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ON THE EXISTENCE OF MILD SOLUTIONS FOR NEUTRAL
FUNCTIONAL DIFFERENTIAL INCLUSIONS IN BANACH SPACE

L.GUEDDA

ABSTRACT. A theorem on existence of mild solutions for partial neutral functional
differential inclusions with unbounded linear part generating a noncompact semigroup
in Banach space is established.

1. INTRODUCTION

Semilinear neutral functional differential inclusion has been the object of many stud-
ies by many researchers in the recent years. The method which consists in defining
an integral multioperator for wich fixed points set coincides whith the solutions set of
differential inclusion has been often applied to existence problems. In the case of inclu-
sions on infinite dimensional spaces its direct application is complicated by the fact that
the integral multioperator is noncompact except if one impose a severe compactness
assumption.

In this paper using the method of condensing integral multioperators and fractional
power of closed operators theory, we study the existence of mild solutions for initial
value problems for first order semilinear neutral functional differential inclusions in a
separable Banach space E for the form:

(1.1) % [x(t) — h(t,z:)] € Ax(t)+ F(t,x),a.e. t €0,T]

(1.2) z(t) = (), t €[-r0],
where A : D(A) C E — FE is the infinitesimal generator of an uniformly bounded
analytic semigroup of linear operators, {e'},>o on a separable Banach space E; the
multimap F : [0,7] x C([-r,0],E) — P(E) and h:[0,T] x C([-r,0],FE) — E, are
given functions, 0 < r < oo, € C([-r,0], E), where P(E) denotes the class of all
nonempty subsets of E, and C([—r,0], E) denotes the space of continuous functions
from [—7,0] to E.

For any continuous function x defined on [—r, T] and any ¢ € [0, T], we denote by x;

the element of C'([—r,0], F) defined by
z(0) = x(t +0),0 € [-r,0].
For any u € C([—r,0], E) the norm of u is defined by
lull = sup{[[u(0)]| - 6 € [-r, 0]}.
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The function z;(.) represents the history of the state from time ¢ — r, up the present
time ¢.

Our work was motivated by the paper of E. Hernandez [3]. Using the theory of
condensing operators, one can clarify certain conditions given in [3] in the form of es-
timates. Let us mention that existence results for semilinear differential inclusion with
x-regularity condition for the multivalued nonlinearity, where y is the Hausdorf mea-
sure of noncompactness, were obtained in the works of N.S. Papageorgiou [9, 10], and
existence results for impulsive neutral functional differential inclusion by S.K. Ntouyas
[7]. See also [2, 5, 6]. A general existence theorem was given by V.V. Obukhovskii [§]
for a semilinear functional differential inclusions with an analytic semigroup and upper
Carathéodory type nonlinearity. In case where the linear part generates a strongly
continuous semigroup, and the multivalued nonlinearity satisfies simple and general
conditions of boundedness and y-regularity, existence results were obtained in the pa-
per of J.F. Couchouron and M.I. Kamenskii [1]. In this paper we use the results given
in [1] and in the book of M. Kamenskii et al. [4] to study the multivalued part of our
integral multioperators.

2. PRELIMINARIES

Along this work, E will be a separable Banach space provided with norm |.||,
A : D(A) C E — E is the infinitesimal generator of an uniformly bounded ana-
lytic semigroup of linear operators, {e'};q, on a separable Banach space E. We will
assume that 0 € p(A) and that ||e*!|| < M for all t € [0,T]. Under these conditions
it is possible to define the fractional power (—A)* 0 < a < 1, as closed linear oper-
ator on its domain D(—A)*. Furthermore, D(—A)® is dense in £ and the function
|z||, = [[(=A)*x|| defines a norm in D(—A)*. If X, is the space D(—A)* endowed
with the norm |.||,, then X, is a Banach space and there exists ¢, > 0 such that
H(—A)aeAtH < f- for t > 0. Also the inclusion X, — Xgfor 0 < 8 < a < 1is
continuous.

For additional details respect of semigroup theory, we refer the reader to Pazy [11].

Let Y™ be the positive cone of an ordered Banach space (Y, <). A function ¥
defined on the set of all bounded subsets of the Banach space X with values in YT is

called a measure of noncompactness on X if ¥(Q) = ¥(coQ2) for all bounded subsets

Q) C X, where co) denote the closed convex hull of 2. The measure ¥ is called nonsin-
gular if for every a € X, Q € P(X), V({a} UQ) = ¥(Q), monotone, if 2y 2 € P(X)
and Qp C Qpimplly U (Qy) < ¥(€;). One of most important example of measure of
noncompactness, is the Hausdorf measure of noncompactness defined on each bounded
set ) of X by:

x(2) = inf{e > 0;2 has a finite e-net in X'}

Let K(X) denotes the class of compact subsets of X, Kv(X) denotes the class of

compact convex subsets of X, and (@, d) a metric space.
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A multimap G : Z — K(X) is called ¥ —condensing if for every bounded set 2 C F,
that is not relatively compact we have W(G(Q)) # ¥(€), where Z C X.

A multivalued G : X — K(Q) is u.s.c.at a point x € X, if for every € > 0 there
exists neighborhood V' (x) such that G(2') C W.(G(x)), for every 2’ € V(z). Here by
W.(A) we denote the e-neighborhood of a set A, i.e. W.(A) ={y €Y :d(y,A) < e},
where d(y, A) = inf e d(x,y).

A multimap G : X — @ is quasicompact if its restriction to every compact subset
A C X is compact.

The sequence {f,}5°, C L'([0,T7], X) is semicompact if it is integrably bounded and
the set {f,(¢)}52,is relatlvely compact for almost every ¢ € [0, T].

Any semicompact sequence in L'([0, T], X) is weakly compact in L'([0, 7], X).

A function f : [0,7] — X is said to be strongly measurable if there exists a sequence
{fn} of step functions such that || f(t) — f.(¢)|| — 0 as n — oo for a.e. t € [0,T].

For all this definitions see for example [4].

In the following C([—r, T], F) is the space of continuous functions from [—r, T| to E
endowed with the supremum norm. For any x € C([-r,T], E),

[2lly = sup {[l«@)] : ¢ € [=r, T1}.
In section 3 we establish some existence results to the problem (1.1)-(1.2) using the
following well known results. (See [4]).

Lemma 2.1. Let E be a separable Banach space and G : [0,T] — P(E) an integrable,
integrably bounded multifunction such that

X (G(1) < q(t)
for a.e. t € [0,T] where g € L} ([0,T]). Then for allt € [0,T]

/ (Gl ds < / (s,

Lemma 2.2. Let E be a separable Banach space and S an operator
S: LY([0,T], E) — C([0,T], E)
which satisfies the following conditions:
S1) There ezists D > 0 such that

HSf(t) H<D/|yf s)|ds, 0<t<T

for every f,g € L*([0,T], E
S2) For any compact K C E cmd sequence {f,}°2, C LY[0,T),E) such that
{fn®)}>2, € K for aet € [0,T] the weak convergence fo — f, implies

St, — Sf.

Then:
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is such that || f.(t)]] < 6(t)

(i) If the sequence of functions {f,}°2, C L'([0,T], E)
) < ((t) a.e. t €[0,T], where

forallm=1,2,... a.e. t €0, T] and x({fn}22,
¢ € LL([0,T7], then

X (S {fn(t) <2D/§

(ii) For every semicomapct sequence { f,}ooy C L'([0,T]; E) the sequence {S fu}oZ,
is relatively compact in C([0,T]; E), and; moreover, if f, — fo then S f, — S

Jo-

An example of this operator is the operator S : L'([0,T], E) — C([0,T], E) defined
for every f € L*([0,T], E) by

t
Sf(t) = et +/ eA1=9) f(s)ds,
0
where o € E, and A is an unbounded linear operator generating a Cy—semigroup in
E (see [1]).

Lemma 2.3. If G is a convez closed subset of a Banach space E, andT' : G — Kv(G)

is closed © condensing, where © is nonsingular measure of noncompactness defined on
subsets of G, then Fixl # ().

Lemma 2.4. Let Z be a closed subset of a Banach space E and F : Z — K(FE) a
closed multimap, which s a-condensing on every bounded subset of Z, where a is a
monotone measure of noncompactness. If the fized points set FixF is bounded, then it
18 compact.

3. EXISTENCE RESULTS

Let us define what we mean by a mild solution of the problem (1.1)-(1.2).

Definition 3.1. A function x € C([—r,T], E]) is said to be a mild solution of the
problem (1.1)-(1.2) if the function s — Ae**=*)h(s, ) is integrable on [0,t) for each
0<t<T, and there exists f € L'([0,T], E), f(t) € F(t,z;) a.e. t € [0,T)], such that

£(t) = eMp(0) — h(0,9) + itz + / A £ (5)ds

¢
+/ A (s x)ds, te[0,T],
0
and
x(t) = p(t), te[-r0].
To establish our results we consider the following conditions:
Suppose that the multimap F': [0, 7] x C([-r, 0], E) — Kv(FE) satisfies the following

properties:
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F1) The multifunction F'(-,u) has a strongly measurable selection for every
ue C([-r,0], E).
F2) The multimap F': (t,-) — Kv(FE) is upper semicontinuous for e.a. ¢t € [0, 7.
F3) There exists a function 8 € L*([0,T],R") such that, for all u € C([-r,0], E),
()l < 8 + [lu(0)]), a-e. t € [0,T].
F4) There exists a function x € L'([0, T],R") such that for all Q c C([-r,0], E),
we have
VE( Q) < KOXQ)), ae. t € [0,7],
where, for t € [0,7T], 2(0) = {u(0);u € Q}.
Assume also that
H) There exist constants 0 < o < 1,0 < d; < 1,dy >0, w >0, and § > 0, such
that h is X,-valued, and
(1) For all u € C([-r,0], E] and any t € [0,T]
I(=A)*ht, w)|| < dy u(0)] + da.
(17) For all u,v € C([-r,0], E] and t € [0, T]
I(=A)*h(t, u) = (=A)"h(s, v)|| < 6]u(0) —v(0)]-
(i77) for all bounded set Q C C([-r,0], E)
X((—A)“h(t, Q) <wx(2(0)), a.e. t€]0,T].

We note that from assumptions (F'1) — (F'3) it follows that the superposition mul-

tioperator
selp : C([_Tv T]v E] - P(Ll([O,T], E))
defined for x € C([—r, T}, E] by:
selp(z) = {f € LY([0,T),E), f(t) € F(t,z;),a.e. t €[0,T]}

is correctly defined (see [4]) and is weakly closed in the following sense: if the sequences
{z"}5e, € C([=n, 11, E] {fu}oZs C LY([0, T}, E), fu(t) € F(t,2}), ae. t € [0,T],n =1
are such that 2" — 2%, f, — fo , then fo(t) € F(t,2Y) a.e. t € [0,T] (see [4]).

Also from the assumption (H) — (ii), the function (—A)*h is continuous. Since the
family {eAt} >0 18 an analytic semigroup [11], the operator function s — AeAlt=3) g
continuous in the uniform operator topology on [0, ¢) which from the estimate

1= hs,ws)l| = [[(=A) =2t (=A))h(s, z.)
Cl a
< W(dl |5(0)[| + da2)
Cl a
W@l iy + dz)

and the Bochner’s theorem implies that AeA=*)h(s, x,) is integrable on [0,t).
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Now we shall prove our main result.
Theorem 3.1. Let the assumptions (F1) — (F'4) and (H) be satisfied. If
e {0 (—4)<) s | (—4)<] } <1

then the solution set of the problem (1.1)-(1.2) is a nonempty compact subset of the
space C([—r,T], E).

Proof. In the space C([—r,T], E], we define the operator I' : C([-r,T], E] —
P(C([-r,T], E]) in the following way:

P(l‘)(t) = {y S C([_Tv T]v E] : y(t) = Qp(t)v te [_ra 0] and

y(t) = S(f)(E)+ h(t,x) + /t AeA(t_s)h(s,:cs)ds; fort €]0,T] }

0
where f € selp(z), and the operator S : L([0,T], E) — C([0,T], E) is defined by

S0 = Mo+ [ AN (s)ds, te 0.7]
0
where zo = ¢(0) — h(0, p).

Remark 3.1. [t is clear that the operator I' is well defined, and the fixed points of I’
are mild solutions to (1.1)-(1.2)

The proof will be given in four steps.

Step 1. The multivalued operator I' is closed.

3
The operator I' can be written in the form I' = ) "T'; where the operators I';,i = 1,2,3

1
are defined as follows: the multivalued operator I'y : C([—r,T], E) — P(C([-r,T], E))

by
t) = (t) — h(t, @), [—7,0]
Fia(?) :{ 58 :ggf()t), - te [0, 7] }
where f € Selg(x), the operator I'y : C([-r,T], E) — C([-r,T],E) b

h(t,p), te[-r0
Dyx(t) = { hgt,ft)), te {O,T]]

and the operator I's : C([-r,T], E) — C([-r,T], E) by
0 t € [—r0]
F — ? ?
s (1) { [5 AeA=9n(s, x)ds, t € [0,T).
Let {z" = < {2 e — 20 2" e T((2"),n > 1, and 2™ — 2°.
Let {fn}, € L*([0,T], E) an arbitrary sequence such that, for n > 1

fn(t) € F(t,z}),a.e. t € [0,T],
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and

n _{ o(t), te-r0],
T S(f)(t) + Rt ap) + [7 AeAtn(s, a)ds, t € [0,T).

The operator S satisfies the properties S1 and S2 of the Lemma 2.2, since e
is a strongly continuous operator (see [1]). Hypothesis (F'3) implies that {f,}>°, is
integrably bounded, hypothesis (F'4) implies that x({ f.(¢)}22, < k(t)x({z"(¢)}>2, =0
for a.e. t € [0,7T], thus (F3) and (F'4) implies that{f,}>, is semicompact sequence.
Consequently {f,}22, is weakly compact in L'([0,T], E). So we can assume without
loss of generality, that f, — fo.

Lemma 2.2 implies that Sf, — Sfo in C([0,T], E) and by using the fact that the
operator selp is closed, we get fo € selp(2°). Consequently

0 t) = o(t) — h(t, ), —r, 0],
20 = {25 e

At

) y(t) = olt) — h(t. @), t € [-r0],
(3.1) e )= {() shin,  telo.1)

in the space C([—r,T], E), with fy € selx(z°).
On the other hand, we have the inequalities:

”Tgxo(t)—Tgx"(t)}} = Hh(t x? — h(t, x? H
< A=A hlt, 2p) = (=A)h(t, ) |
< o0[|(=4 th IREAO]
< O[[(=A) 7 []2" = =",

for any t € [0,T].
For t € [—r, 0] we have:

[T22”(8) = Toz™ ()| = [[A(t, @) = h(t, ) || = 0.
Then
(3:2) IP2a® = Toa™ ||, < 0[(=A) | []a" — =",
Using hypothesis (H) — (ii) and the estimate in the family {Ae'} 1~oWe have:

t
[Ae E=)n(s,2m) — Ae(t_s)h(s,xg)} ds

< /HAe(t s) — Aet9) s,xg)Hds
t

< o)l o =7l /O J(—ay=eete=o as
t

< 0]l o =7, [ s
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—ap C1=aT" n
< oAy =T o e,
for any ¢ € [0,T]. Then
0 n —a Cl—aTa 0 n
59 I =t < oAy ST o )

From the inequalities (3.1)-(3.3) follows immediately that 2" — 2° with

o _ | (), te[-r0]
2 (t) = { S(fo)(t) + h(t,x?) + fot AeAt=9) (s, 2%ds, t€[0,T) }

where | fo € selp(2°) and 2° € T'(2°) and hence T is closed.
Now in the space C([—r, T, E') we consider the measure of noncompactness O defined
in the following way: for every bounded subset Q C C([—r, T}, E])

O(Q) = (x(Q[=r,0]), ¥(2), modcs2) ,

where

W(Q) = sup (e x (1)),

te[0,7
and mod,.) is the module of equicontinuity of the set Q C C([—r,T], E) given by:

dQ = li t) — z(t
mod, 55%22&53?2@”33( 1) — (b))

and L > 0 is chosen so that
t

sup M [ e P9 k(s)ds < q <1
te[0,7 0

t
sup M [ e 9)3(s)ds < ¢ < 1

t€[0,T] 0

IA

t efL(tfs)
sup dl/ 71_01,ads q3 < 1
te[0,T] o (t—s)l-@

IA

t efL(tfs)
sup ds / T ds < <]
te[0,T] 0 (t - 5)1 ¢

t
Ci—a
sup w/ %e’L(t’S)dS < g <1
tejo, 7] Jo (t —s)t-

where M is the constant from the estimation in the family of {eAt} >0 the constants

dy, dsy from (H) — (i), the function § from the hypothesis (F'3), and the function x from
the hypothesis (F'4).
From the Arzela-Ascoli theorem, the measure © give a nonsingular and regular

measure of noncompactness in C([—r,T], E]).
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Remark 3.2. If ¢ € LY([0,T], E), it is clear that

sup
tel0,T

Step 2. The miltioperator I is © condensing on every bounded subset of C'([—r, T], E).

t
/ e’L(t’s)g(s)dS
1J0

— 0.
L—+00

Let Q C C([-r,T], E) be a bounded subset such that

(3.4)

o(I'(©?) = (),

where the inequality is taking in the sense of the order in R? induced by the positive
cone R? . We will show that (3.3) implies that Q is relatively compact in C([—r,T], E).

From the inequality (3.4) follows immediately that

(3.5)

Indeed, we have

X(([=r,0])) = 0.

X [(CQ)[=r, 0]] = x{e(t), t € [=r, 0]} = 0 = x(Q-r,0]) > 0.
We give now an upper estimate for x(I'2(¢)), for any ¢ € [0, T7.

Using (F'4), for t € [0, 7], we have
X({f(5), f € selp()}

(VAN VAN VAR VAN

Then, from Remark 3.2 and Lemma 2.1 with D = M, we get

sup e~ "X({Sf(t)f € selp(Q)} <
t€[0,T]
<
(3.6) <

t
M/ e L=k (s)ds sup e Ly (Q(t))
0

t€[0,T]

@1 sup e My (Q(1)).
t€[0,T]

V()

Since the measure y is monotone, from H; — (éi7), for t € [0, T] we get:

e Hx(h(t, Q) < ey ((A)’a(—A)O‘h(t,Qt))
< [[(=A) [ e M x(h((—=A)*hlt, )
< wl[(=A) e x(u(0))
< w|[ (=A™ e x(Q)
< wll(=4)7 S ]e‘”x(ﬂ(t))
< wH(—A)““H\II(Q).



Then
(3.7) sup e ' x(h(t, ) < w [[(—A)7]| T().

t€[0,T]
Let now t € [0,T] and s € [0,t]. The function G : s — AeAt=9)h(s,Q,) is integrable
and integrably bounded. Indeed for any x € 2 we have:

|~ h(s, )| = [[(~A)eA () h(s, )|
< G

(t —s)l—@

< C;‘)‘i(

(t —s)l—@

dy ||z (0)]| + da)

dy [|z]l, + da).

Since

X ((—A)eA(t_S)h(s, ZL‘S)) X ((—A)l_o‘eA(t_s)(—A)o‘h(s, ZL‘S))

< (=) et x (= A)*h(s, o))
Cl—oz

< WWX(95<O))
Cl—oz

< WWX(Q(S))
wcl—a

Ls —Ls 0
S ot e X (€(s))

wclfa
(t —s)l—@

using Lemma 2.1, we get for every t € [0, T]

"7 T(Q),

Wlea

t t
e_lt/ X((—A)eA(t_s)h(s,xs)) ds < \II(Q)/ feL(t_S)ds
0 o (t—s)t7
t —L(t-S5)
< W(Q) sup / wCiac - ds.
o Jo (=57
Therefore
t
(3.8) sup e”/ X ((—A)eA(t’s)h(s, ) ds < g5 (€2).
t€(0,T] 0

From the inequalities (3.6)-(3.8), remark 3.2 and the fact that ||(—A)%w]| < 1, it
follows that:

U(rQ) = t:;épﬂe’ux {S(f)(t) + h(t, Q) + /Ot A= p(s, Qs)ds}
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t
\p(Q[ sup M [ e H=9g(s)ds + || (= A)* || w

te[0,T] 0

t C,a
+w sup / (a)ile“ts)ds]
0

IN

te[0,T] t— 5)1 @
< U(Q) [+ g5 +wl[(=A4)]
< Y().
But the inequality (3.3) implies that U(I'Q?) > ¥(€2) and consequently
(3.9) T(Q) = 0.

We shall give now an upper estimate for mod.I'(2. We have shown that

X{S()(), f € selp(z),z € Q} =0,

for any ¢t € [0,7]. From the conditions (F3) and (F4) follows that the sequence
{f € selp(x),z € Q} is semicompact in L'([0,T], E), and hence the set

{y:y(t) = SF(1),t € [0, 7], f € selp(x),x € 2}
is relatively compact in C([0,T], E) (see [1]). Therefore, the set

ra = {y(t) = cp(t) - h(t’ (p),t € [_Tv O];
y(t)=Sf(t),t €[0,T], f € selp(x),x € Q}

is relatively compact in C'([—r, T, E'). Consequently:
(3.10) mod.I'1§2 = 0.

Now we will show that the set

_ (t) = OtAeA(t*S)h(s,xS)ds, te€0,T]
Faft = { o0) ) te [0, }

where = € , is equicontinuous on C([—r, T}, E]).
Let 0 <t <t <T,and z € Q2. We have

t t
/ [AeA(t/s)h(s,xs) —/ AeA(ts)h(s,xs)] ds
0

0

VAN

t/
+ / AeM = h(s, z,)ds

t

¢
(eA(t/*t) —I)/ At n(s, x,)ds
0

IA

¢
(eA(t/_t) —I)/ A (s, ) ds
0

(t'— 1)~

+Cl_a(d1sug 2]l + d2)
jAS]
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Since (fg AeAt=3)p(s, Qs)ds) =0, for all t € [0, T] the first term on the right hand
side converge to zero when t' — t uniformly on x € €. As consequence we have
(3.11) mod. I3 = 0.

From the condition (H1) — (i7) follows immediately that
(3.12) mod 'y < H(—A)_O‘H Omod, Q.

Indeed for —r <t < s <0, and x € €2, we have

IT2(t) = Tox(s)]| = [|A(t, ) — h(s, @)l| = 0.
For 0 <t <s<T,and z € (, we have
ITaa(t) = Toa(s) | = (bt ) — h(s,z)]| <
[(=A) (= A)*h(t,z0) — (—A) " (=A) (s, ;)]
0 [|(=A) 7 l2(0) = 2, (0)|| <
0| (=A)[[ llz(t) = z(s)]] -

IA AN A

3
Since mod . I'Q? < > mod.I'; from inequalities (3.9)-(3.12), we get

=1

(3.13) mod. I < [|(=A)~*|| #mod .
Since ||(—A)~|| 0 < 1, from the last inequality and the inequality (3.4) follows
(3.14) mod.) = 0.

Finally from the inequalities (3.5), (3.9) and (3.14) we get

O((©2) = (0,0,0).
Hence the subset 2 is relatively compact, concluding the proof of Step 2.
Now in the space C([—r,T], E) we introduce the equivalent norm, given by

lzll, = sup [lz(®)][ + sup =" [[z(t)]
t€[0,T]

te[—r,0

where L is a positive constant.

Consider the ball
B,(0) ={z € C([-r,T], E); [lz].} <7
where 7 is a constant chosen so that
- Mol +[lell + [(=A)"*[d2 + ¢2 + @
B L—[[[(=A)~[ld1 + g2 + g]
where xg = ¢(0) — h(0, ). Note that the last inequality implies

[dy || (=A)7|| + g2 + g5] 7 + M [|zo || + o]l + ||(=A) || d2 + g2 + g4 < 7.
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Step 3. The multioperator I' maps the ball B,.(0) into itself.
Let z € B,(0) and y € I'(x) with

t
y(t) = etz +  h(t, z) +/ A=) f(5)ds+
0

t
+/ A (s, x)ds, te[0,T],
0

y@) = ¢<t>7t € [_T7 0] )
where f € selp(x).
Using the conditions (F'3) and (H) — (¢), we have, for any ¢ € [0, 7]

Myl < e [leao H
+e | (=A) [ I(=A)*h(t, z) |

/ 49| 1)l ds +
Lt/o HAeA(t’s)h(s,:cs)Hds

A& [dy [l (0)]] + o
/ B(s) (1 + [22(0)]])ds

Lt/o H(_A)lfa 6A(t—s)H [d1 ||x5(0)|| + d2] ds

IA
|
g
=
=)
=

< e MM ol + [|(=A) [ e [du |2 ()]| + do]
e / Pt B 1+ a(s) s
/ H 1 aeA(t—s)H 6Lse—Ls [dl ||IL‘($)|| +d2] ds
< M ol + -y =) s s e (o)
€,
+M/ Lt=9) 3(s) ds+M/ ~Lt=9)3(s)ds s[up}e ()|
t€[0,T
t —L(t S)Cl
—l—d/—dssu e |z
[ s s e a0
t efL (t—s) lea
d £ Mee
i [ e
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Hence

sup e [ly(@)| < [[(=A)7||di + a2+ a5] sup ™ [Jz(t)] +
te[0,T] te[0,T]

+M [|zol| + H(_A)WH dy+ @2+ qu
[H(—A)_aH di + ¢z + 3] |||,

+M [|zo| + H(_A)WH dy+ @2+ qu
[H(—A)_aH di + ¢ + g3] v+ M ||zo]|
+[(—A)7|| d2 + @2 + a4

IN

IN

It results that:

lyll, = sup [ly(®)]l + sup e ™ [ly(t)]
te[—r,0] t€[0,T]

< el + sup e  [ly(1)]]
te[0,7

< (A di+ a2+ ] v+ Mlzoll + o
+ H(_A)WH dy + g2 + q4
< r
According to Lemma 2.3, the problem (1.1)-(1.2) has at last one solution.

Step 4. The solutions set is compact.

The solution set is a priori bounded. In fact, if x is a solution of the problem
(1.1)-(1.2), then as above for t € [—r,T] we have

1
A [T 7

+ (A + i) o

! d1C—q
+M 18] 1 +/0 [Mﬁ(sHW

[lpll + M [z

| hetoas]

Using Gronwall’s type inequality, we get
el < &€

where

1

€ = torcaa el Ml

TOé
+ (H(—A)“H + Cla;) da + M || 8|11
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and

1 d1Ci_q,
— M||B||,, + T8
Y 1 — ||(_A)_a|| dl || ||L1 o

To complete the proof it remains to apply Lemma 2.4.
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