allow some conclusions
about the problem studied in [23].

2 Preliminary results

In this section, we introduce the notations, definitions, and preliminary facts which are used
throughout this paper.

Let C(J) be the Banach space of all continuous real functions defined on J with the norm
‖ f ‖ := sup{| f (t)| : t ∈ J}.
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We also introduce the space PCr[a, b] for a general interval [a, b], a sequence a = t0 < t1 <

t2 < · · · < tp < tp+1 = b and a constant 0 < r < 1, as follows:

PCr[a, b] :=
{

f : [a, b] −→ R : tr f |[a,t1] ∈ C[a, t1], (t− tk)
r f |(tk ,tk+1] ∈ C(tk, tk+1],

k = 1, . . . , p, and there exists lim
t→t+k

(t− tk)
r f (t), k = 1, . . . , p

}
,

which obviously coincides with the set of functions f : [a, b] −→ R such that

fr,{tk}(t) =

{
tr f (t), t ∈ [a, t1],

(t− tk)
r f (t), t ∈ (tk, tk+1], k = 1, . . . , p

is piecewise continuous on [a, b].
The definition of the space clearly depends on the sequence {tk}, but we omit it in the

notation for simplicity. Note also that f (t−k ) = f (tk) for every k = 1, . . . , p and f ∈ PCr[a, b].
The space PCr[a, b] turns out to be a Banach space when it is endowed with the norm

‖ f ‖r = sup
{
| fr,{tk}(t)| : t ∈ [a, b]

}
= max

k=0,...,p

{
sup{(t− tk)

r| f (t)| : t ∈ (tk, tk+1]}
}

.

If r = 0, then PCr[a, b] is reduced to PC[a, b] as defined in [4, 14].

Definition 2.1. ([19, 20]). The Riemann–Liouville fractional primitive of order δ > 0 of a func-
tion f : (0, 1]→ R is given by

Iδ
0 f (t) =

1
Γ(δ)

∫ t

0
(t− τ)δ−1 f (τ)dτ,

provided that the right-hand side is pointwise defined on (0, 1]. Here, Γ is the classical Gamma
function.

For instance, Iδ
0 exists for all δ > 0, when f ∈ C((0, 1]) ∩ L1

loc(0, 1]; note also that when
f ∈ C[0, 1], then Iδ

0 f ∈ C[0, 1] and moreover Iδ
0 f (0) = 0.

Recall that the law of composition Iδ Iµ = Iδ+µ holds for all δ, µ > 0.

Definition 2.2. ([19, 20]). The Riemann–Liouville fractional derivative of order 0 < δ < 1 of a
function f : (0, 1]→ R is given by

Dδ f (t) =
1

Γ(1− δ)

d
dt

∫ t

0
(t− τ)−δ f (τ)dτ

=
d
dt

I1−δ
0 f (t),

provided the right-hand side is pointwise defined on (0, 1].

We have Dδ Iδ f = f for all f ∈ C(0, 1] ∩ L1
loc(0, 1].

Lemma 2.3. ([3, 12]) Let 0 < δ < 1. The fractional differential equation

Dδu = 0, t ∈ [0, 1]

has as solution u(t) = ctδ−1, where c is a real constant.
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From this lemma, we deduce the following law of composition.

Proposition 2.4. Assume that f ∈ C(0, 1] ∩ L1
loc(0, 1] with a fractional derivative of order 0 < δ < 1

that belongs to C(0, 1] ∩ L1
loc(0, 1]. Then

IδDδ f (t) = f (t) + ctδ−1

for any c ∈ R.

In this work, we also need the following concepts and properties of fractional primitives
and derivatives.

Definition 2.5. ([12, 20]). The Riemann–Liouville fractional primitive of order δ > 0 of a func-
tion f : (0, 1]→ R, Iδ

a+ f , where 0 ≤ a < 1, is given by

Iδ
a+ f (t) =

1
Γ(δ)

∫ t

a
(t− τ)δ−1 f (τ)dτ, t > a,

provided that the right-hand side is pointwise defined on (a, 1].

Definition 2.6. ([12, 20]). The Riemann–Liouville fractional derivative of order 0 < δ < 1 of a
function f : (0, 1]→ R, Dδ

a+ f , 0 ≤ a < 1, is given by

Dδ
a+ f (t) =

1
Γ(1− δ)

d
dt

∫ t

a
(t− τ)−δ f (τ) dτ, t > a,

provided that the right-hand side is pointwise defined on (a, 1].

An issue which is interesting to our study is the behavior of the fractional primitives and
derivatives over polynomials, deduced from the following properties.

Proposition 2.7. ([12, 20]). If δ ≥ 0 and β > 0, then

Iδ
a+(t− a)β−1 =

Γ(β)

Γ(β + δ)
(t− a)β+δ−1, (δ > 0)

Dδ
a+(t− a)β−1 =

Γ(β)

Γ(β− δ)
(t− a)β−δ−1, (δ ≥ 0).

In particular, the fractional derivative of a constant function is not zero:

Dδ
a+1 =

1
Γ(1− δ)

(t− a)−δ, (δ ≥ 0).

Moreover, for j = 1, 2, . . . , [δ] + 1,
Dδ

a+(t− a)δ−j = 0.

Concerning the impulsive problem of interest, the authors of [23] study the existence of
solution to the problem

Dδu(t)− λu(t) = f (t, u(t)), t ∈ J := (0, 1], t 6= t1, 0 < δ < 1, (2.1)

lim
t→0+

t1−δu(t) = u(1), (2.2)

lim
t→t+1

(t− t1)
1−δ(u(t)− u(t1)) = I(u(t1)), (2.3)
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where Dδ is the standard Riemann–Liouville fractional derivative, f is continuous at every
point (t, u) ∈ J0 ×R, J0 = J \ {t1}, 0 < t1 < 1, I ∈ C(R, R), λ ∈ R and λ 6= 0. They provide
an integral characterization of the solutions to problem (2.1)–(2.3) as the fixed points of the
mapping A given by

(Ax)(t) =
∫ 1

0
Gλ,δ(t, s) f (s, x(s)) ds + Γ(δ)Gλ,δ(t, t1)I(x(t1)),

for a certain Green’s function Gλ,δ, and derive sufficient conditions for the existence of a unique
solution. Although the approach of using integral formulations is important to the solvability
of impulsive problems for fractional differential equations, the difficulty is that the solution
to (2.1)–(2.3) is expected to be in the space PC1−δ([0, 1]) and, hence, the use of the fractional
derivative of u, Dδ

0u, is combined with the possible existence of an ‘infinite’ jump of u at a point
located inside the interval of interest. This produces that, for x ∈ PC1−δ([0, 1]), the function s→
f (s, x(s)) is not necessarily continuous on (0, 1], due to the assumptions on the nonlinearity f .

In this paper, we propose a new formulation for the impulsive problem for fractional differ-
ential equations of Riemann–Liouville type, in terms of problem (1.1)–(1.3) and study, through
a different procedure, the existence of solution to this new problem.

We remark that the assumptions imposed in this paper on function f , namely the continuity
of f on (tk, tk+1]×R, k = 0, . . . , p, and hypothesis

(H) for every k = 0, . . . , p and v ∈ C(tk, tk+1] such that the limit limt→t+k
v(t) exists and is finite,

then there exists the (finite) limit limt→t+k
f (t, (t− tk)

δ−1v(t)),

guarantee the validity of the following property:

for every u ∈ PC1−δ[0, 1], the function t→ f (t, u(t)) belongs to PC[0, 1].

Indeed, for a fixed u ∈ PC1−δ[0, 1], the function t1−δu(t) is continuous on (0, t1], so that u(t)
is also continuous on (0, t1], thus the continuity of f (t, u(t)) on (0, t1] follows. On the other
hand, for k = 1, . . . , p, (t− tk)

1−δu(t) is continuous on (tk, tk+1], hence u(t) and f (t, u(t)) are
continuous on (tk, tk+1], by the continuity properties on f . Besides, for k = 0, . . . , p, the limit

lim
t→t+k

f (t, u(t)) = lim
t→t+k

f (t, (t− tk)
δ−1(t− tk)

1−δu(t))

exists and it is finite, due to the hypotheses on f and the finiteness of the limit

lim
t→t+k

(t− tk)
1−δu(t).

It is obvious that these restrictions on f are fulfilled for the nonlinearity in Example 4.1 [23].

3 Problem with a single impulse point

For simplicity, we focus our attention on the study of the problem

Dδ
0u(t)− λu(t) = f (t, u(t)), t ∈ (0, t1), (3.1)

Dδ
t1+u(t)− λu(t) = f (t, u(t)), t ∈ (t1, 1), (3.2)

lim
t→t+1

(t− t1)
1−δ(u(t)− u(t1)) = I(u(t1)), (3.3)
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lim
t→0+

t1−δu(t) = u(1), (3.4)

where 0 < δ < 1, 0 = t0 < t1 < 1, Dδ
0 = Dδ

0+, Dδ
t1+

represent the standard Riemann–Liouville
fractional derivatives, I ∈ C(R, R), λ ∈ R, λ 6= 0 and f is continuous at every point (t, u) ∈
(tk, tk+1]×R, k = 0, 1, and satisfying the restriction (H) concerning its behavior on the limit at
the instants t = 0 and t = t1, that is:

• for every function v ∈ C(0, t1] such that the limit limt→0+ v(t) exists and it is finite, then
there exists the (finite) limit limt→0+ f (t, tδ−1v(t)); and

• for every function v ∈ C(t1, 1] such that the limit limt→t+1
v(t) exists and it is finite, then

there exists the (finite) limit limt→t+1
f (t, (t− t1)

δ−1v(t)).

The space of solutions will be the set PC1−δ[0, 1] of functions f : [0, 1] −→ R such that f1−δ,t1

is continuous except maybe at t = t1, where it is left-continuous and has finite right-hand limit.

3.1 Some existence and characterization results

The following lemma is useful for the study of the solutions to (3.1)–(3.4).

Lemma 3.1. Let 0 < δ < 1, 0 ≤ a < b, σ ∈ C[a, b] and c ∈ R. Then the unique solution to problem

Dδ
a+u(t)− λu(t) = σ(t), t ∈ (a, b), (3.5)

lim
t→a+

(t− a)1−δ(u(t)− u(a)) = c, (3.6)

is given, for t ∈ (a, b], by

u(t) = cΓ(δ)(t− a)δ−1Eδ,δ(λ(t− a)δ) +
∫ t

a
(t− s)δ−1Eδ,δ

(
λ(t− s)δ

)
σ(s) ds. (3.7)

Proof. Similar to the results in [5]. Obviously, these considerations provide the existence of
solution to problem (3.5)–(3.6). Concerning the uniqueness of solution to (3.5)–(3.6), we refer
to the results in [12], where the following general nonlinear fractional differential equation is
considered

(Dδ
a+y)(x) = f (x, y(x)), <(δ) > 0, x > a,

which admits the particular case f : (a, b] ×R −→ R, f (x, y) = λy + σ(x). In this reference
[12], the equivalence between the Cauchy type problem for the above-mentioned nonlinear
differential equation and a Volterra integral equation is proved (see Theorems 3.1 and 3.10 [12]
and also Theorems 1 and 2 [11]). This equivalence is used to prove the uniqueness of solution
to the Cauchy problem by adding the Lipschitz type condition (see (3.2.15) [12])

| f (x, y1)− f (x, y2)| ≤ A|y1 − y2|, x ∈ (a, b], y1, y2 ∈ G,

where A > 0 and G is an open set in R, condition which is trivially fulfilled by f (x, y) =

λy + σ(x). We refer to Theorems 3.3 and 3.11 [12] for these existence and uniqueness results.
On the other hand, in [12, Section 3.3.3], the weighted Cauchy problem is considered for the
case 0 < δ < 1, proving the existence and uniqueness of solution to the weighted Cauchy
problem accordingly by using the Lipschitz condition (see [12, Theorem 3.12]).
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We also mention the monograph [19], where the fractional Green’s function for a differential
equation with fractional order and constant coefficients is obtained, getting an expression close
to the solution to the homogeneous linear differential equation studied in [5] (see [5, Eq. (3.16)]).

Lemma 3.2. Let 0 < δ < 1, σ ∈ PC[0, 1], and c0, c1 ∈ R. Then the unique solution to problem

Dδ
0+u(t)− λu(t) = σ(t), t ∈ (0, t1), (3.8)

Dδ
t1+u(t)− λu(t) = σ(t), t ∈ (t1, 1), (3.9)

lim
t→0+

t1−δ(u(t)− u(0)) = c0, (3.10)

lim
t→t+1

(t− t1)
1−δ(u(t)− u(t1)) = c1, (3.11)

is given, for t ∈ (0, t1], by

u(t) = c0Γ(δ)tδ−1Eδ,δ(λtδ) +
∫ t

0
(t− s)δ−1Eδ,δ

(
λ(t− s)δ

)
σ(s) ds (3.12)

and, for t ∈ (t1, 1], by

u(t) = c1Γ(δ)(t− t1)
δ−1Eδ,δ(λ(t− t1)

δ) +
∫ t

t1

(t− s)δ−1Eδ,δ

(
λ(t− s)δ

)
σ(s) ds. (3.13)

Proof. Obvious from Lemma 3.1.

Next, we consider the existence of solution to problem (3.1)–(3.4), for a function f which is
independent of the second variable, that is, f (t, u) = σ(t), as follows:

Dδ
0u(t)− λu(t) = σ(t), t ∈ (0, t1), (3.14)

Dδ
t1+u(t)− λu(t) = σ(t), t ∈ (t1, 1), (3.15)

lim
t→t+1

(t− t1)
1−δ(u(t)− u(t1)) = I(u(t1)), (3.16)

lim
t→0+

t1−δu(t) = u(1), (3.17)

where, for the rest of the paper, σ ∈ PC[0, 1] is piecewise continuous on [0, 1], and thus, allow-
ing perhaps finite jump discontinuities at the impulse instants, in this case t1.

Lemma 3.3. Problem (3.14)–(3.16) joint to the condition

lim
t→0+

t1−δu(t) = c0 (3.18)

has a unique solution u(t) given by

u(t) =


c0Γ(δ)tδ−1Eδ,δ(λtδ) +

∫ t

0
(t− s)δ−1Eδ,δ

(
λ(t− s)δ

)
σ(s) ds, t ∈ (0, t1],

I(u(t1))Γ(δ)(t− t1)
δ−1Eδ,δ(λ(t− t1)

δ)

+
∫ t

t1

(t− s)δ−1Eδ,δ

(
λ(t− s)δ

)
σ(s) ds, t ∈ (t1, 1].

(3.19)
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Proof. From the study in [5] (also Lemma 3.1 or Lemma 3.2), the solution to (3.14) joint to
condition (3.18) is given by

u(t) = c0Γ(δ)tδ−1Eδ,δ(λtδ) +
∫ t

0
(t− s)δ−1Eδ,δ

(
λ(t− s)δ

)
σ(s) ds. (3.20)

Hence I(u(t1)) = I
(

c0Γ(δ)tδ−1
1 Eδ,δ(λtδ

1) +
∫ t1

0 (t1 − s)δ−1Eδ,δ
(
λ(t1 − s)δ

)
σ(s) ds

)
. Next, the so-

lution to the equation (3.15)–(3.16) is obtained by applying Lemma 3.1 (or Lemma 3.2).

The integral characterization of the solution to the impulsive equation subject to an ‘initial
condition’ given in Lemma 3.3 allows to obtain some conclusions for the periodic boundary
value problem (3.14)–(3.17). In this sense, taking an appropriate ‘initial value’ c0 for its replace-
ment in expression (3.19), we can derive some immediate consequences concerning existence
and uniqueness results for problem (3.14)–(3.17). The idea is to find which are the adequate
numbers c0 ∈ R for which the solution to problem (3.14)–(3.16) subject to the initial condition
limt→0+ t1−δu(t) = c0 satisfies that u(1) = c0. These appropriate choices for c0 are those which
would make true the periodic boundary condition (3.17) and the corresponding solution can
also be calculated by using (3.19).

Lemma 3.4. Consider the function φ defined by

c0 −→ φ(c0) = R(c0)Γ(δ)(1− t1)
δ−1Eδ,δ(λ(1− t1)

δ) +
∫ 1

t1

(1− s)δ−1Eδ,δ

(
λ(1− s)δ

)
σ(s) ds,

where
R(c0) = I

(
c0Γ(δ)tδ−1

1 Eδ,δ(λtδ
1) +

∫ t1

0
(t1 − s)δ−1Eδ,δ

(
λ(t1 − s)δ

)
σ(s) ds

)
.

Problem (3.14)–(3.17) has solutions if and only if Fix(φ) is nonempty. In that case, the solutions to
problem (3.14)–(3.17) are given by the expression (3.19), where c0 ∈ R is any fixed point of the mapping
φ.

Note that, in the previous lemma, φ(c0) coincides with u(1) for the solution u in (3.19). This
way, the fixed points of φ are those ‘initial conditions’ for which u(1) = c0. This way, to solve
the periodic boundary value problem, we just write u(1) as a function of c0, which is possible
by using the composition of several functions, u(1) = ψ(I(ϕ(c0))), being ψ, ϕ linear and I the
impulse function.

Proposition 3.5. If the impulse function I is linear, I(x) = µx, for some µ ∈ R, and

K := 1− µ(Γ(δ))2tδ−1
1 Eδ,δ(λtδ

1)(1− t1)
δ−1Eδ,δ(λ(1− t1)

δ) 6= 0,

then the periodic boundary value problem (3.14)–(3.17) has a unique solution given by (3.19), where

c0 =
µ

K
Γ(δ)(1− t1)

δ−1Eδ,δ(λ(1− t1)
δ)
∫ t1

0
(t1 − s)δ−1Eδ,δ

(
λ(t1 − s)δ

)
σ(s)ds

+
1
K

∫ 1

t1

(1− s)δ−1Eδ,δ

(
λ(1− s)δ

)
σ(s)ds.

Proof. It is deduced from the identity φ(c0) = c0, where φ is given in Lemma 3.4, that is,

I
(

c0Γ(δ)tδ−1
1 Eδ,δ(λtδ

1) +
∫ t1

0
(t1 − s)δ−1Eδ,δ

(
λ(t1 − s)δ

)
σ(s) ds

)
×Γ(δ)(1− t1)

δ−1Eδ,δ(λ(1− t1)
δ) +

∫ 1

t1

(1− s)δ−1Eδ,δ

(
λ(1− s)δ

)
σ(s) ds

= c0,
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which is equivalent to

c0

[
1− µ(Γ(δ))2tδ−1

1 Eδ,δ(λtδ
1)(1− t1)

δ−1Eδ,δ(λ(1− t1)
δ)
]

= µΓ(δ)(1− t1)
δ−1Eδ,δ(λ(1− t1)

δ)
∫ t1

0
(t1 − s)δ−1Eδ,δ

(
λ(t1 − s)δ

)
σ(s) ds

+
∫ 1

t1

(1− s)δ−1Eδ,δ

(
λ(1− s)δ

)
σ(s) ds

and, under the hypotheses imposed, the solution to the boundary value problem is uniquely
determined.

However, if K = 0, then the boundary value problem is solvable if and only if the right-hand
side in the previous expression is null, obtaining an infinite number of solutions corresponding
to any value of c0 ∈ R. This is a problem at resonance and will be considered in the future.

Remark 3.6. The case µ = 1 (I(x) = x, for every x ∈ R) corresponds, in the ordinary case
δ = 1, to a nonimpulsive problem u(t1+) = u(t1). The peculiarities of fractional differential
equations force the non-continuous behavior of the solution at t = t1, even for µ = 1, since

lim
t→t+1

(t− t1)
1−δu(t) = u(t1).

Remark 3.7. For I nonlinear, problem (3.14)–(3.17) is also nonlinear and, to deduce the exis-
tence of solution, we prove the existence of fixed points for function φ defined in Lemma 3.4
without obtaining their explicit expression.

Lemma 3.8. If there exists l > 0 such that |I(u)− I(v)| ≤ l|u− v|, ∀t ∈ [0, 1] and u, v ∈ R and,
moreover,

l (Γ(δ))2 tδ−1
1 |Eδ,δ(λtδ

1)| (1− t1)
δ−1|Eδ,δ(λ(1− t1)

δ)| < 1, (3.21)

then problem (3.14)–(3.17) has a unique solution given by (3.19), for c0 ∈ R the unique fixed point of
the mapping φ defined in Lemma 3.4.

Proof. For b0, c0 ∈ R, we get, from the definitions of φ,R in Lemma 3.4,

|φ(b0)− φ(c0)| = |R(b0)−R(c0)| Γ(δ)(1− t1)
δ−1|Eδ,δ(λ(1− t1)

δ)|
≤ l|b0 − c0| (Γ(δ))2 tδ−1

1 |Eδ,δ(λtδ
1)| (1− t1)

δ−1|Eδ,δ(λ(1− t1)
δ)|

and the conclusion follows.

Lemma 3.9. If I is continuous and bounded, then problem (3.14)–(3.17) has at least one solution.

Proof. Note that φ in Lemma 3.4 is a continuous mapping. Let m > 0 be such that |I(u)| ≤
m, ∀ u ∈ R and choose A > 0 such that

A ≥ mΓ(δ)(1− t1)
δ−1|Eδ,δ(λ(1− t1)

δ)|+
∣∣∣∣∫ 1

t1

(1− s)δ−1Eδ,δ

(
λ(1− s)δ

)
σ(s) ds

∣∣∣∣ .

Then, the restriction of φ to the nonempty compact and convex set [−A, A] takes values in
[−A, A] since, for c0 ∈ [−A, A],

|φ(c0)| ≤ |R(c0)|Γ(δ)(1− t1)
δ−1|Eδ,δ(λ(1− t1)

δ)|+
∣∣∣∣∫ 1

t1

(1− s)δ−1Eδ,δ

(
λ(1− s)δ

)
σ(s) ds

∣∣∣∣
≤ mΓ(δ)(1− t1)

δ−1|Eδ,δ(λ(1− t1)
δ)|+

∣∣∣∣∫ 1

t1

(1− s)δ−1Eδ,δ

(
λ(1− s)δ

)
σ(s) ds

∣∣∣∣ ≤ A.
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In consequence, by Schauder’s theorem, there exists a fixed point c0 of φ in [−A, A], which
gives a solution to (3.14)–(3.17) through (3.19).

Lemma 3.10. If I is continuous and there exists A > 0 satisfying

mΓ(δ)(1− t1)
δ−1|Eδ,δ(λ(1− t1)

δ)|+
∣∣∣∣∫ 1

t1

(1− s)δ−1Eδ,δ

(
λ(1− s)δ

)
σ(s) ds

∣∣∣∣ ≤ A,

where m > 0 is such thatR([−A, A]) ⊆ [−m, m] (R given in Lemma 3.4), then problem (3.14)–(3.17)
has at least one solution.

Proof. Note that, from the continuity of I,R([−B, B]) is a compact set in R, for every B ∈ R.

To deal with a problem where the nonlinearity depends on the second variable, we could
extend Lemma 3.3 to the context of the more general type of right-hand side f (t, u(t)) in the
equation, as follows:

Lemma 3.11. Solutions to problem (3.1)–(3.3) joint to the condition (3.18) are the solutions of the
integral equation

u(t) =


c0Γ(δ)tδ−1Eδ,δ(λtδ) +

∫ t

0
(t− s)δ−1Eδ,δ

(
λ(t− s)δ

)
f (s, u(s)) ds, t ∈ (0, t1],

I(u(t1))Γ(δ)(t− t1)
δ−1Eδ,δ(λ(t− t1)

δ)

+
∫ t

t1

(t− s)δ−1Eδ,δ

(
λ(t− s)δ

)
f (s, u(s)) ds, t ∈ (t1, 1].

(3.22)

However, the approach followed previously is not useful for equations with a general right-
hand side depending on u, since it is not possible to avoid this dependence in the definition of
the mapping φ.

For a different approach to the problem which will allow to deal with a nonlinearity f , we
first consider the periodic boundary value problem

Dδ
0u(t)− λu(t) = σ(t), t ∈ (0, t1), (3.23)

Dδ
t1+u(t)− λu(t) = σ(t), t ∈ (t1, 1), (3.24)

lim
t→t+1

(t− t1)
1−δu(t) = c1, (3.25)

lim
t→0+

t1−δu(t) = u(1), (3.26)

whose solution is given by

u(t) =


c0Γ(δ)tδ−1Eδ,δ(λtδ) +

∫ t

0
(t− s)δ−1Eδ,δ

(
λ(t− s)δ

)
σ(s) ds, t ∈ (0, t1],

c1Γ(δ)(t− t1)
δ−1Eδ,δ(λ(t− t1)

δ)

+
∫ t

t1

(t− s)δ−1Eδ,δ

(
λ(t− s)δ

)
σ(s) ds, t ∈ (t1, 1],

(3.27)

where

c0 = c1Γ(δ)(1− t1)
δ−1Eδ,δ(λ(1− t1)

δ) +
∫ 1

t1

(1− s)δ−1Eδ,δ

(
λ(1− s)δ

)
σ(s) ds. (3.28)

Next, we write the solution (3.27) in integral form, obtaining the Green’s function associated to
the boundary value problem (3.23)–(3.26).
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Proposition 3.12. The solution to (3.23)–(3.26) can be written as

u(t) = c1Γ(δ)Gλ,δ(t, t1) +
∫ 1

0
Gλ,δ(t, s)σ(s) ds, t ∈ (0, 1], (3.29)

where Gλ,δ(t, s) is defined, for (t, s) ∈ (0, 1]× [0, 1], by

Gλ,δ(t, s) =


Γ(δ)tδ−1Eδ,δ

(
λtδ
)
(1− s)δ−1Eδ,δ

(
λ(1− s)δ

)
, if 0 < t ≤ t1 ≤ s < 1,

(t− s)δ−1Eδ,δ
(
λ(t− s)δ

)
, if 0 < t ≤ t1, 0 ≤ s < t,

(t− s)δ−1Eδ,δ
(
λ(t− s)δ

)
, if t1 < t ≤ 1, t1 ≤ s < t,

0, otherwise.

(3.30)

Proof. It is deduced from (3.27) and (3.28), taking into account that

Gλ,δ(t, t1) =

{
Γ(δ)tδ−1Eδ,δ

(
λtδ
)
(1− t1)

δ−1Eδ,δ
(
λ(1− t1)

δ
)

, if 0 < t ≤ t1,

(t− t1)
δ−1Eδ,δ

(
λ(t− t1)

δ
)

, if t1 < t ≤ 1.

Lemma 3.13. The solutions to problem (3.1)–(3.4) are characterized by

u(t) = I(u(t1))Γ(δ)Gλ,δ(t, t1) +
∫ 1

0
Gλ,δ(t, s) f (s, u(s)) ds, t ∈ (0, 1],

so that they are the fixed points of the mapping B defined as

[Bu](t) = I(u(t1))Γ(δ)Gλ,δ(t, t1) +
∫ 1

0
Gλ,δ(t, s) f (s, u(s)) ds, t ∈ (0, 1], (3.31)

where Gλ,δ is given by (3.30).

Remark 3.14. The mapping B has an expression similar to the operator A defined in equation
(3.2) [23], but the Green’s function Gλ,δ is different.

Remark 3.15. From (3.27) and (3.28), it is clear that the expression of the mapping B can be
expanded as

[Bu](t) = I(u(t1))(Γ(δ))2tδ−1Eδ,δ(λtδ)(1− t1)
δ−1Eδ,δ(λ(1− t1)

δ)

+
∫ t

0
(t− s)δ−1Eδ,δ

(
λ(t− s)δ

)
f (s, u(s)) ds

+ Γ(δ)tδ−1Eδ,δ(λtδ)
∫ 1

t1

(1− s)δ−1Eδ,δ

(
λ(1− s)δ

)
f (s, u(s)) ds, t ∈ (0, t1],

(3.32)

[Bu](t) = I(u(t1))Γ(δ)(t− t1)
δ−1Eδ,δ(λ(t− t1)

δ)

+
∫ t

t1

(t− s)δ−1Eδ,δ

(
λ(t− s)δ

)
f (s, u(s)) ds, t ∈ (t1, 1].

(3.33)
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3.2 Analysis of the nonlinear problem

In this section, we shall be concerned with the existence and uniqueness of solution to the
nonlinear impulsive boundary value problem (3.1)–(3.4). To this end, we use the following
fixed point theorem of Schaeffer.

Theorem 3.16. Assume X to be a normed linear space, and let the operator F : X → X be compact.
Then either

i) the operator F has a fixed point in X, or

ii) the set E = {u ∈ X : u = µF(u), µ ∈ (0, 1)} is unbounded.

We define the operator B : PC1−δ[0, 1]→ PC1−δ[0, 1] by expression (3.31) in such a way that
problem (3.1)–(3.4) has solutions if and only if the operator equation Bu = u has fixed points.

Lemma 3.17. Suppose that the following conditions hold:

(H1) There exist positive constants M and m such that

| f (t, u)| ≤ M, |I(u)| ≤ m, ∀t ∈ [0, 1], u ∈ R. (3.34)

(H2) There exist positive constants k and l such that

| f (t, u)− f (t, v)| ≤ k|u− v|, |I(u)− I(v)| ≤ l|u− v|, ∀t ∈ [0, 1], u, v ∈ R. (3.35)

Then the operator B defined in Lemma 3.13 is well-defined, continuous and compact.

Proof. (a) First, we prove that the mapping B is well-defined, that is, Bu ∈ PC1−δ[0, 1], for
every u ∈ PC1−δ[0, 1]. We take u ∈ PC1−δ[0, 1] and prove that t1−δB(u)(t)|[0,t1] ∈ C[0, t1], (t−
t1)

1−δB(u)(t)|(t1,1] ∈ C(t1, 1] and the existence of the limit

lim
t→t+1

(t− t1)
1−δB(u)(t).

Indeed, for any 0 < τ1 < τ2 ≤ t1, we have∣∣∣τ1−δ
1 B(u)(τ1)− τ1−δ

2 B(u)(τ2)
∣∣∣→ 0, as |τ1 − τ2| → 0,

which is derived from (H1) and the inequality∣∣∣τ1−δ
1 B(u)(τ1)− τ1−δ

2 B(u)(τ2)
∣∣∣

=

∣∣∣∣τ1−δ
1 I(u(t1))Γ(δ)Gλ,δ(τ1, t1) + τ1−δ

1

∫ 1

0
Gλ,δ(τ1, s) f (s, u(s)) ds

−τ1−δ
2 I(u(t1))Γ(δ)Gλ,δ(τ2, t1)− τ1−δ

2

∫ 1

0
Gλ,δ(τ2, s) f (s, u(s)) ds

∣∣∣∣
≤ mΓ(δ)

∣∣∣τ1−δ
1 Gλ,δ(τ1, t1)− τ1−δ

2 Gλ,δ(τ2, t1)
∣∣∣

+

∣∣∣∣τ1−δ
1

∫ 1

0
Gλ,δ(τ1, s) f (s, u(s)) ds− τ1−δ

2

∫ 1

0
Gλ,δ(τ2, s) f (s, u(s)) ds

∣∣∣∣
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≤ m(Γ(δ))2
∣∣∣Eδ,δ

(
λτδ

1

)
− Eδ,δ

(
λτδ

2

)∣∣∣ (1− t1)
δ−1
∣∣∣Eδ,δ

(
λ(1− t1)

δ
)∣∣∣

+

∣∣∣∣τ1−δ
1

∫ τ1

0
(τ1 − s)δ−1Eδ,δ

(
λ(τ1 − s)δ

)
f (s, u(s)) ds

−τ1−δ
2

∫ τ1

0
(τ2 − s)δ−1Eδ,δ

(
λ(τ2 − s)δ

)
f (s, u(s)) ds

∣∣∣∣
+

∣∣∣∣τ1−δ
2

∫ τ2

τ1

(τ2 − s)δ−1Eδ,δ

(
λ(τ2 − s)δ

)
f (s, u(s)) ds

∣∣∣∣
+Γ(δ)

∣∣∣∣∫ 1

t1

Eδ,δ

(
λτδ

1

)
(1− s)δ−1Eδ,δ

(
λ(1− s)δ

)
f (s, u(s)) ds

−
∫ 1

t1

Eδ,δ

(
λτδ

2

)
(1− s)δ−1Eδ,δ

(
λ(1− s)δ

)
f (s, u(s)) ds

∣∣∣∣
≤ m(Γ(δ))2

∣∣∣Eδ,δ

(
λτδ

1

)
− Eδ,δ

(
λτδ

2

)∣∣∣ (1− t1)
δ−1
∣∣∣Eδ,δ

(
λ(1− t1)

δ
)∣∣∣

+M
∫ τ1

0

∣∣∣τ1−δ
1 (τ1 − s)δ−1Eδ,δ

(
λ(τ1 − s)δ

)
− τ1−δ

2 (τ2 − s)δ−1Eδ,δ

(
λ(τ2 − s)δ

)∣∣∣ ds

+Mτ1−δ
2

∫ τ2

τ1

(τ2 − s)δ−1
∣∣∣Eδ,δ

(
λ(τ2 − s)δ

)∣∣∣ ds

+M
∣∣∣Eδ,δ

(
λτδ

1

)
− Eδ,δ

(
λτδ

2

)∣∣∣ Γ(δ)
∫ 1

t1

(1− s)δ−1
∣∣∣Eδ,δ

(
λ(1− s)δ

)∣∣∣ ds.

It is obvious that the first term on the right-hand side of the previous inequality tends to zero
as |τ1− τ2| → 0. From the calculations in section (a) of Lemma 4.1 proof in [5], the second term
tends to zero as |τ1 − τ2| → 0 and, similarly to the calculations in (a) (proof of Lemma 4.1 in
[5]) and those in [23], the two other terms also tend to zero as |τ1 − τ2| → 0 due to∫ 1

t1

(1− s)δ−1
∣∣∣Eδ,δ

(
λ(1− s)δ

)∣∣∣ ds ≤ Eδ,δ+1 (|λ|) (3.36)

and ∫ τ2

τ1

(τ2 − s)δ−1
∣∣∣Eδ,δ

(
λ(τ2 − s)δ

)∣∣∣ ds ≤
∞

∑
j=0

|λ|j
Γ(δj + δ)

∫ τ2

τ1

(τ2 − s)δj+δ−1 ds

=
∞

∑
j=0

|λ|j
Γ(δj + δ)

(τ2 − τ1)
δj+δ

δj + δ
=(τ2 − τ1)

δ Eδ,δ+1

(
|λ|(τ2 − τ1)

δ
)

.
(3.37)

Besides, for τ1, τ2 ∈ (t1, 1] with τ1 < τ2, we prove that∣∣∣(τ1 − t1)
1−δB(u)(τ1)− (τ2 − t1)

1−δB(u)(τ2)
∣∣∣

tends to 0 as |τ1 − τ2| → 0. Indeed, for t1 < τ1 < τ2 ≤ 1, from (H1) and following the
calculations in Lemma 3.1 in [23], we get

∣∣∣(τ1 − t1)
1−δB(u)(τ1)− (τ2 − t1)

1−δB(u)(τ2)
∣∣∣

=

∣∣∣∣(τ1 − t1)
1−δ I(u(t1))Γ(δ)Gλ,δ(τ1, t1) + (τ1 − t1)

1−δ
∫ 1

0
Gλ,δ(τ1, s) f (s, u(s)) ds

−(τ2 − t1)
1−δ I(u(t1))Γ(δ)Gλ,δ(τ2, t1)− (τ2 − t1)

1−δ
∫ 1

0
Gλ,δ(τ2, s) f (s, u(s)) ds

∣∣∣∣
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≤ mΓ(δ)
∣∣∣(τ1 − t1)

1−δGλ,δ(τ1, t1)− (τ2 − t1)
1−δGλ,δ(τ2, t1)

∣∣∣
+M

∫ 1

0

∣∣∣(τ1 − t1)
1−δGλ,δ(τ1, s)− (τ2 − t1)

1−δGλ,δ(τ2, s)
∣∣∣ ds.

At this point, the calculations differ from [23], since the Green’s function is defined in (3.30),
then ∣∣∣(τ1 − t1)

1−δB(u)(τ1)− (τ2 − t1)
1−δB(u)(τ2)

∣∣∣
≤ mΓ(δ)

∣∣∣Eδ,δ

(
λ(τ1 − t1)

δ
)
− Eδ,δ

(
λ(τ2 − t1)

δ
)∣∣∣

+M
∫ τ1

t1

∣∣∣(τ1 − t1)
1−δ(τ1 − s)δ−1Eδ,δ

(
λ(τ1 − s)δ

)
−(τ2 − t1)

1−δ(τ2 − s)δ−1Eδ,δ

(
λ(τ2 − s)δ

)∣∣∣ ds

+M(τ2 − t1)
1−δ

∫ τ2

τ1

(τ2 − s)δ−1
∣∣∣Eδ,δ

(
λ(τ2 − s)δ

)∣∣∣ ds.

Again, the first term in the right-hand side of the previous inequality tends to zero as |τ1 −
τ2| → 0 and analogously with the last term due to (3.37). Finally, the integral term (multiplying
M) is bounded by

(τ1 − t1)
1−δ

∫ τ1

t1

∣∣∣(τ1 − s)δ−1Eδ,δ

(
λ(τ1 − s)δ

)
− (τ2 − s)δ−1Eδ,δ

(
λ(τ2 − s)δ

)∣∣∣ ds

+
∣∣∣(τ1 − t1)

1−δ − (τ2 − t1)
1−δ
∣∣∣ ∫ τ1

t1

(τ2 − s)δ−1
∣∣∣Eδ,δ

(
λ(τ2 − s)δ

)∣∣∣ ds.

It is obvious that
∣∣(τ1 − t1)

1−δ − (τ2 − t1)
1−δ
∣∣ tends to zero as |τ1 − τ2| → 0 and, similarly to

(3.37), ∫ τ1

t1

(τ2 − s)δ−1
∣∣∣Eδ,δ

(
λ(τ2 − s)δ

)∣∣∣ ds

≤
∫ τ2

t1

(τ2 − s)δ−1
∣∣∣Eδ,δ

(
λ(τ2 − s)δ

)∣∣∣ ds ≤ (τ2 − t1)
δ Eδ,δ+1

(
|λ|(τ2 − t1)

δ
)

≤ (1− t1)
δ Eδ,δ+1

(
|λ|(1− t1)

δ
)

.

On the other hand,∫ τ1

t1

∣∣∣(τ1 − s)δ−1Eδ,δ

(
λ(τ1 − s)δ

)
− (τ2 − s)δ−1Eδ,δ

(
λ(τ2 − s)δ

)∣∣∣ ds

≤
∫ τ1

0

∣∣∣(τ1 − s)δ−1Eδ,δ

(
λ(τ1 − s)δ

)
− (τ2 − s)δ−1Eδ,δ

(
λ(τ2 − s)δ

)∣∣∣ ds

=
∫ τ1

0

∣∣∣∣∣ ∞

∑
j=0

λj

Γ(δj + δ)

(
(τ1 − s)δj+δ−1 − (τ2 − s)δj+δ−1

)∣∣∣∣∣ ds

≤
∞

∑
j=0

|λ|j
Γ(δj + δ)

∫ τ1

0

∣∣∣(τ1 − s)δj+δ−1 − (τ2 − s)δj+δ−1
∣∣∣ ds,

as justified in [23], estimate which is of the type of the last term in equation (4.8) [5] and,
in consequence, it has limit zero as |τ1 − τ2| → 0 due to inequalities (4.13) and (4.14) in [5]
(analogously to the reasoning in [23]).
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Moreover,

lim
t→t+1

(t− t1)
1−δB(u)(t)

= lim
t→t+1

(
I(u(t1))Γ(δ)Eδ,δ(λ(t− t1)

δ)

+(t− t1)
1−δ

∫ t

t1

(t− s)δ−1Eδ,δ

(
λ(t− s)δ

)
f (s, u(s)) ds

)
.

Similarly to (3.37),∣∣∣∣∫ t

t1

(t− s)δ−1Eδ,δ

(
λ(t− s)δ

)
f (s, u(s)) ds

∣∣∣∣ ≤ M
∫ t

t1

(t− s)δ−1
∣∣∣Eδ,δ

(
λ(t− s)δ

)∣∣∣ ds

≤ M(t− t1)
δ Eδ,δ+1

(
|λ|(t− t1)

δ
)
≤ M(1− t1)

δ Eδ,δ+1

(
|λ|(1− t1)

δ
)

and, in consequence,

lim
t→t+1

(t− t1)
1−δB(u)(t) = I(u(t1))Γ(δ) lim

t→t+1
Eδ,δ(λ(t− t1)

δ) = I(u(t1)).

It is also clear that the limit limt→0+ t1−δB(u)(t) is finite (and equal to B(u)(1)), due to (H1),
the expressions (3.32) (and (3.33)) and the boundedness of the middle term in (3.32):∣∣∣∣∫ t

0
(t− s)δ−1Eδ,δ

(
λ(t− s)δ

)
f (s, u(s)) ds

∣∣∣∣ ≤ M
∫ t

0
(t− s)δ−1

∣∣∣Eδ,δ

(
λ(t− s)δ

)∣∣∣ ds,

where, similarly to the calculations in (4.24) [5], we get, for t ∈ (0, t1],∫ t

0
(t− s)δ−1

∣∣∣Eδ,δ

(
λ(t− s)δ

)∣∣∣ ds ≤
∞

∑
j=0

|λ|j
Γ(δj + δ)

∫ t

0
(t− s)δj+δ−1 ds

=
∞

∑
j=0

|λ|j
Γ(δj + δ)

tδj+δ

δj + δ
= tδ

∞

∑
j=0

(|λ|tδ)j

Γ(δj + δ + 1)

= tδ Eδ,δ+1

(
|λ|tδ

)
≤ tδ

1 Eδ,δ+1

(
|λ|tδ

1

)
≤ Eδ,δ+1 (|λ|) .

(3.38)

Therefore, B is well-defined.
(b) Now, we prove that B is continuous. Similarly to the expression (3.11) in [23], for t ∈
(0, t1],

t1−δ|B(u)(t)−B(v)(t)|

≤ ‖u− v‖1−δ

[
lt1−δtδ−1

1 Γ(δ)|Gλ,δ(t, t1)|+ kt1−δ
∫ t1

0
|Gλ,δ(t, s)|sδ−1 ds

+ kt1−δ
∫ 1

t1

|Gλ,δ(t, s)|(s− t1)
δ−1 ds

]
.

However, the Green’s function is different from that in [23]. Note that, from the expression of
Gλ,δ, we get, for t ∈ (0, t1],

t1−δ|Gλ,δ(t, t1)| = Γ(δ)
∣∣∣Eδ,δ

(
λtδ
)∣∣∣ (1− t1)

δ−1
∣∣∣Eδ,δ

(
λ(1− t1)

δ
)∣∣∣

≤ Γ(δ)(1− t1)
δ−1Eδ,δ

(
|λ|tδ

1

)
Eδ,δ

(
|λ|(1− t1)

δ
)
= F0.

(3.39)
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Moreover, for t ∈ (0, t1],

t1−δ
∫ t1

0
|Gλ,δ(t, s)|sδ−1 ds = t1−δ

∫ t

0
(t− s)δ−1

∣∣∣Eδ,δ

(
λ(t− s)δ

)∣∣∣ sδ−1 ds

≤ t1−δ
∞

∑
j=0

|λ|j
Γ(δj + δ)

∫ t

0
sδ−1(t− s)δj+δ−1 ds = t1−δ

∞

∑
j=0
|λ|jtδj+2δ−1 Γ(δ)

Γ(δj + 2δ)

= tδΓ(δ)
∞

∑
j=0

(|λ|tδ)j

Γ(δj + 2δ)
≤ tδ

1Γ(δ) Eδ,2δ

(
|λ|tδ

)
≤ tδ

1Γ(δ) Eδ,2δ

(
|λ|tδ

1

)
= F1

and

t1−δ
∫ 1

t1

|Gλ,δ(t, s)|(s− t1)
δ−1 ds

= Γ(δ)
∣∣∣Eδ,δ

(
λtδ
)∣∣∣ ∫ 1

t1

(1− s)δ−1
∣∣∣Eδ,δ

(
λ(1− s)δ

)∣∣∣ (s− t1)
δ−1 ds

≤ Γ(δ) Eδ,δ (|λ|) Eδ,δ

(
|λ|(1− t1)

δ
) ∫ 1

t1

(1− s)δ−1(s− t1)
δ−1 ds

= (1− t1)
2δ−1 (Γ(δ))

3

Γ(2δ)
Eδ,δ (|λ|) Eδ,δ

(
|λ|(1− t1)

δ
)
= F2,

where we have used (4.21) in [5] or (3.14) in [23]. Therefore, for t ∈ (0, t1],

t1−δ|B(u)(t)−B(v)(t)| ≤ ‖u− v‖1−δ

[
l tδ−1

1 Γ(δ)F0 + kF1 + kF2

]
.

Similarly to the procedure in [23] but attending to the particularities of the Green’s function,
we get for t ∈ (t1, 1],

(t− t1)
1−δ|B(u)(t)−B(v)(t)|
≤ (t− t1)

1−δ|I(u(t1))− I(v(t1))|Γ(δ)|Gλ,δ(t, t1)|

+(t− t1)
1−δ

∫ 1

0
|Gλ,δ(t, s)| | f (s, u(s))− f (s, v(s))| ds

≤ (t− t1)
1−δl|u(t1)− v(t1)|Γ(δ)|Gλ,δ(t, t1)|+ (t− t1)

1−δ
∫ t

t1

|Gλ,δ(t, s)| k|u(s)− v(s)| ds

≤ ‖u− v‖1−δ

[
(t− t1)

1−δltδ−1
1 Γ(δ)|Gλ,δ(t, t1)|+ k(t− t1)

1−δ
∫ t

t1

|Gλ,δ(t, s)| (s− t1)
δ−1 ds

]
.

Now, we have, for t ∈ (t1, 1],

(t− t1)
1−δ|Gλ,δ(t, t1)| = |Eδ,δ

(
λ(t− t1)

δ
)
| ≤ Eδ,δ

(
|λ|(1− t1)

δ
)

and

(t− t1)
1−δ

∫ t

t1

|Gλ,δ(t, s)| (s− t1)
δ−1 ds

= (t− t1)
1−δ

∫ t

t1

(t− s)δ−1
∣∣∣Eδ,δ

(
λ(t− s)δ

)∣∣∣ (s− t1)
δ−1 ds

≤ (t− t1)
1−δEδ,δ

(
|λ|(t− t1)

δ
) ∫ t

t1

(t− s)δ−1 (s− t1)
δ−1 ds

= (t− t1)
δ (Γ(δ))

2

Γ(2δ)
Eδ,δ

(
|λ|(t− t1)

δ
)
≤ (1− t1)

δ (Γ(δ))
2

Γ(2δ)
Eδ,δ

(
|λ|(1− t1)

δ
)

,
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which implies that

sup
t∈(t1,1]

(t− t1)
1−δ|B(u)(t)−B(v)(t)|

≤ ‖u− v‖1−δ

[
l tδ−1

1 + k(1− t1)
δ Γ(δ)

Γ(2δ)

]
Γ(δ)Eδ,δ

(
|λ|(1− t1)

δ
)

.

This proves that

‖B(u)−B(v)‖1−δ ≤ L‖u− v‖1−δ, u, v ∈ PC1−δ[0, 1],

where

L = max
{

l tδ−1
1 Γ(δ)F0 + kF1 + kF2,

[
l tδ−1

1 + k(1− t1)
δ Γ(δ)

Γ(2δ)

]
Γ(δ)Eδ,δ

(
|λ|(1− t1)

δ
)}

(3.40)

and, in particular, B is continuous.
(c) Next, we prove that B is a compact mapping. Let D be a bounded set in PC1−δ[0, 1].

(i) First, we check that {B(u) : u ∈ D} is a bounded set in PC1−δ[0, 1].
Indeed, for t ∈ (0, t1] and using (H1), we have

t1−δ|B(u)(t)| ≤ t1−δ|I(u(t1))|Γ(δ)|Gλ,δ(t, t1)|+ t1−δ
∫ 1

0
|Gλ,δ(t, s)|| f (s, u(s))| ds

≤ t1−δmΓ(δ)|Gλ,δ(t, t1)|+ Mt1−δ
∫ 1

0
|Gλ,δ(t, s)| ds.

Note that, from (3.39), for t ∈ (0, t1],

t1−δ|Gλ,δ(t, t1)| ≤ Γ(δ)(1− t1)
δ−1Eδ,δ

(
|λ|tδ

1

)
Eδ,δ

(
|λ|(1− t1)

δ
)
= F0

and, moreover,

t1−δ
∫ 1

0
|Gλ,δ(t, s)| ds = t1−δ

∫ t

0
(t− s)δ−1

∣∣∣Eδ,δ

(
λ(t− s)δ

)∣∣∣ ds

+ Γ(δ)
∣∣∣Eδ,δ

(
λtδ
)∣∣∣ ∫ 1

t1

(1− s)δ−1
∣∣∣Eδ,δ

(
λ(1− s)δ

)∣∣∣ ds,
(3.41)

where, from (3.38),

t1−δ
∫ t

0
(t− s)δ−1

∣∣∣Eδ,δ

(
λ(t− s)δ

)∣∣∣ ds

≤ t Eδ,δ+1

(
|λ|tδ

)
≤ t1 Eδ,δ+1

(
|λ|tδ

1

)
≤ Eδ,δ+1 (|λ|)

and an estimate can be provided for the second term in (3.41) by (3.36). Hence

sup
t∈(0,t1]

t1−δ|B(u)(t)|

≤ mΓ(δ)F0 + Mt1 Eδ,δ+1

(
|λ|tδ

1

)
+ MΓ(δ) Eδ,δ

(
|λ|tδ

1

)
Eδ,δ+1 (|λ|) = M1.

(3.42)
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On the other hand, for t ∈ (t1, 1], we have, by (H1),

(t− t1)
1−δ|B(u)(t)| ≤ (t− t1)

1−δ|I(u(t1))| Γ(δ) |Gλ,δ(t, t1)|

+ (t− t1)
1−δ

∫ 1

0
|Gλ,δ(t, s)|| f (s, u(s))| ds

≤ mΓ(δ)(t− t1)
1−δ |Gλ,δ(t, t1)|

+ M(t− t1)
1−δ

∫ 1

0
|Gλ,δ(t, s)| ds

≤ mΓ(δ)Eδ,δ

(
|λ|(1− t1)

δ
)

+ M(t− t1)
1−δ

∫ t

t1

(t− s)δ−1
∣∣∣Eδ,δ

(
λ(t− s)δ

)∣∣∣ ds,

where (t− t1)
1−δ
∫ t

t1
(t− s)δ−1|Eδ,δ

(
λ(t− s)δ

)
| ds is bounded by

(t− t1)
1−δ

∞

∑
j=0

|λ|j
Γ(δj + δ)

∫ t

t1

(t− s)δj+δ−1 ds = (t− t1)
1−δ

∞

∑
j=0

|λ|j
Γ(δj + δ)

(t− t1)
δj+δ

δj + δ

= (t− t1) Eδ,δ+1

(
|λ|(t− t1)

δ
)
≤ (1− t1)Eδ,δ+1

(
|λ|(1− t1)

δ
)
≤ Eδ,δ+1 (|λ|)

and, hence,

sup
t∈(t1,1]

(t− t1)
1−δ|B(u)(t)|

≤ mΓ(δ)Eδ,δ

(
|λ|(1− t1)

δ
)
+ M(1− t1)Eδ,δ+1

(
|λ|(1− t1)

δ
)
= M2.

(3.43)

In consequence, for all u ∈ D,

‖B(u)‖1−δ ≤ max

{
sup

t∈(0,t1]

t1−δ|u(t)|, sup
t∈(t1,1]

(t− t1)
1−δ|u(t)|

}
= max{M1, M2} < ∞.

(ii) Now, we obtain that {B(u) : u ∈ D} is an equicontinuous set in PC1−δ[0, 1], which can
be deduced from the calculations in (a).

Theorem 3.18. Assume that conditions (H1) and (H2) hold. Then the problem (3.1)–(3.4) has at least
one solution in PC1−δ[0, 1].

Proof. Consider the set E = {u ∈ PC1−δ[0, 1] : u = µB(u), µ ∈ (0, 1)}.
Let u be any element of E , then u = µB(u) for some µ ∈ (0, 1). Thus, for each t ∈ (0, t1], we
have

t1−δ|u(t)| = t1−δµ |B(u)(t)| ≤ M1 < ∞,

by (3.42) and, using (3.43), we get, for t ∈ (t1, 1],

(t− t1)
1−δ|u(t)| = (t− t1)

1−δµ |B(u)(t)| ≤ M2 < ∞,

which implies that
‖u‖1−δ ≤ ‖B(u)‖1−δ ≤ max{M1, M2} < ∞

and the set E is bounded independently of µ ∈ (0, 1). Using Lemma 3.17 and Theorem 3.16,
we obtain that the operator B has at least one fixed point.
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Remark 3.19. Under the hypotheses of Theorem 3.18, if L given in (3.40) is less than 1, then
there exists a unique solution to problem (3.1)–(3.4). This comes from the Contraction Mapping
Theorem applied to the mapping B which is proved to be Lipschitzian in section (b) of Lemma
3.17, with Lipschitz constant L.

4 Problem with finitely many impulses

In this section, we study the existence of solution to the general problem (1.1)–(1.3), where
0 < δ < 1, 0 = t0 < t1 < t2 < · · · < tp < tp+1 = 1, Ik ∈ C(R, R), k = 1, . . . , p, λ ∈ R, λ 6= 0,
and function f ∈ C((tk, tk+1]×R), for every k = 0, . . . , p, satisfies restriction (H) concerning its
behavior on the limit at t = t0 and the impulse instants, that is, for every k = 0, . . . , p and every
function v ∈ C(tk, tk+1] such that the limit limt→t+k

v(t) exists and is finite, then there exists the
(finite) limit

lim
t→t+k

f (t, (t− tk)
δ−1v(t)).

Lemmas 3.2 and 3.3 can be easily extended to the case of a multi impulsive problem, as
follows.

Lemma 4.1. Let 0 < δ < 1, k ∈ {0, 1, . . . , p}, σ ∈ C[tk, tk+1] and ck ∈ R. Then the unique solution
to problem

Dδ
tk+

u(t)− λu(t) = σ(t), t ∈ (tk, tk+1), (4.1)

lim
t→t+k

(t− tk)
1−δ(u(t)− u(tk)) = ck, (4.2)

is given, for t ∈ (tk, tk+1], by

u(t) = ckΓ(δ)(t− tk)
δ−1Eδ,δ(λ(t− tk)

δ) +
∫ t

tk

(t− s)δ−1Eδ,δ

(
λ(t− s)δ

)
σ(s)ds. (4.3)

Proof. Similar to the results in [5]. See also the proof of Lemma 3.1.

Lemma 4.2. The solution to

Dδ
tk+

u(t)− λu(t) = σ(t), t ∈ (tk, tk+1), k = 1, . . . , p, (4.4)

lim
t→t+k

(t− tk)
1−δ(u(t)− u(tk)) = Ik(u(tk)), k = 1, . . . , p, (4.5)

lim
t→0+

t1−δu(t) = c0 (4.6)

is given by

u(t) = c0Γ(δ)tδ−1Eδ,δ(λtδ) +
∫ t

0
(t− s)δ−1Eδ,δ

(
λ(t− s)δ

)
σ(s) ds, t ∈ (0, t1],

u(t) = Ik(u(tk))Γ(δ)(t− tk)
δ−1Eδ,δ(λ(t− tk)

δ)

+
∫ t

tk

(t− s)δ−1Eδ,δ

(
λ(t− s)δ

)
σ(s)ds, t ∈ (tk, tk+1], k = 1, . . . , p.

(4.7)
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Lemma 4.3. The solutions to the problem (4.4)–(4.5) subject to the boundary condition (3.17) are given
by (4.7), for c0 ∈ R a fixed point of the mapping φ̃

c0 −→ φ̃(c0) = ν̃p(c0)Γ(δ)(1− tp)
δ−1Eδ,δ(λ(1− tp)

δ) +
∫ 1

tp

(1− s)δ−1Eδ,δ

(
λ(1− s)δ

)
σ(s) ds,

where function ν̃p is defined through the recursive formula

ν̃j(c0) = Ij

(
ν̃j−1(c0)Γ(δ)(tj − tj−1)

δ−1Eδ,δ(λ(tj − tj−1)
δ)

+
∫ tj

tj−1

(tj − s)δ−1Eδ,δ

(
λ(tj − s)δ

)
σ(s) ds

)
,

for c0 ∈ R, j = 1, . . . , p and ν̃0(c0) = c0.
In consequence, if there exist l1, l2, . . . , lp positive constants such that

|Ij(u)− Ij(v)| ≤ lj|u− v| for all u, v ∈ R and j = 1, . . . , p

and, moreover,

(Γ(δ))p+1
p

∏
k=1

lk

p+1

∏
k=1

[
(tk − tk−1)

δ−1 |Eδ,δ(λ(tk − tk−1)
δ)|
]
< 1, (4.8)

then there exists a unique solution to the problem (4.4)–(4.5) subject to the boundary condition (3.17).

Proof. We prove, by induction, that for b0, c0 ∈ R and j = 1, . . . , p,

|ν̃j(b0)− ν̃j(c0)| ≤ (Γ(δ))j
j

∏
k=1

lk

j

∏
k=1

[
(tk − tk−1)

δ−1 |Eδ,δ(λ(tk − tk−1)
δ)|
]
|b0 − c0|. (4.9)

Indeed, take b0, c0 ∈ R. For j = 1, we have

|ν̃1(b0)− ν̃1(c0)| ≤ Γ(δ) l1 tδ−1
1 |Eδ,δ(λtδ

1)| |b0 − c0|,

which coincides with (4.9) for j = 1. Next, we suppose that (4.9) is true for j− 1, that is,

|ν̃j−1(b0)− ν̃j−1(c0)| ≤ (Γ(δ))j−1
j−1

∏
k=1

lk

j−1

∏
k=1

[
(tk − tk−1)

δ−1 |Eδ,δ(λ(tk − tk−1)
δ)|
]
|b0 − c0|

and we deduce that

|ν̃j(b0)− ν̃j(c0)| ≤ lj |ν̃j−1(b0)− ν̃j−1(c0)| Γ(δ)(tj − tj−1)
δ−1 |Eδ,δ(λ(tj − tj−1)

δ)|

≤ (Γ(δ))j
j

∏
k=1

lk

j

∏
k=1

[
(tk − tk−1)

δ−1 |Eδ,δ(λ(tk − tk−1)
δ)|
]
|b0 − c0|.

Therefore,

|φ̃(b0)− φ̃(c0)| = |ν̃p(b0)− ν̃p(c0)|Γ(δ) (1− tp)
δ−1 |Eδ,δ(λ(1− tp)

δ)|

≤ (Γ(δ))p+1
p

∏
k=1

lk

p

∏
k=1

[
(tk − tk−1)

δ−1 |Eδ,δ(λ(tk − tk−1)
δ)|
]

× (1− tp)
δ−1 |Eδ,δ(λ(1− tp)

δ)| |b0 − c0|.
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Taking into account that tp+1 = 1, we write

|φ̃(b0)− φ̃(c0)| ≤ (Γ(δ))p+1
p

∏
k=1

lk

p+1

∏
k=1

[
(tk − tk−1)

δ−1 |Eδ,δ(λ(tk − tk−1)
δ)|
]
|b0 − c0|,

and, by (4.8), the existence of a unique fixed point is justified.

Remark 4.4. Taking p = 1 in condition (4.8), we get condition (3.21).

Lemma 4.5. If I1, I2, . . . , Ip are continuous and Ip is bounded, then problem (4.4)–(4.5) subject to the
boundary condition (3.17) has at least one solution.

Proof. In this case, φ̃ in Lemma 4.3 is a continuous mapping. Let m > 0 be such that |Ip(u)| ≤
m, ∀ u ∈ R and choose A > 0 such that

A ≥ mΓ(δ)(1− tp)
δ−1|Eδ,δ(λ(1− tp)

δ)|+
∣∣∣∣∫ 1

tp

(1− s)δ−1Eδ,δ

(
λ(1− s)δ

)
σ(s) ds

∣∣∣∣ .

Thus, the restriction of φ̃ to the nonempty compact and convex set [−A, A] takes values in
[−A, A] since, for c0 ∈ [−A, A],

|φ̃(c0)| ≤ |ν̃p(c0)|Γ(δ)(1− tp)
δ−1|Eδ,δ(λ(1− tp)

δ)|+
∣∣∣∣∫ 1

tp

(1− s)δ−1Eδ,δ

(
λ(1− s)δ

)
σ(s) ds

∣∣∣∣
≤ mΓ(δ)(1− tp)

δ−1|Eδ,δ(λ(1− tp)
δ)|+

∣∣∣∣∫ 1

tp

(1− s)δ−1Eδ,δ

(
λ(1− s)δ

)
σ(s) ds

∣∣∣∣ ≤ A.

Hence, by Schauder’s theorem, there exists a fixed point c0 of φ̃ in [−A, A], which provides a
solution to (4.4)–(4.5) subject to the boundary condition (3.17) through (4.7).

Lemma 4.6. If I1, I2, . . . , Ip are continuous and there exists A > 0 satisfying

mΓ(δ)(1− tp)
δ−1|Eδ,δ(λ(1− tp)

δ)|+
∣∣∣∣∫ 1

tp

(1− s)δ−1Eδ,δ

(
λ(1− s)δ

)
σ(s) ds

∣∣∣∣ ≤ A,

where m > 0 is such that (ν̃p ◦ · · · ◦ ν̃1)([−A, A]) ⊆ [−m, m] (ν̃j, j = 1, . . . , p, given in Lemma 4.3),
then problem (4.4)–(4.5) subject to the boundary condition (3.17) has at least one solution.

Proof. Again, the continuity of I1, . . . , Ip guarantees that (ν̃p ◦ · · · ◦ ν̃1)([−B, B]) is a compact set
in R, for every B ∈ R. The result is a consequence of Schauder’s theorem.

Finally, to prove the existence of solution to the general problem (1.1)–(1.3), we consider the
periodic boundary value problem

Dδ
tk+

u(t)− λu(t) = σ(t), t ∈ (tk, tk+1), k = 0, . . . , p, (4.10)

lim
t→t+k

(t− tk)
1−δ(u(t)− u(tk)) = ck, k = 1, . . . , p, (4.11)

lim
t→0+

t1−δu(t) = u(1), (4.12)
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for 0 < δ < 1, 0 = t0 < t1 < t2 < · · · < tp < tp+1 = 1, λ ∈ R, λ 6= 0, σ ∈ PC[0, 1] and ck ∈ R,
k = 1, . . . , p, whose solution (see (4.3)) is given by

u(t) = ckΓ(δ)(t− tk)
δ−1Eδ,δ(λ(t− tk)

δ) +
∫ t

tk

(t− s)δ−1Eδ,δ

(
λ(t− s)δ

)
σ(s) ds, (4.13)

for t ∈ (tk, tk+1], k = 0, 1, . . . , p, where

c0 = cpΓ(δ)(1− tp)
δ−1Eδ,δ(λ(1− tp)

δ) +
∫ 1

tp

(1− s)δ−1Eδ,δ

(
λ(1− s)δ

)
σ(s) ds. (4.14)

In the following proposition, we provide the Green’s function associated to the boundary
value problem (4.10)–(4.12).

Proposition 4.7. The solution to problem (4.10)–(4.12) can be written as

u(t) =


cpΓ(δ)Gλ,δ(t, tp) +

∫ 1

0
Gλ,δ(t, s)σ(s) ds, t ∈ (0, t1],

ckΓ(δ)Gλ,δ(t, tk) +
∫ 1

0
Gλ,δ(t, s)σ(s) ds, t ∈ (tk, tk+1], k = 1, . . . , p,

(4.15)

where Gλ,δ(t, s) is defined, for (t, s) ∈ (0, 1]× [0, 1], by

Gλ,δ(t, s) =



Γ(δ)tδ−1Eδ,δ
(
λtδ
)
(1− s)δ−1Eδ,δ

(
λ(1− s)δ

)
, if 0 < t ≤ t1, tp ≤ s < 1,

(t− s)δ−1Eδ,δ
(
λ(t− s)δ

)
, if 0 < t ≤ t1, 0 ≤ s < t,

(t− s)δ−1Eδ,δ
(
λ(t− s)δ

)
, if tk < t ≤ tk+1,

tk ≤ s < t, k = 1, . . . , p,

0, otherwise.

(4.16)

Proof. Using (4.14) and writing the solution (4.13) in integral form, we obtain the Green’s func-
tion associated to the boundary value problem (4.10)–(4.12). We remark that, for t ∈ (0, t1],

u(t) = c0Γ(δ)tδ−1Eδ,δ(λtδ) +
∫ t

0
(t− s)δ−1Eδ,δ

(
λ(t− s)δ

)
σ(s) ds

= cpΓ(δ)(1− tp)
δ−1Eδ,δ(λ(1− tp)

δ)Γ(δ)tδ−1Eδ,δ(λtδ)

+ Γ(δ)tδ−1Eδ,δ(λtδ)
∫ 1

tp

(1− s)δ−1Eδ,δ

(
λ(1− s)δ

)
σ(s) ds

+
∫ t

0
(t− s)δ−1Eδ,δ

(
λ(t− s)δ

)
σ(s) ds.

Remark 4.8. Note that, taking p = 1 in (4.15), we obtain the expression (3.29) in Proposition
3.12. Besides, the Green’s function (4.16) extends that in (3.30). We also remark that (4.16) can
also be shortened as

Gλ,δ(t, s) =


Γ(δ)tδ−1Eδ,δ

(
λtδ
)
(1− s)δ−1Eδ,δ

(
λ(1− s)δ

)
, if 0 < t ≤ t1, tp ≤ s < 1,

(t− s)δ−1Eδ,δ
(
λ(t− s)δ

)
, if tk < t ≤ tk+1, tk ≤ s < t,

k = 0, . . . , p,

0, otherwise.



Periodic BVP for nonlinear impulsive fractional DE 23

On the other hand, expression (4.15) allows to rewrite problem (1.1)–(1.3) as a fixed point
formulation.

Lemma 4.9. The solutions to problem (1.1)–(1.3) are the fixed points of the mapping A defined as

[Au](t) =


Ip(u(tp))Γ(δ)Gλ,δ(t, tp) +

∫ 1

0
Gλ,δ(t, s) f (s, u(s)) ds, t ∈ (0, t1],

Ik(u(tk))Γ(δ)Gλ,δ(t, tk) +
∫ 1

0
Gλ,δ(t, s) f (s, u(s)) ds, t ∈ (tk, tk+1], k = 1, . . . , p,

where Gλ,δ is given by (4.16).

We remark that the operator A is an extension of (3.31). Due to the similarities of the ex-
pression of the mapping A with respect to the case p = 1 and analogously to the procedure
followed in Lemma 3.17 and Theorem 3.18, it is possible to deduce the continuity and com-
pactness of the mapping A and the existence of at least one solution to problem (1.1)–(1.3) in
the space PC1−δ[0, 1], just by imposing the boundedness and the Lipschitzian character of the
function f and the impulse functions I1, . . . , Ip and, of course, assuming (H).

Lemma 4.10. Suppose that the following conditions hold:

(H1∗) There exist positive constants M and m such that

| f (t, u)| ≤ M, |Ik(u)| ≤ m, ∀t ∈ [0, 1], u ∈ R, k = 1, . . . , p. (4.17)

(H2∗) There exist positive constants K and l such that

| f (t, u)− f (t, v)| ≤ K|u− v|, |Ik(u)− Ik(v)| ≤ l|u− v|,
∀t ∈ [0, 1], u, v ∈ R, k = 1, . . . , p.

(4.18)

Then the operator A defined in Lemma 4.9 is well-defined, continuous and compact.

Proof. The expression of the mapping A can be written as

[Au](t) = Ip(u(tp))(Γ(δ))2tδ−1Eδ,δ(λtδ)(1− tp)
δ−1Eδ,δ(λ(1− tp)

δ)

+
∫ t

0
(t− s)δ−1Eδ,δ

(
λ(t− s)δ

)
f (s, u(s)) ds

+ Γ(δ)tδ−1Eδ,δ(λtδ)
∫ 1

tp

(1− s)δ−1Eδ,δ

(
λ(1− s)δ

)
f (s, u(s)) ds, t ∈ (0, t1],

[Au](t) = Ik(u(tk))Γ(δ)(t− tk)
δ−1Eδ,δ(λ(t− tk)

δ)

+
∫ t

tk

(t− s)δ−1Eδ,δ

(
λ(t− s)δ

)
f (s, u(s)) ds, t ∈ (tk, tk+1], k = 1, . . . , p.

Comparing this with the expression of the mapping B given in Remark 3.15, it is clear that the
proof can be completed similarly to the proof of Lemma 3.17.

Theorem 4.11. Assume that conditions (H1∗) and (H2∗) hold. Then the problem (1.1)–(1.3) has at
least one solution in PC1−δ[0, 1].
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Proof. Analogously to the proof of Theorem 3.18, we consider the set

E∗ = {u ∈ PC1−δ[0, 1] : u = µA(u), µ ∈ (0, 1)}.

If u = µA(u) for some µ ∈ (0, 1), then, for each t ∈ (0, t1], we have, similarly to (3.42),

t1−δ|u(t)| = t1−δµ |A(u)(t)| ≤ m(Γ(δ))2(1− tp)
δ−1Eδ,δ

(
|λ|tδ

1

)
Eδ,δ

(
|λ|(1− tp)

δ
)

+ Mt1 Eδ,δ+1

(
|λ|tδ

1

)
+ MΓ(δ) Eδ,δ

(
|λ|tδ

1

)
Eδ,δ+1 (|λ|) = M∗1 < ∞

and, for t ∈ (tk, tk+1], k = 1, . . . , p, we get, similarly to (3.43),

(t− tk)
1−δ|u(t)| = (t− tk)

1−δµ |A(u)(t)|

≤ mΓ(δ)Eδ,δ

(
|λ|(tk+1 − tk)

δ
)
+ M(tk+1 − tk)Eδ,δ+1

(
|λ|(tk+1 − tk)

δ
)

= M2,k < ∞,

hence ‖u‖1−δ ≤ ‖A(u)‖1−δ ≤ max{M∗1 , M2,1, . . . , M2,p} < ∞ and the conclusion follows.

Remark 4.12. In the proof of Lemma 4.10, we obtain some interesting inequalities. For instance,
for t ∈ (0, t1] and u, v ∈ PC1−δ[0, 1],

t1−δ|A(u)(t)−A(v)(t)|

≤ ‖u− v‖1−δ

[
l(tp − tp−1)

δ−1(Γ(δ))2Eδ,δ(|λ|tδ
1)(1− tp)

δ−1Eδ,δ(|λ|(1− tp)
δ)

+Kt1−δ
∫ t

0
(t− s)δ−1Eδ,δ

(
|λ|(t− s)δ

)
sδ−1 ds

+KΓ(δ)Eδ,δ(|λ|tδ)
∫ 1

tp

(1− s)δ−1Eδ,δ

(
|λ|(1− s)δ

)
(s− tp)

δ−1 ds
]

≤ ‖u− v‖1−δ

[
l(tp − tp−1)

δ−1(Γ(δ))2(1− tp)
δ−1Eδ,δ

(
|λ|tδ

1

)
Eδ,δ

(
|λ|(1− tp)

δ
)

+Ktδ
1Γ(δ) Eδ,2δ

(
|λ|tδ

1

)
+ K(1− tp)

2δ−1 (Γ(δ))
3

Γ(2δ)
Eδ,δ (|λ|) Eδ,δ

(
|λ|(1− tp)

δ
)]

.

On the other hand, for t ∈ (tk, tk+1], k = 1, . . . , p, we have

(t− tk)
1−δ|A(u)(t)−A(v)(t)|

≤ ‖u− v‖1−δ

[
l(tk − tk−1)

δ−1Γ(δ)Eδ,δ(|λ|(tk+1 − tk)
δ)

+K(t− tk)
1−δ

∫ t

tk

(t− s)δ−1Eδ,δ

(
|λ|(t− s)δ

)
(s− tk)

δ−1 ds
]

≤ ‖u− v‖1−δ

[
l(tk − tk−1)

δ−1Γ(δ)Eδ,δ

(
|λ|(tk+1 − tk)

δ
)

+K(t− tk)
1−δEδ,δ

(
|λ|(t− tk)

δ
) ∫ t

tk

(t− s)δ−1 (s− tk)
δ−1 ds

]
≤ ‖u− v‖1−δ

[
l(tk − tk−1)

δ−1Γ(δ)Eδ,δ

(
|λ|(tk+1 − tk)

δ
)

+K(tk+1 − tk)
δ (Γ(δ))

2

Γ(2δ)
Eδ,δ

(
|λ|(tk+1 − tk)

δ
)]

.



Periodic BVP for nonlinear impulsive fractional DE 25

In these inequalities, we have used (see [5, Eq. (4.21)]) that

∫ t

tk

(t− s)δ−1 (s− tk)
δ−1 ds =

∫ t−tk

0
(t− tk − u)δ−1 uδ−1 du = (t− tk)

2δ−1 (Γ(δ))
2

Γ(2δ)
,

for k = 1, . . . , p and t ∈ (tk, tk+1].
Using these properties and under the hypotheses of Theorem 4.11, we can deduce the exis-

tence of a unique solution to problem (3.1)–(3.4), just by imposing the restriction

max{L∗1 ,L2,1, . . . ,L2,p} < 1,

where

L∗1 = l(tp − tp−1)
δ−1(Γ(δ))2(1− tp)

δ−1Eδ,δ

(
|λ|tδ

1

)
Eδ,δ

(
|λ|(1− tp)

δ
)

+ Ktδ
1Γ(δ) Eδ,2δ

(
|λ|tδ

1

)
+ K(1− tp)

2δ−1 (Γ(δ))
3

Γ(2δ)
Eδ,δ (|λ|) Eδ,δ

(
|λ|(1− tp)

δ
)

,

and, for k = 1, . . . , p,

L2,k = l(tk − tk−1)
δ−1Γ(δ)Eδ,δ

(
|λ|(tk+1 − tk)

δ
)
+ K(tk+1 − tk)

δ (Γ(δ))
2

Γ(2δ)
Eδ,δ

(
|λ|(tk+1 − tk)

δ
)

.
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