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Abstract

The existence of a positive solution is obtained for the nth order right
focal boundary value problem y(n) = f(x, y), 0 < x ≤ 1, y(i)(0) =
y(n−2)(p) = y(n−1)(1) = 0, i = 0, · · · , n − 3, where 1

2 < p < 1 is
fixed and where f(x, y) is singular at x = 0, y = 0, and possibly at
y = ∞. The method applies a fixed-point theorem for mappings that
are decreasing with respect to a cone.
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1 Introduction

In this paper, we establish the existence of a positive solution for the nth

order right focal boundary value problem,

y(n) = f(x, y), for x ∈ (0, 1], (1)

y(i)(0) = y(n−2)(p) = y(n−1)(1) = 0, i = 0, · · · , n − 3, (2)

where 1
2

< p < 1 is fixed and f(x, y) is singular at x = 0, y = 0, and may be
singular at y = ∞.
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We assume the following conditions hold for f :

(H1) f(x, y) : (0, 1]× (0,∞) −→ (0,∞) is continuous, and f(x, y) is decreas-
ing in y for every x.

(H2) limy→0+ f(x, y) = +∞ and limy→∞ f(x, y) = 0 uniformly on compact
subsets of (0, 1].

We reduce the problem to a third order integro-differential problem. We
establish decreasing operators for which we find fixed points that are solutions
to this third order problem. Then, we use Gatica, Oliker, and Waltman
methods to find a positive solution to the integro-differential third order
problem. We integrate the positive solution n−3 times to obtain the positive
solution to the nth order right focal boundary value problem. The role of
1
2

< p < 1 is fundamental for the positivity of the Green’s function which in
turn is fundamental for the positivity of desired solutions. The existence of
positive solutions to a similar third order right focal boundary value problem
was established in [22].

Singular boundary value problems for ordinary differential equations have
arisen in numerous applications, especially when only positive solutions are
useful. For example, when n = 2, Taliaferro [28] has given a nice treatment
of the general problem, Callegari and Nachman [9] have studied existence
questions of this type in boundary layer theory, and Lunning and Perry [21]
have established constructive results for generalized Emden-Fowler boundary
value problems. Also, Bandle, Sperb, and Stakgold [3] and Bobisud, et al.
[6], [7], [8], have obtained results for singular boundary value problems that
arise in reaction-diffusion theory, while Callegari and Nachman [10] have
considered such boundary conditions in non-Newtonian fluid theory as well
as in the study of pseudoplastic fluids. Nachman and Callegari point to
applications in glacial advance and transport of coal slurries down conveyor
belts. See [10] for references. Other applications for these boundary value
problems appear in problems such as in draining flows [1], [5] and semi-
positone and positone problems [2].

In addition, much attention has been devoted to theoretical questions for
singular boundary value problems. In some studies on singular boundary
value problems, the underlying technique has been to obtain a priori esti-
mates on solutions to an associated two-parameter family of problems, and
then use these bounds along with topological transversality theorems to ob-
tain solutions of the original problem; for example, see Granas, Guenther,
and Lee [15] and Dunninger and Kurtz [11]. This method has been fairly
exploited in a number of recent papers by O’Regan, [24], [25], [26]. Baxley
[4] also used to some degree this latter technique in his work on singular
boundary value problems for membrane response of a spherical cap. Wei [30]
gave necessary and sufficient conditions for the existence of positive solutions
for the singular Emden-Fowler equation satisfying Sturm-Liouville boundary
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conditions employing upper and lower solutions methods. Guoliang [16] also
gave necessary and sufficient conditions for a higher order singular boundary
value problem, using superlinear and sublinear conditions to show the exis-
tence of a positive solution.

2 Definitions and Properties of Cones

In this section, we begin by giving some definitions and some properties of
cones in a Banach space.

Let (B, ‖ · ‖) be a real Banach space. A nonempty set K ⊂ B is called a
cone if the following conditions are satisfied:
(a) the set K is closed;
(b) if u, v ∈ K then αu + βv ∈ K, for all α, β ≥ 0;
(c) u,−u ∈ K imply u = 0.
Given a cone, K, a partial order, ≤, is induced on B by x ≤ y, for x, y ∈ B iff
y−x ∈ K. (For clarity we sometimes write x ≤ y (w.r.t. K)). If x, y ∈ B with
x ≤ y , let < x, y > denote the closed order interval between x and y given
by, < x, y >= {z ∈ K|x ≤ z ≤ y}. A cone K is normal in B provided there
exists δ > 0 such that ‖ e1 +e2 ‖≥ δ, for all e1, e2 ∈ K with ‖ e1 ‖=‖ e2 ‖= 1.

Remark: If K is a normal cone in B, then closed order intervals are norm
bounded.

3 Gatica, Oliker, and Waltman Fixed Point

Theorem

Now we state the fixed point theorem due to Gatica, Oliker, and Waltman
on which most of the results of this paper depend.

Theorem 3.1 Let B be a Banach space, K a normal cone in B, C a subset
of K such that if x, y are elements of C, x ≤ y, then < x, y > is contained in
C, and let T:C → K be a continuous decreasing mapping which is compact on
any closed order interval contained in C . Suppose there exists x0 ∈ C such
that T 2(x0) is defined (where T 2(x0) = T (Tx0)), and furthermore, Tx0 and
T 2x0 are order comparable to x0. Then T has a fixed point in C provided that
either,
(I) Tx0 ≤ x0 and T 2x0 ≤ x0, or Tx0 ≥ x0 and T 2x0 ≥ x0, or
(II) The complete sequence of iterates {T nx0}

∞
n=0 is defined, and there exists

y0 ∈ C such that y0 ≤ T nx0, for every n.
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We consider the following Banach space, B, with associated norm, ‖ · ‖:

B = {u : [0, 1] → R | u is continuous},

‖u‖ = sup
x∈[0,1]

|u(x)|.

We also define a cone, K, in B by,

K = {u ∈ B|u(x) ≥ 0, g(x)u(p) ≤ u(x) ≤ u(p) and u(x) is concave on [0, 1]},

where

g(x) =
x(2p − x)

p2
, for 0 ≤ x ≤ 1.

4 The Integral Operator

In this section, we will define a decreasing operator T that will allow us to
use the stated fixed point theorem.

First, we define k(x) by,

k(x) =

∫ x

0

(x − s)n−4

(n − 4)!
g(s)ds,

Given g(x) and k(x) above, we define gθ(x) and kθ(x), for θ > 0, by

gθ(x) = θ · g(x),

and
kθ(x) = θ · k(x),

and we will assume hereafter

(H3)
∫ 1

0
f(x, kθ(x))dx < ∞, for each θ > 0.

We note that the function f(x, y) = 1
4
√

xy
also satisfies (H3).

In particular, for each θ > 0,
∫ 1

0
f(x, gθ(x))dx = 4

√

(p2

θ
)[ 2

4
√

2p
+ 4 (2p−1)

3
4 −(2p)

3
4

3(
√

2p)
< ∞.

If y is a solution of (1)-(2), then

u(x) = y(n−3)(x),

is positive and concave. Hence, if in addition u ∈ K, then ||u|| = u(p).
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Also, we get,

u′′′ = f
(

x,

∫ x

0

(x − s)n−4

(n − 4)!
u(s)ds

)

, (3)

u(0) = u′(p) = u′′(1) = 0. (4)

Since g(x) is concave with g(0) = 0 and ||g(x)|| = g(p), then we observe,
that for each positive solution, u(x), of (3)-(4), there is some θ > 0, such
that gθ(x) ≤ u(x), for 0 ≤ x ≤ 1.

Next, we let D ⊆ K be defined by

D = {u ∈ K| there exists θ(u) > 0 so that gθ(x) ≤ u(x), 0 ≤ x ≤ 1}.

We note that for each u ∈ K,

‖u‖ = sup
x∈[0,1]

|u(x)| = u(p).

Next, we define an integral operator T : D → K by

(T u)(x) =

∫ 1

0

G(x, t)f
(

t,

∫ t

0

(t − s)n−4

(n − 4)!
u(s)ds

)

dt,

where G(x, t) is the Green’s function for y′′′ = 0 satisfying (4), and given by

G(x, t) =























x(2t−x)
2

, x ≤ t ≤ p ,
t2

2
, t ≤ x, t ≤ p ,

x(2p−x)
2

, x ≤ t, t ≥ p ,
x(2p−x)

2
+ (x−t)2

2
, x ≥ t ≥ p ;

see [14] .

First, we show T is a decreasing operator. Let u ∈ D be given. Then there
exists θ > 0 such that gθ(x) ≤ u(x). Then, by condition (H1), f(x, u(x)) ≤
f(x, gθ(x)). Now, let u(x) ≤ v(x) for u(x), v(x) ∈ D. Then,

∫ x

0

(x − s)n−4

(n − 4)!
u(s)ds ≤

∫ x

0

(x − s)n−4

(n − 4)!
v(s)ds.

Then by condition (H1),

f
(

x,

∫ x

0

(x − s)n−4

(n − 4)!
v(s)ds

)

≤ f
(

x,

∫ x

0

(x − s)n−4

(n − 4)!
u(s)ds

)

.
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And since G(x, t) > 0, we have by (H1) and (H3),

∫ 1

0

G(x, t)f
(

t,

∫ x

0

(x − s)n−4

(n − 4)!
v(s)ds

)

dt <

∫ 1

0

G(x, t)f
(

t,

∫ x

0

(x − s)n−4

(n − 4)!
u(s)ds

)

dt

≤

∫ 1

0

G(x, t)f
(

t,

∫ x

0

(x − s)n−4

(n − 4)!
gθ(s)ds

)

dt

=

∫ 1

0

G(x, t)f(x, kθ(x))

< ∞,

where gθ(x) ≤ u(x).

Therefore, T is well-defined on D and T is a decreasing operator.

Remark: We claim that T : D → D. To see this, suppose u ∈ D and let

w(x) = (T u)(x) =

∫ 1

0

G(x, t)f
(

t,

∫ t

0

(t − s)n−4

(n − 4)!
u(s)ds

)

dt ≥ 0.

Thus, for 0 ≤ x ≤ 1, w(x) ≥ 0. Also by properties of G,

w′′′(x) = f
(

x,

∫ x

0

(x − s)n−4

(n − 4)!
u(s)ds

)

> 0, for 0 < x ≤ 1,

and w(x) satisfies (5.4). As we argued previously, ‖w‖ = w(p).
Since we have that w′′(1) = 0 and w′′′(x) > 0, then w is concave.
Also, with w(p) = ||w(x)||, then w(x) ≥ w(p)g(x) = gw(p)(x). Therefore,
w ∈ D, and T : D → D.
Remark: It is well-known that T u = u iff u is a solution of (3)-(4). Hence,
we seek solutions of (3)-(4) that belong to D.

5 A Priori Bounds on Norms of Solutions

In this section, we will show that solutions of (3)-(4) have positive a pri-
ori upper and lower bounds on their norms. The proofs will be done by
contradiction.

Lemma 5.1 If f satisfies (H1)-(H3), then there exists S > 0 such that
||u|| ≤ S for any solution u of (3)-(4) in D.

Proof: We assume that the conclusion of the lemma is false. Then there
exists a sequence, {um}

∞
m=1, of solutions of (3)-(4) in D such that um(x) > 0,

for x ∈ (0, 1], and

‖um‖ ≤ ‖um+1‖ and lim
m→∞

‖um‖ = ∞.
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For a solution u of (3)-(4), we have

u′′′ = f
(

x,

∫ x

0

(x − s)n−4

(n − 4)!
u(s)ds

)

> 0, for 0 < x ≤ 1,

or u′′ < 0, for 0 < x ≤ 1.

This says that u is concave. In particular, the graphs of the sequence of
solutions, um, are concave. Furthermore, for each m, the boundary conditions
(4) and the concavity of um give us,

um(x) ≥ um(p)g(x) = ‖um‖g(x) = g‖um‖(x) for all x,

and so for every 0 < c < 1,

lim
m→∞

um(x) = ∞ uniformly on [c, 1].

Now, let us define

M := max{G(x, t) : (x, t) ∈ [0, 1] × [0, 1]}.

Then, from condition (H2), there exists m0 such that, for all m ≥ m0 and
x ∈ [p, 1],

f
(

x,

∫ x

0

(x − s)n−4

(n − 4)!
um(s)ds

)

≤
1

M(1 − p)
.

Let
θ = ‖um0

‖ = um0
(p).

Then, for all m ≥ m0,

um(x) ≥ gθ(x) = ‖um0
‖g(x), for 0 ≤ x ≤ 1.

So, for m ≥ m0, and for 0 ≤ x ≤ 1, we have

um(x) = (T um)(x)

=

∫ 1

0

G(x, t)f
(

t,

∫ t

0

(t − s)n−4

(n − 4)!
um(s)ds

)

dt

=

∫ p

0

G(x, t)f
(

t,

∫ t

0

(t − s)n−4

(n − 4)!
um(s)ds

)

dt

+

∫ 1

p

G(x, t)f
(

t,

∫ t

0

(t − s)n−4

(n − 4)!
um(s)ds

)

dt

≤

∫ p

0

G(x, t)f
(

t,

∫ t

0

(t − s)n−4

(n − 4)!
gθ(s)ds

)

dt +

∫ 1

p

M
1

M(1 − p)
dt

≤

∫ p

0

G(x, t)f(t, kθ(t))dt + 1

≤

∫ 1

0

G(x, t)f(t, kθ(t))dt + 1

≤ M

∫ 1

0

f(t, kθ(t))dt + 1.
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This is a contradiction to limm→∞ ‖um‖ = ∞. Hence, there exists an S > 0
such that ‖u‖ < S for any solution u ∈ D of (3)-(4).
2

Now we deal with positive a priori lower bounds on the solution norms.

Lemma 5.2 If f satisfies (H1)-(H3), then there exists R > 0 such that
||u|| ≥ R for any solution u of (5.3)-(5.4) in D.

Proof: We assume the conclusion of the lemma is false. Then, there exists
a sequence {um}

∞
m=1 of solutions of (3)-(4) in D such that um(x) > 0, for

x ∈ (0, 1], and
‖um‖ ≥ ‖um+1‖

and
lim

m→∞
‖um‖ = 0.

Now we define

m̄ := min{G(x, t) : (x, t) ∈ [p, 1] × [p, 1]} > 0.

From condition (H2), limy→0+ f(x, y) = ∞ uniformly on compact subsets of
(0, 1].
Thus, there exists δ > 0 such that, for x ∈ [p, 1] and 0 < y < δ,

f(x, y) >
1

m̄(1 − p)
.

In addition, there exists m0 such that, for all m ≥ m0 and x ∈ (0, 1]

0 < um(x) <
δ

2
,

0 <

∫ x

0

(x − s)n−4

(n − 4)!
um(s)ds <

δ

2
.

So, for x ∈ [p, 1] and m ≥ m0,

um(x) = (T um)(x)

=

∫ 1

0

G(x, t)f
(

t,

∫ t

0

(x − s)n−4

(n − 4)!
um(s)ds

)

dt

≥

∫ 1

p

G(x, t)f
(

t,

∫ t

0

(x − s)n−4

(n − 4)!
um(s)ds

)

dt
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≥ m̄

∫ 1

p

f
(

t,

∫ t

0

(x − s)n−4

(n − 4)!
um(s)ds

)

dt

> m̄

∫ 1

p

f
(

t,
δ

2

)

dt

> m̄

∫ 1

p

1

m̄(1 − p)
dt

= 1.

Which is a contradiction to limm→∞ ‖um(x)‖ = 0 uniformly on [0, 1]. Thus,
there exists R > 0 such that R ≤ ‖u‖ for any solution u in D of (5.3)-(5.4).
2

In summary, there exist 0 < R < S such that, for u ∈ D, a solution of
(3)-(4), Lemma 5.1 and Lemma 5.2 give us

R ≤ ‖u‖ ≤ S.

The next section gives the main result, an existence theorem, for this
problem.

6 Existence Result

In this section, we will construct a sequence of operators, {Tm}
∞
m=1, each of

which is defined on all of K. We will then show, by applications of Theorem
3.1, that each Tm has a fixed point, φm, for every m, in K. Then, we will
show that some subsequence of the {φm}

∞
m=1 converges to a fixed point of T .

Theorem 6.1 If f satisfies (H1)-(H3), then (3)-(4) has at least one positive

solution u in D, such that y(x) =
∫ x

0
(x−s)n−4

(n−4)!
u(s)ds is a positive solution of

(1)-(2).

Proof: For all m, let um(x) := T (m), where m is the constant function of
that value on [0, 1]. In particular,

um(x) =

∫ 1

0

G(x, t)f
(

t,

∫ t

0

(t − s)n−4

(n − 4)!
mds

)

dt

=

∫ 1

0

G(x, t)f
(

t,
m(−s)n−3

(n − 3)!

)

dt, for 0 ≤ x ≤ 1.

But f is decreasing in its second component, giving us,

0 < um+1(x) ≤ um(x), for 0 ≤ x ≤ 1.

By condition (H2), limm→∞ um(x) = 0, uniformly on [0, 1].
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Now, we define fm(x, y) : (0, 1] × [0,∞) → (0,∞) by

fm(x, y) = f
(

x, max
{

y,

∫ x

0

(x − s)n−4

(n − 4)!
um(s)ds

})

.

Then fm is continuous and fm does not possess the singularities as found in
f at y = 0. Moreover, for (x, y) ∈ (0, 1] × (0,∞) we have that,

fm(x, y) ≤ f(x, y)

and, moreover,

fm(x, y) = f
(

x, max
{

y,

∫ x

0

(x − s)n−4

(n − 4)!
um(s)ds

})

≤ f
(

x,

∫ x

0

(x − s)n−4

(n − 4)!
um(s)ds

)

.

Next, we define a sequence of operators, Tm : K → K, for φ ∈ K and
x ∈ [0, 1], by

Tmφ(x) :=

∫ 1

0

G(x, t)fm

(

t,

∫ t

0

(t − s)n−4

(n − 4)!
φ(s)ds

)

dt.

It is standard that each Tm is a compact mapping on K. Moreover,

Tm(0) =

∫ 1

0

G(x, t)fm(t, 0)dt

=

∫ 1

0

G(x, t)f
(

t, max
{

0,

∫ t

0

(t − s)n−4

(n − 4)!
um(s)ds

})

dt

=

∫ 1

0

G(x, t)f
(

t,

∫ t

0

(t − s)n−4

(n − 4)!
um(s)ds

)

dt

> 0.

Also,

T 2
m(0) = Tm

(

∫ 1

0

G(x, t)fm(t, 0)dt
)

≥ 0.

Then, by theorem (3.1) with x0 = 0, Tm has a fixed point in K for every m.
Thus, for every m, there exists a φm ∈ K so that

Tmφm(x) = φm(x), 0 ≤ x ≤ 1.

Hence, for m ≥ 1, φm satisfies the boundary conditions (4) of the problem.
Also,

Tmφm(x) =

∫ 1

0

G(x, t)fm

(

t,

∫ t

0

(t − s)n−4

(n − 4)!
φm(s)ds

)

dt

=

∫ 1

0

G(x, t)f
(

t, max
{

∫ t

0

(t − s)n−4

(n − 4)!
φm(s)ds,

∫ t

0

(t − s)n−4

(n − 4)!
um(s)ds

})

dt

≤

∫ t

0

G(x, t)f
(

t,

∫ t

0

(t − s)n−4

(n − 4)!
um(s)ds

)

dt

= T um(x).
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That is, φm(x) = Tmφm(x) ≤ T um(x), for 0 ≤ x ≤ 1, and for every m.
Proceeding as in lemmas 5.1 and 5.2, there exists S > 0 and R > 0 such

that
R < ‖φm‖ < S

for every m.
Now, let θ = R. Since φm ∈ K, then for x ∈ [0, 1] and every m,

φm(x) ≥ φm(p)g(x) = ‖φm‖ · g(x) > R · g(x) = θ · g(x) = gθ(x).

Thus, with θ = R, gθ(x) ≤ φm(x) for x ∈ [0, 1], for every m. Thus, {φm}
∞
m=1

is contained in the closed order interval < gθ, S >. Therefore, the sequence
{φm}

∞
m=1 is contained in D. Since T is a compact mapping, we may assume

limm→∞ T φm exist; say the limit is φ∗.
To conclude the proof of this theorem, we still need to show that

lim
m→∞

(

T φm(x) − φm(x)
)

= 0

uniformly on [0, 1]. This will give us that φ∗ ∈< gθ, S >. Still with θ = R,

then kθ(x) =
∫ 1

0
(x−s)n−4

(n−4)!
gθ(s)ds ≤

∫ 1

0
(x−s)n−4

(n−4)!
φm(s)ds for every m and 0 ≤

x ≤ 1. Let ε > 0 be given and choose δ, 0 < δ < 1, such that

∫ δ

0

f(t, kθ(t))dt <
ε

2M
,

where again M := max{G(x, t) : (x, t) ∈ [0, 1] × [0, 1]}. Then, there exists
m0 such that, for m ≥ m0 and for x ∈ [δ, 1],

∫ 1

0

(x − s)n−4

(n − 4)!
um(x) ≤ kθ(x) ≤

∫ 1

0

(x − s)n−4

(n − 4)!
φm(x).

So, for x ∈ [δ, 1],

fm

(

x ,

∫ x

0

(x − s)n−4

(n − 4)!
φm(s)ds

)

=

f
(

x, max
{

∫ x

0

(x − s)n−4

(n − 4)!
φm(s)ds,

∫ x

0

(x − s)n−4

(n − 4)!
um(s)ds

})

=

f
(

x,

∫ x

0

(x − s)n−4

(n − 4)!
φm(s)ds

)

.
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Then, for 0 ≤ x ≤ 1,

T φm(x) − φm(x) = T φm(x) − Tmφm(x)

=

∫ 1

0

G(x, t)f
(

t,

∫ t

0

(t − s)n−4

(n − 4)!
φm(s)ds

)

dt

−

∫ 1

0

G(x, t)fm

(

t,

∫ t

0

(t − s)n−4

(n − 4)!
φm(s)ds

)

dt

=

∫ δ

0

G(x, t)f
(

t,

∫ t

0

(t − s)n−4

(n − 4)!
φm(s)ds

)

dt

+

∫ 1

δ

G(x, t)f
(

t,

∫ t

0

(t − s)n−4

(n − 4)!
φm(s)ds

)

dt

−

∫ δ

0

G(x, t)fm

(

t,

∫ t

0

(t − s)n−4

(n − 4)!
φm(s)ds

)

dt

−

∫ 1

δ

G(x, t)fm

(

t,

∫ t

0

(t − s)n−4

(n − 4)!
φm(s)ds

)

dt

=

∫ δ

0

G(x, t)f
(

t,

∫ t

0

(t − s)n−4

(n − 4)!
φm(s)ds

)

dt

−

∫ δ

0

G(x, t)fm

(

t,

∫ t

0

(t − s)n−4

(n − 4)!
φm(s)ds

)

dt.
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Thus, for 0 ≤ x ≤ 1, we have,

∣

∣

∣
T φm(x) − φm(x)

∣

∣

∣
=

∣

∣

∣

∫ δ

0

G(x, t)f
(

t,

∫ t

0

(t − s)n−4

(n − 4)!
φm(s)ds

)

dt

−

∫ δ

0

G(x, t)fm

(

t,

∫ t

0

(t − s)n−4

(n − 4)!
φm(s)ds

)

dt

∣

∣

∣

≤ M
[
∣

∣

∣

∫ δ

0

f
(

t,

∫ t

0

(t − s)n−4

(n − 4)!
φm(s)ds

)

dt

∣

∣

∣

+
∣

∣

∣

∫ δ

0

fm

(

t,

∫ t

0

(t − s)n−4

(n − 4)!
φm(s)ds

)

d

∣

∣

∣

]

= M
[

∫ δ

0

f
(

t,

∫ t

0

(t − s)n−4

(n − 4)!
φm(s)ds

)

dt

+

∫ δ

0

f
(

t, max
{

∫ t

0

(t − s)n−4

(n − 4)!
um(s)ds,

∫ t

0

(t − s)n−4

(n − 4)!
φm(s)ds

})

dt
]

= M
[

∫ δ

0

f
(

t,

∫ t

0

(t − s)n−4

(n − 4)!
φm(s)ds

)

dt

+

∫ δ

0

f
(

t,

∫ t

0

(t − s)n−4

(n − 4)!
φm(s)ds

)

dt
]

= 2M

∫ δ

0

f
(

t,

∫ t

0

(t − s)n−4

(n − 4)!
φm(s)ds

)

dt

≤ 2M

∫ δ

0

f
(

t,

∫ 1

0

(x − s)n−4

(n − 4)!
gθ(s)ds

)

ds

= 2M

∫ δ

0

f(t, kθ(t))dt

= 2M
ε

2M
= ε.

Thus, for m ≥ m0,
‖T φm − φm‖ < ε.

In particular, limm→∞

(

T φm(x) − φm(x)
)

= 0 uniformly on [0, 1], and for

0 ≤ x ≤ 1

T φ∗(x) = T
(

lim
m→∞

T φm(x)
)

= T
(

lim
m→∞

φm(x)
)

= lim
m→∞

(

T φm(x)
)

= φ∗(x).
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Thus,
T φ∗ = φ∗,

and φ∗ is a desired solution of (3)-(4).

Now, if φ∗(x) is the solution of (3)-(4), let y(x) =
∫ x

0
(x−s)n−4

(n−4)!
φ∗(s)ds.

Then we have

y(0) =

∫ 0

0

(x − s)n−4

(n − 4)!
φ∗(s)ds = 0,

and by the Fundamental Theorem of Calculus,

y(n−3)(x) = φ∗(x).

Thus,
y(n−3)(0) = φ∗(0) = 0.

Also,
y(n−2)(x) = (φ∗)′(x),

thus,
y(n−2)(p) = (φ∗)′(p) = 0.

And,
y(n−1)(x) = (φ∗)′′(x)

y(n−1)(1) = (φ∗)′′(1) = 0.

Moreover,

y(n)(x) = (φ∗)′′′(x) = (T φ∗)′′′(x) = f
(

x,

∫ x

0

(x − s)n−4

(n − 4)!
φ∗(s)ds

)

= f(x, y).

Thus, y(x) =
∫ x

0
(x−s)n−4

(n−4)!
φ∗(s)ds > 0, 0 ≤ x ≤ 1 solves (1)-(2).

This completes the proof. 2

Remark: The results of this paper extend to Boundary Value Problems
for y(n) = f(x, y, y′, ·, y(n−3)) under the same boundary conditions.

Acknowledgment: The author is indebted to the referee’s suggestions.
These have greatly improved this paper.
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