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Abstract

In this paper, some random fixed point theorems for monotone increasing, con-

densing and closed multi-valued random operators are proved. They are then

applied to first order ordinary nonconvex random differential inclusions for prov-

ing the existence of solutions as well as the existence of extremal solutions under

certain monotonicity conditions.
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1 Introduction

Let (Ω,A) be a measurable space and let X be a separable Banach space with norm
‖ · ‖. Let βX denote the Borel σ-algebra of open subsets of X. A function x : Ω → X
is called measurable if

x−1(B) = {ω ∈ Ω | x(ω) ∈ B} ∈ A (1.1)

for all B ∈ βX . The set of all measurable functions form the set Ω into X is denoted
by M(Ω, X). Let P(X) denote the class of all subsets of X, called the power set of X.
Denote

Pp(X) = {A ⊂ X | A is non-empty and has the property p}. (1.2)

Here, p may be p =closed (in short cl) or p =convex (in short cv) or p =bounded
(in short bd) or p =compact (in short cp). Thus Pcl(X), Pcv(X), Pbd(X) and Pcp(X)
denote, respectively, the classes of all closed, convex, bounded and compact subsets of
X. Similarly, Pcl,bd(X) and Pcv,cp(X) denote, respectively, the classes of closed-bounded
and compact-convex subsets of X.
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A correspondence T : X → Pp(X) is called a multi-valued mapping or multi-valued
operator on X into X. A point u ∈ X is called a fixed point of T if u ∈ Tu, and the
set of all fixed points of T in X is denoted by FT .

Let T : X → Pp(X) be a multi-valued mapping. T is called bounded if
⋃

T (S) is

bounded subset of X for all bounded subsets S of X. T is called compact if T (X) is
a compact subset of X. Again, T is called totally bounded if T (S) is totally bounded
subset of X for all bounded sets S in X. It is clear that every compact mapping is
totally bounded, but the converse may not be true. However, these two notions are
equivalent on bounded subsets of X. T is called an upper semi-continuous at x ∈ X
if for each open set V in X containing f(x), there exists a neighborhood N(x) in X
such that

⋃

T (N(x)) ⊂ V . T is called upper semi-continuous on X if it is upper semi-
continuous at each point of X. An upper semi-continuous multi-valued mapping T on
X is also called a closed multi-valued mapping on X. Finally, T is called completely
continuous on X if it is upper semi-continuous and totally bounded on X. It is known
that if T is a closed multi-valued mapping with compact values on X, then if we have
sequences {xn} and {yn} in X such that xn → x∗, yn → y∗ and yn ∈ Txn, n ∈ N, then
y∗ ∈ Tx∗. The converse of this statement holds if T is a compact multi-valued mapping
on X. The details of all these definitions appear in Hu and Papageorgiou [11].

A multi-valued mapping T : Ω → Pp(X) is called measurable (respectively weakly
measurable) if

T−1(B) = {ω ∈ Ω | T (ω) ∩ B 6= ∅} ∈ A (1.3)

for all closed (respectively open) subsets B in X. A multi-valued mapping T : Ω×X →
Pp(X) is called a multi-valued random operator if T (·, x) is measurable for each x ∈ X,
and we write T (ω, x) = T (ω)x. A measurable function ξ : Ω → X is called a random
fixed point of the multi-valued random operator T (ω) if ξ(ω) ∈ T (ω)ξ(ω) for all ω ∈ Ω.
The set of all random fixed points of the multi-valued random operator T (ω) is denoted
by FT (ω). A multi-valued random operator T : Ω → Pp(X) is called bounded, totally
bounded, compact, closed, completely continuous if the multi-valued mapping T (ω, ·)
is bounded, totally bounded, compact, closed, completely continuous for each ω ∈ Ω,
respectively.

A non-empty closed subset K of the Banach space X is called a cone in X if (i)
K + K ⊆ K, (ii) λK ⊆ K, λ ∈ R, λ ≥ 0 and (iii) {−K} ∩ K = {0}, where 0 is the
zero element of X. A cone K is called normal in X if the norm ‖ · ‖ is semi-monotone
on K. It is known that if the cone is normal, then every order bounded set in X is
bounded in norm. Again, a cone K in X is called regular if every monotone order
bounded sequence in X converges in norm. The details of cones and their properties
may be found in Heikkilä and Lakshmikatham [10].

We define an order relation ≤ in X with the help of the cone K in X as follows.
Let x, y ∈ X. Then we define

x ≤ y ⇐⇒ y − x ∈ K. (1.4)
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The Banach space X together with the order relation ≤ becomes an ordered Banach
space. Let a, b ∈ X be such that a ≤ b. Then by an order interval [a, b] we mean a set
in X defined by

[a, b] = {x ∈ X | a ≤ x ≤ b}. (1.5)

Let a, b : Ω → X be two measurable functions. By a ≤ b on Ω, we mean a(ω) ≤ b(ω)
for all ω ∈ Ω. Then the sector [a, b] defined by

[a, b] = {x ∈ X | a(ω) ≤ x ≤ b(ω) for all ω ∈ Ω}

=
⋂

ω∈Ω

[a(ω), b(ω)] (1.6)

is called the random order interval in X.

The Kuratowskii measure α(S) and the Hausdorff measure β(S) of noncompactness
of a bounded set S in a Banach space X are the nonnegative real numbers defined by

α(S) = inf
{

r > 0 : S ⊂
n

⋃

i=1

Si, and diam(Si) ≤ r, ∀ i
}

(1.7)

and

β(S) = inf
{

r > 0 : S ⊂
n

⋃

i=1

Bi(xi, r), for some xi ∈ X
}

, (1.8)

where Bi(xi, r) = {x ∈ X | d(x, xi) < r}.

The details of Hausdorff measure of noncompactness and its properties appear in
Deimling [2], Hu and Papageorgiou [11], and the references therein.

Definition 1.1 A multi-valued mapping Q : X → Pbd(X) is called β-condensing if
for any S ∈ Pbd(X), we have that β(Q(S)) < β(S) for β(S) > 0.

It is known that compact and contraction multi-valued maps are condensing, but the
converse may not be true. The following results are well-known in the literature..

Lemma 1.1 (Akhmerov et al. [1]) Let α and β be respectively the Kuratowskii and
Hausdorff measure of noncompactness in a Banach space X, then for any bounded set
S in X, we have α(S) ≤ 2 β(S).

Lemma 1.2 (Akhmerov et al. [1]) If A : X → X is a single-valued Lipschitz map-
ping with the Lipschitz constant k, then we have α(A(S)) ≤ k α(S) for any bounded
subset S of X.

The study of random fixed point theorems for the monotone increasing, completely con-
tinuous multi-valued random mappings on the random order intervals is initiated in
Dhage [6] using the properties of cones in ordered Banach spaces. In the present work,
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we establish some random fixed point theorems for monotone increasing, condensing
and closed multi-valued random operators on random intervals under suitable condi-
tions. In the case of multi-valued mappings, there are different types of monotonicity
conditions, namely, right or left monotone increasing and strict monotonicity etc. In
the following section, we formulate the random fixed point theorems for multi-valued
random operators for each of these monotonicity criteria.

2 Multi-valued Random Fixed Point Theory

Let the Banach space X be equipped with the order relation ≤ and define the order
relation in Pp(X) as follows:

Let A, B ∈ Pp(X). Then by A
i

≤ B we mean “for every a ∈ A there exists a b ∈ B

such that a ≤ b.” Again A
d

≤ B means “for each b ∈ B there exists a ∈ A such that

a ≤ b”. Further, we have A
id

≤ B ⇐⇒ A
i

≤ B and A
d

≤ B. Finally, A ≤ B implies
that a ≤ b for all a ∈ A and b ∈ B. Note that if A ≤ A, then it follows that A is a
singleton set. The details appear in Dhage [4] and references therein.

Let T : Ω × X → Pp(X) be a multi-valued random operator and let

ST (ω)(x) = {u ∈ M(Ω, X) | u(ω) ∈ T (ω)x for all ω ∈ Ω}. (2.1)

The set ST (ω)(x) is called the set of measurable selectors of the multi-valued random
operator T (ω) at x. The key result in formulating random fixed point theorems con-
cerning the existence of measurable selector for a multi-valued mapping is the following:

Theorem 2.1 (Kuratowskii and Ryll-Nardzewski [14]) If the multi-valued oper-
ator T : Ω × X → Pp(X) is measurable with closed values, then T has a measurable
selector.

Remark 2.1 Note that if T : Ω × X → Pcl(X) is a multi-valued random operator,
then the set ST (ω)(x) is non-empty for each x ∈ X.

Now we are ready to formulate random fixed point theorems for different types of
monotone increasing multi-valued random operators on separable Banach spaces.

2.1 Right monotone increasing multi-valued random opera-

tors

Definition 2.1 A multi-valued random operator T : Ω × X → Pcl(X) is called right

monotone increasing if for each ω ∈ Ω we have that ST (ω)(x)
i

≤ ST (ω)(y) for all x, y ∈ X
for which x ≤ y.
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Our first random fixed point theorem for the right monotone increasing condensing
multi-valued random operators is as follows:

Theorem 2.2 Let (Ω,A) be a measurable space and let [a, b] be a random interval in
a separable Banach space X. If T : Ω × [a, b] → Pcl([a, b]) is a condensing, upper
semi-continuous right monotone increasing multi-valued random operator and the cone
K in X is normal, then T (ω) has a random fixed point in [a, b].

Proof : Define a monotone increasing sequence {xn(ω)} of measurable functions in
[a, b] defined by

x0(ω) = a(ω), xn+1(ω) ∈ T (ω)xn, n = 0, 1, 2, . . . , (2.2)

which does exist in view of the right monotonicity of the multi-valued random operator
T (ω). If xr(ω) = xr+1(ω) for some r ∈ N, then u(ω) = xr(ω) is the required random
fixed point of the multi-valued random operator T (ω). Assume that xn(ω) 6= xn+1(ω)
for each n ∈ N. Then we have

x0(ω) = a(ω) < x1(ω) < x2(ω) < . . . < xn(ω) < . . . ≤ b(ω) (2.3)

for all ω ∈ Ω. Since the cone K is normal in X, the random order interval [a, b] is
norm-bounded subset of X. Denote

A = {x0, . . . , xn . . .}.

Then,
A = {x0} ∪ {x1, . . . , xn . . .} ⊆ {x0} ∪ Q(ω)(A).

If β(A) 6= 0, then we have

β(A) ≤ max{β({x0}), β(Q(ω)(A))} < β(A)

which is a contradiction, and so β(A) = 0. Hence A is compact. As a result,
limn→∞ xn(ω) = x∗(ω) exists for all ω ∈ Ω. By the upper semi-continuity of T (ω),
one has x∗(ω) ∈ T (ω)x∗(ω). The measurability of x∗(ω) follows from the fact that
the strong limit of the sequence of measurable functions is measurable. Hence, the
multi-valued random operator T (ω) has a random fixed point in [a, b]. This completes
the proof. �

Corollary 2.1 (Dhage [8]) Let (Ω,A) be a measurable space and let [a, b] be a ran-
dom interval in a separable Banach space X. If T : Ω× [a, b] → Pcl([a, b]) is a compact,
upper semi-continuous right monotone increasing multi-valued random operator and the
cone K in X is normal, then T (ω) has a random fixed point in [a, b].

To prove the next result, we need the following lemma in the sequel.
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Lemma 2.1 (Dhage [9]) Let (Ω,A, µ) be a complete σ-finite measure space and let
X be a separable Banach space. If F, G : Ω → Pcl(X) are two multi-valued random
operators, then the sum F + G defined by (F + G)(ω) = F (ω) + G(ω) is again a
multi-valued random operator on Ω.

Definition 2.2 A multi-valued mapping T : X → Pp(X) is said to be a multi-valued
Lipschitz if there exists a real number λ > 0 such that

dH(Tx, Ty) ≤ λ‖x − y‖ (2.4)

for all x, y ∈ X and the constant λ is called the Lipschitz constant of T on X. Further-
more, if λ < 1, then T is called a contraction on X with the contraction constant λ.
Similarly, a multi-valued random operator T : Ω × X → Pp(X) is called multi-valued
Lipschitz if T (ω) is a multi-valued Lipschitz on X for each ω ∈ Ω. Moreover, if T is a
multi-valued random contraction on X if T (ω) is a multi-valued contraction on X for
each ω ∈ Ω.

Corollary 2.2 Let (Ω,A, µ) be a complete σ-finite measure space and let [a, b] be a
random interval in a separable Banach space X. Let A, B : Ω× [a, b] → Pcl(X) be two
right monotone increasing multi-valued random operators satisfying for each ω ∈ Ω,

(a) A(ω) is a multi-valued contraction,

(b) B(ω) is completely continuous, and

(c) A(ω)x + B(ω)x ∈ [a, b] for all x ∈ [a, b].

Furthermore, if the cone K in X is normal, then the random operator inclusion x ∈
A(ω)x + B(ω)x has a random solution in [a, b].

Proof : Define a multi-valued mapping T : Ω × X → Pcl(X) by

T (ω)x = A(ω)x + B(ω)x. (2.5)

By Lemma 2.1, the sum of two measurable multi-valued operators A(ω) and B(ω) is
again measurable (see Dhage [9]). Hence, T (ω) defines a multi-valued random operator
T : Ω × [a, b] → Pcl([a, b]) in view of hypothesis (c). We will show that T (ω) is
upper semi-continuous and a condensing multi-valued random operator on [a, b]. Let
S ⊂ [a, b]. Since the cone K in X is normal, the random order interval [a, b] is bounded
in norm. Hence, S and T (ω)(S) is bounded for each ω ∈ Ω. Therefore, we have

β(T (ω)(S)) ≤ β(A(ω)(S)) + β(B(ω)(S)) ≤ λβ(A(ω)(S))

for all ω ∈ Ω. Again, since A(ω) is a multi-valued contraction, it is continuous in the
Hausdorff metric dH on X. Hence, A(ω) is upper semi-continuous on [a, b] for each ω ∈
Ω. Furthermore, the sum of two upper semi-continuous multi-valued operators is upper
semi-continuous, and so T (ω) is upper semi-continuous on [a, b] for all ω ∈ Ω. Now we
apply Theorem 2.2 to yield that the random operator inclusion x ∈ A(ω)x + B(ω)x
has a random solution in [a, b]. This completes the proof. �
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Corollary 2.3 Let (Ω,A, µ) be a complete σ-finite measure space and let [a, b] be a
random interval in a separable Banach space X. Assume that A : Ω × [a, b] → X is
nondecreasing and B : Ω× [a, b] → Pcl(X) is a right monotone increasing multi-valued
random operator satisfying for each ω ∈ Ω,

(a) A(ω) is a single-valued contraction with the contraction constant λ < 1/2,

(b) B(ω) is completely continuous, and

(c) A(ω)x + B(ω)x ∈ [a, b] for all x ∈ [a, b].

Furthermore, if the cone K in X is normal, then the random operator inclusion x ∈
A(ω)x + B(ω)x has a random solution in [a, b].

Remark 2.2 Hypothesis (c) of Corollary 2.3 holds if the random operators A(ω) and
B(ω) are right monotone increasing and the elements a and b satisfy a ≤ A(ω)a+B(ω)a
and A(ω)b + B(ω)b ≤ b for all ω ∈ Ω.

2.2 Strict monotone increasing multi-valued random opera-

tors

We need the following definition in the sequel.

Definition 2.3 A multi-valued random operator T : Ω × X → Pp(X) is called strict
monotone increasing if for each ω ∈ Ω, T (ω)x ≤ T (ω)y for all x, y ∈ X for which
x < y. Similarly, the multi-valued random operator T (ω) is called monotone decreasing
if for each Ω ∈ ω, T (ω)x ≥ T (ω)y for all x, y ∈ X for which x < y. Finally, T (ω)
is called monotone if it is a either monotone increasing or monotone decreasing multi-
valued random operator on X.

Remark 2.3 We note that every strict monotone increasing multi-valued random op-
erator is right monotone increasing, but the converse may not be true.

Below we prove some random fixed point theorems for strict monotone increasing
multi-valued random operators on separable ordered Banach spaces.

Theorem 2.3 Let (Ω,A) be a measurable space and let [a, b] be a random order interval
in a separable Banach space X. If T : Ω × [a, b] → Pcl([a, b]) is a strict monotone
increasing, upper semi-continuous and condensing multi-valued random operator and
the cone K in X is normal, then T (ω) has the least random fixed point x∗(ω) and
the greatest random fixed point y∗(ω) in [a, b] and the sequences {xn(ω)} and {yn(ω)}
defined by

x0(ω) = a(ω), xn+1(ω) ∈ T (ω)xn, n = 0, 1, 2, . . . , (2.6)

and
y0(ω) = b(ω), yn+1(ω) ∈ T (ω)yn, n = 0, 1, 2, . . . , (2.7)

converge to x∗(ω) and y∗(ω) respectively.
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Proof : Define a monotone increasing sequence {xn(ω)} of measurable functions in
[a, b] by

x0(ω) = a(ω), xn+1(ω) ∈ T (ω)xn, n = 0, 1, 2, . . . ,

which does exist by virtue of the strict monotone increasing multi-valued random opera-
tor T (ω). If xr(ω) = xr+1(ω) for some r ∈ N, then u(ω) = xr(ω) is the required random
fixed point of the multi-valued random operator T (ω). Assume that xn(ω) 6= xn+1(ω)
for each n ∈ N. Then, we have

x0(ω) = a(ω) < x1(ω) < x2(ω) < . . . < xn(ω) < . . . ≤ b(ω)

for all ω ∈ Ω. Proceeding with the arguments as in the proof of Theorem 2.1, it is
proved that the sequence {xn(ω)} converges increasingly to the random fixed point
x∗(ω) of T (ω). Similarly, the sequence {yn(ω)} of monotone decreasing measurable
functions converges decreasingly to the random fixed point y∗(ω) of T (ω). Next we
show that x∗(ω) and y∗(ω) are respectively the least and the greatest random fixed
point of the multi-valued random operator T (ω) on X. Let x(ω) be any random fixed
point of T (ω) in [a, b]. By the strict monotonicity of T (ω), we have

a(ω) = x0(ω) ≤ x1(ω) ≤ . . . ≤ xn(ω) ≤ x(ω) ≤ yn(ω) ≤ . . . ≤ y1(ω) ≤ y0(ω) = b(ω)

for all ω ∈ Ω. Hence, x∗(ω) ≤ x(ω) ≤ y∗(ω) for all ω ∈ Ω. Thus x∗(ω) and y∗(ω) are
respectively the least and the greatest random fixed point of the multi-valued random
operator T (ω) in [a, b]. This completes the proof. �

Corollary 2.4 (Dhage [8]) Let (Ω,A) be a measurable space and let [a, b] be a ran-
dom order interval in a separable Banach space X. If T : Ω × [a, b] → Pcl([a, b]) is
a strict monotone increasing completely continuous multi-valued random operator and
the cone K in X is normal, then T (ω) has the least random fixed point x∗(ω) and
the greatest random fixed point y∗(ω) in [a, b]. Moreover, the sequences {xn(ω)} and
{yn(ω)} defined by (2.6) and (2.7) converge to x∗(ω) and y∗(ω) respectively.

Corollary 2.5 Let (Ω,A, µ) be a complete σ-finite measure space and let [a, b] be a
random order interval in a separable Banach space X. Let A, B : Ω × [a, b] → Pcl(X)
be two strict monotone increasing multi-valued random operators satisfying for each
ω ∈ Ω,

(a) A(ω) is multi-valued contraction,

(b) B(ω) is completely continuous, and

(c) A(ω)x + B(ω)x ∈ [a, b] for all x ∈ [a, b].

If the cone K in X is normal, then the random operator inclusion x ∈ A(ω)x+ B(ω)x
has the least random solution x∗ and the greatest random solution y∗ in [a, b]. Moreover,
the sequences {xn(ω)} and {yn(ω)} defined by

x0(ω) = a(ω), xn+1(ω) ∈ A(ω)xn + B(ω)xn, n = 0, 1, 2, . . . ; (2.8)
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and
y0(ω) = b(ω), yn+1(ω) ∈ A(ω)yn + B(ω)yn, n = 0, 1, 2, . . . , (2.9)

converge to x∗(ω) and y∗(ω) respectively.

Proof : The proof is similar to that of Corollary 2.2 and the conclusion now follows
by an application of Theorem 2.3. �

Corollary 2.6 Let (Ω,A, µ) be a complete σ-finite measure space and let [a, b] be a
random interval in a separable Banach space X. Let A : Ω×[a, b] → X be nondecreasing
and B : Ω × [a, b] → Pcl(X) be an right monotone increasing multi-valued random
operator satisfying for each ω ∈ Ω,

(a) A(ω) is a single-valued contraction with the contraction constant λ < 1/2,

(b) B(ω) is completely continuous, and

(c) A(ω)x + B(ω)x ∈ [a, b] for all x ∈ [a, b].

Furthermore, if the cone K in X is normal, then the random operator inclusion x ∈
A(ω)x + B(ω)x has a least random solution x∗(ω) and a greatest random solution
y∗(ω) in [a, b]. Moreover, the sequences {xn(ω)} and {yn(ω)} defined by (2.8) and
(2.9) converge to x∗(ω) and y∗(ω) respectively.

Remark 2.4 Hypothesis (c) of Corollary 2.5 holds if the random operators A(ω) and
B(ω) are strict monotone increasing and the elements a and b satisfy a ≤ A(ω)a+B(ω)a
and A(ω)b + B(ω)b ≤ b for all ω ∈ Ω.

Remark 2.5 We remark that in most of random fixed point theorems of topological
nature for single as well as multi-valued random operators, the separability hypothesis
of the underlined Banach space is indispensable, but the case with random fixed point
theorems of algebraic nature for such operators is quite different. Here, we do not
require the separability hypothesis for the validity of the algebraic random fixed point
theorems of this paper. Note that our Theorems 2.2 and 2.3 have wide range of
applications to random differential and integral inclusions for proving the existence as
well as the existence of extremal solutions under suitable conditions. In the following
section we establish the existence theorems for certain perturbed random differential
inclusions under mixed Lipschitz, Carathéodory and monotonic conditions of the multi-
functions involved in them.

3 Random Differential Inclusions

In this section, we discuss initial value problems of ordinary first order random dif-
ferential inclusions for existence as well as existence of the extremal random solutions
between the given strict lower and strict upper random solutions.
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Let (Ω,A, µ) be a complete σ-finite measure space and let R be the real and and let
J = [0, T ] be a closed and bounded interval in R. Consider the initial value problem
of first order ordinary random differential inclusion (in short RDI),

x′(t, ω) ∈ F (t, x(t, ω), ω) + G(t, x(t, ω), ω) a.e. t ∈ J
x(0, ω) = q(ω)

}

(3.1)

for all ω ∈ Ω, where q : Ω → R is measurable and F, G : J × R × Ω → Pp(R).

By a random solution for the RDI (3.1) we mean a measurable function x : Ω →
AC(J, R) satisfying for each ω ∈ Ω, x′(t, ω) = v1(t, ω) + v2(t, ω) ∀ t ∈ J and x(0, ω) =
q(ω) for some measurable functions v1, v2 : Ω → L1(J, R) with v1(t, ω) ∈ F (t, x(t, ω), ω)
and v2(t, ω) ∈ G(t, x(t, ω), ω) a.e. t ∈ J , where AC(J, R) is the space of absolutely
continuous real-valued functions on J .

To the best of our knowledge, the RDI (3.1) has not been discussed earlier in the
literature. But the special case, when the random parameter is absent from the RDI
(3.1), we obtain a classical perturbed differential inclusion

x′(t) ∈ F (t, x(t)) + G(t, x(t)) a.e. t ∈ J,
x(0) = q,

}

(3.2)

is studied for the existence of solutions under certain mixed Lipschitz and compactness
type conditions (see Dhage [7] and the references therein). Most of these results involve
the hypothesis that the multi-function F has convex values on the domain of definition.
In the present approach, we do not require any convexity assumption on the values of
the multi-functions F and G involved in the random differential inclusion, instead, we
assume certain monotonicity condition for proving the existence results. In the special
case where F (t, x, ω) = {f(t, x, ω)} and G(t, x, ω) = {g(t, x, ω)}, we obtain the random
differential equation,

x′(t, ω) = f(t, x(t, ω), ω) + g(t, x(t, ω), ω) a.e. t ∈ J,
x(0, ω) = q(ω),

}

(3.3)

which has been studied for the existence results in Itoh [12] and for existence of the
extremal random solutions in Dhage [6] via fixed point techniques. Therefore, our
results include the results of Itoh [12] and Dhage [6] as special cases. We claim that
our results as well as our approach is new to the theory of random differential inclusions.

We will obtain the solutions of RDI (3.1) in the function space C(J, R) of continuous
real-valued functions on J . Define a norm ‖ · ‖ in C(J, R) by

‖x‖ = sup
t∈J

|x(t)| (3.4)

and the order relation ≤ in C(J, R) by

x ≤ y ⇐⇒ y − x ∈ K, (3.5)
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where the cone K in C(J, R) is defined by

K = {x ∈ C(J, R) | x(t) ≥ 0 for all t ∈ J}. (3.6)

Clearly, C(J, R) becomes an ordered separable Banach space with the cone K which
is normal in it. For any measurable function x : Ω → C(J, R), let

S1
F (ω)(x) = {v ∈ M(Ω, L1(J, R)) | v(t, ω) ∈ F (t, x(t, ω), ω) a.e. t ∈ J}. (3.7)

This is our set of selection functions. The integral of the random multi-valued function
F is defined as

∫ t

0

F (s, x(s, ω), ω) ds =

{
∫ t

0

v(s, ω) ds : v ∈ S1
F (ω)(x)

}

.

We need the following definitions in the sequel.

Definition 3.1 A multi-valued mapping F : J × Ω → Pcp(R) is said to be measurable
if for any y ∈ X, the function (t, ω) 7→ d(y, F (t, ω)) = inf{|y − x| : x ∈ F (t, ω)} is
measurable.

Definition 3.2 A multi-valued mapping F : J×R×Ω → Pcp(R) is said to be integrably
bounded if there exists a function h ∈ M(Ω, L1(J, R)) such that

‖F (t, x, ω)‖P = sup{|u| : u ∈ F (t, x, ω)} ≤ h(t, ω) a.e. t ∈ J

for all ω ∈ Ω and x ∈ R.

Remark 3.1 It is known that if F : J ×R×Ω → Pcp(R) is integerably bounded, then
S1

F (ω)(x) 6= ∅ for each x ∈ R.

Definition 3.3 A multi-valued function F : J×R×Ω → Pcp(R) is called Carathéodory
if for each ω ∈ Ω,

(i) t 7→ F (t, x, ω) is measurable for each x ∈ R, and

(ii) x 7→ F (t, x, ω) is an upper semi-continuous almost everywhere for t ∈ J.

Again, a Carathéodory multi-valued function F is called L1-Carathéodory if

(iii) for each real number r > 0 there exists a measurable function hr : Ω → L1(J, R)
such that for each ω ∈ Ω

‖F (t, x, ω)‖P = sup{|u| : u ∈ F (t, x, ω)} ≤ hr(t, ω) a.e. t ∈ J

for all x ∈ R with |x| ≤ r.

Furthermore, a Carathéodory multi-valued function F is called L1
X-Carathéodory if
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(iv) there exists a measurable function h : Ω → L1(J, R) such that

‖F (t, x, ω)‖P ≤ h(t, ω) a.e. t ∈ J

for all x ∈ R, and the function h is called a growth function of F on J × R ×Ω.

Definition 3.4 A multi-valued function F : J ×R×Ω → Pcp(R) is called s-Carathéo-
dory if for each ω ∈ Ω,

(i) t 7→ F (t, x, ω) is measurable for each x ∈ R, and

(ii) x 7→ F (t, x, ω) is an Hausdorff continuous almost everywhere for t ∈ J.

Furthermore, a s-Carathéodory multi-valued function F is called s-L1-Carathéodory if

(iii) for each real number r > 0 there exists a measurable function hr : Ω → L1(J, R)
such that for each ω ∈ Ω

‖F (t, x, ω)‖P = sup{|u| : u ∈ F (t, x, ω)} ≤ hr(t, ω) a.e. t ∈ J

for all x ∈ R with |x| ≤ r.

Then we have the following lemmas which are well-known in the literature.

Lemma 3.1 (Lasota and Opial [13]) Let E be a Banach space. If dim (E) < ∞
and F : J × E × Ω → Pcp(E) is L1-Carathéodory, then S1

F (ω)(x) 6= ∅ for each x ∈ E.

Lemma 3.2 (Lasota and Opial [13]) Let E be a Banach space, F a Carathéodory
multi-valued operator with S1

F (ω) 6= ∅, and L : L1(J, E) → C(J, E) be a continuous
linear mapping. Then the composite operator

L ◦ S1
F (ω) : C(J, E) → Pbd,cl(C(J, E))

is a closed graph operator on C(J, E) × C(J, E).

Lemma 3.3 (Hu and Papageorgiou [11]) Let E be a Banach space. If F : J ×
E → Pp(E) is s-Caratheodory, then the multi-valued mapping (t, x) 7→ F (t, x) is jointly
measurable.

We need the following definition in the sequel.

Definition 3.5 A measurable function a : Ω → C(J, R) is a strict lower random
solution for the RDI (3.1) if for all v1 ∈ S1

F (ω)(a), v2 ∈ S1
G(ω)(a), we have

a′(t, ω) ≤ v1(t, ω) + v2(t, ω), and a(0, ω) ≤ q(ω)

for all t ∈ J and ω ∈ Ω. Similarly, a strict upper random solution for the RDI (3.1)
on J × Ω is defined.
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We consider the following set of hypotheses in the sequel.

(A1) The multi-valued mapping (t, x, ω) 7→ F (t, x, ω) is jointly measurable.

(A2) F (t, x, ω) is closed and bounded for each (t, ω) ∈ J × Ω and x ∈ R.

(A3) F is integrably bounded on J × Ω × R.

(A4) There is a function ` ∈ M(Ω, L1(J, R)) such that for each ω ∈ Ω,

dH(F (t, x, ω), F (t, y, ω)) ≤ `(t, ω)|x− y| a.e. t ∈ J

for all x, y ∈ R.

(A5) The multi-valued mapping x 7→ S1
F (ω)(x) is right monotone increasing in x ∈

C(J, R) almost everywhere for t ∈ J .

(B1) The multi-valued mapping (t, x, ω) 7→ G(t, x, ω) is jointly measurable.

(B2) G(t, x, ω) is closed and bounded for each (t, ω) ∈ J × Ω and x ∈ R.

(B3) G is L1-Carathéodory.

(B4) The multi-valued mapping x 7→ S1
F (ω)(x) is right monotone increasing in x ∈

C(J, R) almost everywhere for t ∈ J .

(B5) RDI (3.1) has a strict lower random solution a and a strict upper random solution
b with a ≤ b on J × Ω.

Hypotheses (A1) − (A4) and (B1) − (B3) are common in the literature. Some nice
sufficient conditions for guarantying S1

F (ω) 6= ∅ appear in Deimling [2], and Lasota and

Opial [13]. Hypothesis (B5) holds, in particular, if the multi-valued random function F
is bounded on J×R×Ω. Hypotheses (A5) and (B4) are relatively new to the literature,
but special forms have appeared in the works of several authors. Some details on theses
hypotheses appear in Dhage [3, 4] and the references therein.

Theorem 3.1 Assume that the hypotheses (A1) − (A5) and (B1) − (B5) hold. If
‖`(ω)‖L1 < 1, then the RDI (3.1) has a random solution in [a, b] defined on J × Ω.

Proof : Let X = C(J, R). Define a random order interval [a, b] in X which is well
defined in view of hypothesis (B5). Now the RDI (3.1) is equivalent to the random
integral inclusion

x(t, ω) ∈ q(ω) +

∫ t

0

F (s, x(s, ω), ω) ds +

∫ t

0

G(s, x(s, ω), ω) ds, t ∈ J. (3.8)
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for all ω ∈ Ω (see Dhage [5] and the references therein). Define two multi-valued
operators A, B : Ω × [a, b] → Pp(X) by

A(ω)x =

{

u ∈ M(Ω, X)
∣

∣u(t, ω) =

∫ t

0

v1(s, ω) ds, v1 ∈ S1
F (ω)(x)

}

= (K1 ◦ S1
F (ω))(x)

(3.9)

and

B(ω)x =

{

u ∈ M(Ω, X)
∣

∣u(t, ω) = q(ω) +

∫ t

0

v2(s, ω) ds, v2 ∈ S1
F (ω)(x)

}

= (K2 ◦ S1
G(ω))(x)

(3.10)

where K1,K2 : M(Ω, L1(J, R))) → C(J, R) are continuous operators defined by

K1v1(t, ω) =

∫ t

0

v1(s, ω) ds. (3.11)

and

K2v2(t, ω) = q(ω) +

∫ t

0

v2(s, ω) ds. (3.12)

Clearly, the operators A(ω) and B(ω) are well defined in view of hypotheses (A3) and
(B3). We will show that A(ω) and B(ω) satisfy all the conditions of Corollary 2.2.

Step I : First, we show that A is a closed valued multi-valued random operator on
Ω× [a, b]. Observe that the operator A(ω) is equivalent to the composition K1◦S1

F (ω) of

two operators on L1(J, R), where K1 : M(Ω, L1(J, R)) → X is the continuous operator
defined by (3.3). To show A(ω) has closed values, it then suffices to prove that the
composition operator K1 ◦ S1

F (ω) has closed values on [a, b]. Let x ∈ [a, b] be arbitrary

and let {vn} be a sequence in S1
F (ω)(x) converging to v in measure. Then, by the

definition of S1
F (ω), vn(t, ω) ∈ F (t, x(t, ω), ω) a. e. for t ∈ J . Since F (t, x(t, ω), ω)

is closed, v(t, ω) ∈ F (t, x(t, ω), ω) a.e. for t ∈ J . Hence, v ∈ S1
G(ω)(x). As a result,

S1
G(ω)(x) is a closed set in L1(J, R) for each ω ∈ Ω. From the continuity of K1, it follows

that (K1◦S1
F (ω))(x) is a closed set in X. Therefore, A(ω) is a closed-valued multi-valued

operator on [a, b] for each ω ∈ Ω. Next, we show that A(ω) is a multi-valued random
operator on [a, b]. First, we show that the multi-valued mapping (ω, x) 7→ S1

F (ω)(x) is

measurable. Let f ∈ M(Ω, L1(J, R)) be arbitrary. Then we have

d(f, S1
F (ω)(x)) = inf{‖f(ω) − h(ω)‖L1 : h ∈ SF (ω)(x)}

= inf

{
∫ T

0

|f(t, ω)− h(t, ω)| dt : h ∈ SF (ω)(x)

}

=

∫ T

0

inf{|f(t, ω) − z| : z ∈ F (t, x(t, ω), ω)} dt
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=

∫ T

0

d(f(t, ω), F (t, x(t, ω), ω) dt.

But by hypothesis (A0), the mapping (t, x, ω) 7→ F (t, x, ω) is measurable and it is
known that the multi-valued mapping z 7→ d(z, F (t, x, ω) is continuous. Hence the
mapping multi-valued mapping (t, x, ω, z) 7→ d(z, F (t, x, ω)) measurable. It is also
known that the evaluation mapping (t, x(·)) = et(x(·)) = x(t) is continuous from J×X
into X. Hence we deduce that the mapping (t, x, ω, f) 7→ d(f(t, ω), F (t, x(t, ω), ω) is
measurable from J × X × Ω × L1(J, R) into R

+. Now the integral is the limit of the
finite sum of measurable functions, and so, d(f, S1

F (ω)(x)) is measurable. As a result,

the multi-valued mapping (·, ·) → S1
F (·)(·) is jointly measurable.

Define a function φ on J × X × Ω by

φ(t, x, ω) =
(

K1S
1
F (ω)

)

(x)(t) =

∫ t

0

F (s, x(s, ω, ω)) ds.

We shall show that φ(t, x, ω) is continuous in t in the Hausdorff metric on R. Let {tn}
be a sequence in J converging to t ∈ J . Then we have

dH(φ(tn, x, ω), φ(t, x, ω))

= dH

(
∫ tn

0

F (s, x(s, ω), ω) ds,

∫ t

0

F (s, x(s, ω), ω) ds

)

= dH

(
∫

J

χ[0,tn](s)F (s, x(s, ω), ω) ds,

∫

J

χ[0,t](s)F (s, x(s, ω), ω) ds

)

= dH

(
∫

J

χ[0,tn](s)F (s, x(s, ω), ω) ds,

∫

J

χ[0,t](s)F (s, x(s, ω), ω) ds

)

=

∫

J

|χ[0,tn](s) − χ[0,t](s)| ‖F (s, x(s, ω), ω)‖P ds

=

∫

J

|χ[0,tn](s) − χ[0,t](s)| hr(s, ω) ds

→ 0 as n → ∞.

Thus the multi-valued mapping t 7→ φ(t, x, ω) is continuous, and hence, and by Lemma
3.3, the mapping

(t, x, ω) 7→

∫ t

0

F (s, x(s, ω), ω) ds

is measurable. Consequently, A(ω) is a random multi-valued operator on [a, b]. Sim-
ilarly, it can be shown that B(ω) is a closed-valued multi-valued operator on [a, b]
and the mapping (t, x, ω) 7→

∫ t

0
G(s, x(s, ω), ω) ds is measurable. Again, since the

sum of two measurable multi-valued functions is measurable, the mapping (t, x, ω) 7→
q(ω) +

∫ t

0
G(s, x(s, ω), ω) ds is measurable.
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Step II : Next we show that A(ω) is a multi-valued contraction on X. Let x, y ∈ X
be any two element and let u1 ∈ A(ω)(x). Then u1 ∈ X and

u1(t, ω) =

∫ t

0

v1(s, ω) ds

for some v1 ∈ S1
F (ω)(x). Since

dH(F (t, x(t, ω), ω), F (t, y(t, ω), ω) ≤ `(t, ω)|x(t, ω)− y(t, ω)|,

we obtain that there exists a w ∈ F (t, y(t, ω), ω) such that

|v1(t, ω) − w| ≤ `(t, ω)|x(t, ω)− y(t, ω)|.

Thus, the multi-valued operator U defined by

U(t, ω) = S1
F (ω)(y)(t) ∩ K(ω)(t),

where
K(ω)(t) = {w| |v1(t, ω) − w| ≤ `(t, ω) |x(t, ω) − y(t, ω)|}

has nonempty values and is measurable. Let v2 be a measurable selection function for U
(which exists by the Kuratowski-Ryll-Nardzewski’s selection theorem (see [14]). Then
there exists v2 ∈ F (t, y(t, ω), ω) with |v1(t, ω) − v2(t, ω)| ≤ `(t, ω) |x(t, ω) − y(t, ω)|,
a.e. on J .

Define u2(t, ω) =
∫ t

0
v2(s, ω) ds. It follows that u2 ∈ A(ω)(y) and

|u1(t, ω) − u2(t, ω)| ≤

∣

∣

∣

∣

∫ t

0

v1(s, ω) ds−

∫ t

0

v2(s, ω) ds

∣

∣

∣

∣

≤

∫ t

0

|v1(s, ω) − v2(s, ω)| ds

≤

∫ t

0

`(t, ω)|x(s, ω)− y(s, ω)| ds

≤ ‖`(ω)‖L1‖x(ω) − y(ω)‖.

Taking the supremum over t, we obtain

‖u1(ω) − u2(ω)‖ ≤ ‖`(ω)‖L1‖x(ω) − y(ω)‖.

From this and the analogous inequality obtained by interchanging the roles of x and y
we obtain

dH(A(ω)(x), A(ω)(y)) ≤ ‖`(ω)‖L1‖x(ω) − y(ω)‖,

for all x, y ∈ X. This shows that A(ω) is a multi-valued random contraction on X,
since ‖`(ω)‖L1 < 1.
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Step III : Next, we show that B(ω) is completely continuous for each ω ∈ Ω.
First, we show that B(ω)([a, b]) is compact for each ω ∈ Ω. Let {yn(ω)} be a sequence
in B(ω)([a, b]) for some ω ∈ Ω. We will show that {yn(ω)} has a cluster point. This is
achieved by showing that {yn(ω)} is uniformly bounded and equi-continuous sequence
in X.

Case I : First, we show that {yn(ω)} is uniformly bounded sequence. By the
definition of {yn(ω)}, we have a vn(ω) ∈ S1

G(ω)(x) for some x ∈ [a, b] such that

yn(t, ω) = q(ω) +

∫ t

0

vn(s, ω) ds, t ∈ J.

Therefore,

|yn(t, ω)| ≤ |q(ω)|+

∫ t

0

|vn(s, ω)| ds

≤ |q(ω)|+

∫ t

0

‖F (s, xn(s, ω), ω)‖P ds

≤ |q(ω)|+

∫ T

0

hr(s, ω) ds

≤ |q(ω)|+ ‖hr(ω)‖L1

for all t ∈ J , where r = ‖a(ω)‖ + ‖b(ω)‖. Taking the supremum over t in the above
inequality yields,

‖yn(ω)‖ ≤ |q(ω)| + ‖hr(ω)‖L1

which shows that {yn(ω)} is a uniformly bounded sequence in Q(ω)([a, b]).

Next we show that {yn(ω)} is an equi-continuous sequence in Q(ω)([a, b]). Let
t, τ ∈ J . Then we have

|yn(t, ω) − yn(τ, ω)| ≤
∣

∣

∣

∫ t

0

vn(s, ω) ds −

∫ τ

0

vn(s, ω) ds
∣

∣

∣

≤
∣

∣

∣

∫ t

τ

vn(s, ω) ds
∣

∣

∣

≤
∣

∣

∣

∫ t

τ

hr(s, ω) ds
∣

∣

∣

≤ |p(t, ω) − p(τ, ω)|,

where p(t, ω) =

∫ t

0

hr(s, ω) ds. From the above inequality, it follows that

|yn(t, ω) − yn(τ, ω)| → 0 as t → τ .

This shows that {yn(ω)} is an equi-continuous sequence in B(ω)([a, b]). Now {yn(ω)}
is uniformly bounded and equi-continuous for each ω ∈ Ω, so it has a cluster point in
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view of Arzelà-Ascoli theorem. As a result, B(ω) is a compact multi-valued random
operator on [a, b].

Next we show that B(ω) is a upper semi-continuous multi-valued random operator
on [a, b]. Let {xn(ω)} be a sequence in X such that xn(ω) → x∗(ω). Let {yn(ω)}
be a sequence such that yn(ω) ∈ B(ω)xn and yn(ω) → y∗(ω). We will show that
y∗(ω) ∈ B(ω)x∗. Since yn(ω) ∈ B(ω)xn, there exists a vn(ω) ∈ S1

G(ω)(xn) such that

yn(t, ω) = q(ω) +

∫ t

0

vn(s, ω) ds, t ∈ J.

We must prove that there is a v∗(ω) ∈ S1
G(ω)(x∗) such that

y∗(t, ω) = q(ω) +

∫ t

0

v∗(s, ω) ds, t ∈ J.

Consider the continuous linear operator L : M(Ω, L1(J, R)) → C(J, R) defined by

Lv(t, ω) =

∫ t

0

v(s, ω) ds, t ∈ J.

Now
‖(yn(ω) − q(ω)) − (y∗(ω) − q(ω))‖ → 0 as n → ∞.

From lemma 3.2, it follows that L ◦ S1
G(ω) is a closed graph operator. Also, from the

definition of L, we have

yn(t, ω) − q(ω) ∈
(

L ◦ S1
G(ω)

)

(xn).

Since yn(ω) → y∗(ω), there is a point v∗(ω) ∈ S1
F (ω)(x∗) such that

y∗(t, ω) = q(ω) +

∫ t

0

v∗(s, ω) ds, t ∈ J.

This shows that B(ω) is a upper semi-continuous multi-valued random operator on
[a, b]. Thus, B(ω) is upper semi-continuous and compact and hence a completely
continuous multi-valued random operator on [a, b].

Step VI : Next, we show that A(ω) is a right monotone increasing and multi-
valued random operator on [a, b] into itself for each ω ∈ Ω. Let x, y ∈ [a, b] be such that

x ≤ y. Since (A5) holds, we have that S1
F (ω)(x)

i

≤ S1
F (ω)(y). Hence A(ω)(x)

i

≤ A(ω)(y).

Similarly, B(ω)(x)
i

≤ B(ω)(y). From (B5), it follows that a ≤ A(ω)a + B(ω)a and
A(ω)b + B(ω)b ≤ b for all ω ∈ Ω. Now A(ω) and B(ω) are right monotone increasing,
so we have for each ω ∈ Ω,

a ≤ A(ω)a + B(ω)a
i

≤ A(ω)x + B(ω)x
i

≤ A(ω)b + B(ω)b ≤ b
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for all x ∈ [a, b]. Hence, A(ω)x + B(ω)x ∈ [a, b] for all x ∈ [a, b]).

Thus, the multi-valued random operators A(ω) and B(ω) satisfy all the conditions
of Corollary 2.2 and hence the random operator inclusion x ∈ A(ω)x + B(ω)x has a
random solution.This implies that the RDI (3.1) has a random solution on J ×Ω. This
complete the proof. �

Next, we prove a result concerning the extremal random solutions of the RDI (3.1)
on J × Ω. We need the following hypothesis in the sequel.

(A6) For each ω ∈ Ω, the multi-valued mapping x 7→ F (t, x, ω) is strict monotone
increasing almost everywhere for t ∈ J .

(B6) For each ω ∈ Ω, the multi-valued mapping x 7→ F (t, x, ω) is strict monotone
increasing almost everywhere for t ∈ J .

Theorem 3.2 Assume that (A1)-(A4), (A6) and (B1)-(B4), (B6) hold. Then the RDI
(3.1) has a minimal random solution and a maximal random solution in [a, b] defined
on J × Ω.

Proof : The proof is quite similar to that of Theorem 3.1. Here, S1
F (ω)(x) 6= ∅

and S1
F (ω)(x) 6= ∅ for each x ∈ [a, b] in view of hypothesis (A3) and (B3). Also, the

multi-valued mapping x 7→ S1
F (ω)(x) and x 7→ S1

G(ω)(x) are strict monotone increasing

on [a, b]. Consequently, the multi-valued random operators A(ω) and B(ω) defined
respectively by (3.2) and (3.2) are strict monotone increasing on [a, b]. Hence, the
desired result follows by an application of Corollary 2.5. �
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