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1 Introduction

In this paper, we study the existence of proper solutions of a forced
second order nonlinear differential equation of the form

(a(t)|y′|p−1
y′)′ + b(t)g(y′) + r(t)f(y) = e(t) (1)

where p > 0, a ∈ C0(R+), b ∈ C0(R+), r ∈ C0(R+), e ∈ C0(R+),
f ∈ C0(R), g ∈ C0(R), R+ = [0,∞), R = (−∞,∞) and a > 0 on R+.

A special case of Equation (1) is the unforced equation

(a(t)|y′|p−1
y′)′ + b(t)g(y′) + r(t)f(y) = 0. (2)

We will often use of the following assumptions

f(x)x ≥ 0 on R (3)

and
g(x)x ≥ 0 on R+. (4)

Definition 1. A solution y of (1) is called proper if it is defined on
R+ and supt∈[τ,∞)|y(t)| > 0 for every τ ∈ (0,∞). It is called singular
of the 1-st kind if it is defined on R+, there exists τ ∈ (0,∞) such
that y ≡ 0 on [τ,∞) and supT≤t≤τ |y(t)| > 0 for every T ∈ [0, τ). It
is called singular of the 2-nd kind if it is defined on [0, τ), τ < ∞ and
sup0≤t<τ |y′(t)| = ∞.

Note, that a singular solution y of the 2-nd kind is sometimes called
noncontinuable.

Definition 2. A proper solution y of (1) is called oscillatory if there
exists a sequence of its zeros tending to ∞. Otherwise, it is called
nonoscillatory. A nonoscillatory solution y of (1) is called weakly
oscillatory if there exists a sequence of zeros of y′ tending to ∞.

It is easy to see that (1) can be transformed into the system

y′1 = a(t)−
1

p |y2|
1

p sgn y2,

y′2 = −b(t)g(a(t)−
1

p |y2|
1

p sgn y2) − r(t)f(y1) + e(t); (5)

the relation between a solution y of (1) and a solution of (5) is y1(t) =
y(t), y2(t) = a(t)|y′(t)|p−1y′(t).

An important problem is the existence of solutions defined on R+

or of proper solutions (for Equation (2)). Their asymptotic behaviour
is studied by many authors (see e.g. monographs [7], [9] and [10], and
the references therein). So, it is very important to know conditions
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under the validity of which all solutions of (1) are defined on R+ or
are proper. For a special type of the equation of (2), for the equation

(a(t)|y′|p−1
y′)′ + r(t)f(y) = 0, (6)

sufficient conditions for all nontrivial solutions to be proper are given
e.g. in [1], [8], [9] and [10]. It is known that for half-linear equations,
i.e., if f(x) = |x|p sgn x, all nontrivial solutions of (4) are proper, see
e.g. [6]. For the forced equation (1) with (3) holding, a ∈ C1(R+),

a
1

p r ∈ AC1
loc(R+) and b ≡ 0, it is proved in [2] that all solutions are

defined on R+, i.e., the set of all singular solutions of the second kind is
empty. On the other hand, in [4] and [5] examples are given for which
Equation (6) has singular solutions of the first and second kinds (see
[1], as well). Moreover, Lemma 4 in [3] gives sufficient conditions for
the equation

(a(t)y′)′ + r(t)f(y) = 0

to have no proper solutions.
In the present paper, these problems are solved for (1). Sufficient

conditions for the nonexistence of singular solutions of the first and
second kinds are given, and so, sufficient conditions for all nontrivial
solutions of (2) to be proper are given. In the last section, simple
asymptotic properties of solutions of (2) are given.

Note that it is known that Equation (6) has no weakly oscillatory
solutions (see e.g. [10]), but as we will see in Section 4, Equation (1)
may have them.

It will be convenient to define the following constants:

γ =
p + 1

p(λ + 1)
, δ =

p + 1

p
.

We define the function R : R+ → R by

R(t) = a
1

p (t)r(t).

For any solution y of (1), we let

y[1](t) = a(t)|y′(t)|p−1y′(t)

and if (3) and r > 0 on R+ hold, let us define

V (t) =
a(t)

r(t)
|y′(t)|p+1 + γ

∫ y(t)

0
f(s) ds

=
|y[1](t)|δ

R(t)
+ γ

∫ y(t)

0
f(s) ds ≥ 0. (7)

For any continuous function h : R+ → R, we let h+(t) = max {h(t), 0}
and h−(t) = max {−h(t), 0} so that h(t) = h+(t) − h−(t).
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2 Singular solutions of the second kind

In this section, the nonexistence of singular solutions of the second
kind will be studied. The following theorem is a generalization of the
well-known Wintner’s Theorem to (1).

Theorem 1. Let M > 0 and

|g(x)| ≤ |x|p and |f(x)| ≤ |x|p for |x| ≥ M.

Then there exist no singular solution y of the second kind of (1) and
all solutions of (1) are defined on R+.

Proof. Let, to the contrary, y be a singular solution of the second kind
defined on [0, τ), τ < ∞. Then,

sup
0≤t<τ

|y′(t)| = ∞ and sup
0≤t<τ

|y[1](t)| = ∞. (8)

The assumptions of the theorem yield

|f(x)| ≤ M1 + |x|p and |g(x)| ≤ M2 + |x|p (9)

with M1 = max|s|≤M |f(s)| and M2 = max|s|≤M |g(s)|. Let t0 ∈ [0, τ)
be such that

τ − t0 ≤ 1,

∫ τ

t0

a−1(s)|b(s)| ds ≤ 1

2
, (10)

and

2p max
0≤s≤τ

|r(s)|
(

∫ τ

t0

a
− 1

p (s) ds
)p

≤ 1

3
. (11)

Using system (5), by an integration we obtain

|y1(t)| ≤ |y1(t0)| +
∫ t

t0

a
− 1

p (s)|y2(s)|
1

p ds (12)

and

|y2(t)| ≤ |y2(t0)|

+

∫ t

t0

[|b(s)g(a(s)
− 1

p |y2(s)|
1

p sgn y2(s))|+ |r(s)||f(y1(s))|+ |e(s)|] ds.

(13)
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Hence, using (9), (10) and (12), we have for t ∈ [t0, τ),

|y2(t)| ≤ |y2(t0)| +
∫ t

t0

|b(s)|[M2 + a−1(s)|y2(s)|] ds

+

∫ t

t0

|r(s)|[M1 + |y1(s)|p] ds +

∫ t

t0

|e(s)| ds

≤ M3 +
1

2
max

t0≤s≤t
|y2(s)| ds

+

∫ t

t0

|r(s)|[|y1(t0)| +
∫ s

t0

a
− 1

p (σ)|y2(σ)|
1

p dσ]p ds (14)

with M3 = |y2(t0)| + M2

∫ τ

t0
|b(s)| ds + M1

∫ τ

t0
|r(s)| ds +

∫ τ

t0
|e(s)| ds.

Denote v(t0) = |y2(t0)| and v(t) = maxt0≤s≤t |y2(s)|, t ∈ (t0, τ). Then,
(10), (12) and (14) yield

v(t) ≤ M3 +
1

2
v(t) +

∫ t

t0

|r(s)|[|y1(t0)| + M4v(s)
1

p ]p ds

≤ M3 +
1

2
v(t) + 2pM5

∫ t

t0

[yp
1(t0) + M

p
4 v(s)] ds

≤ M3 +
1

2
v(t) + 2pM5y

p
1(t0) + 2pM

p
4 M5v(t)

with M4 =
∫ τ

t0
a
− 1

p (σ)dσ, M5 = max0≤s≤τ |r(s)|.
From this and from (11), we have

1

6
v(t) ≤ M3 + 2pM5y

p
1(t0), t ∈ [t0, τ).

But this inequality contradicts (8) and the definition of v.

Remark 1. The results of Theorem 1 for Equation (1) with p ≤ 1 and
without the damping (b ≡ 0) is a generalization of the well-known
Wintner’s Theorem, see e.g. Theorem 11.5. in [9] or Theorem 6.1. in
[7].

The following result shows that singular solutions of the second kind
of (1) do not exist if r > 0 and R is smooth enough under weakened
assumptions on f .

Theorem 2. Let (3), R ∈ C1(R+), r > 0 on R+ and let either

(i) M ∈ (0,∞) exist such that |g(x)| ≤ |x|p for |x| ≥ M

or

(ii) (4) holds and b(t) ≥ 0 on R+.
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Then Equation (1) has no singular solution of the second kind and all
solutions of (1) are defined on R+.

Proof. Suppose y is a singular solution of the second kind defined on
I = [0, τ). Then supt∈[0,τ)|y′(t)| = ∞ and (7) yields

V ′(t) =

(

1

R(t)

)′

|y[1](t)|δ +
δ

r(t)
y′(t)(y[1](t))′ + δf(y(t))y′(t)

=

(

1

R(t)

)′

|y[1](t)|δ +
δ

r(t)
y′(t)[e(t) − b(t)g(y′(t))

− r(t)f(y(t))] + δf(t)y′(t)

or

V ′(t) =

(

1

R(t)

)′

|y[1](t)|δ +
δ

r(t)
y′(t)e(t) − δb(t)g(y′(t))y′(t)

r(t)
(15)

for t ∈ I. We will estimate the summands in (15). We have on I,

(

1

R(t)

)′

|y[1](t)|δ =
−R′(t)

R(t)

|y[1](t)|δ
R(t)

≤ R′
−(t)

R(t)
V (t). (16)

From |x| ≤ |x|s + 1 for s ≥ 1 and x ∈ R, we get

∣

∣

∣

∣

∣

δe(t)

r(t)
y′(t)

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

δe(t)a
1

p (t)y′(t)

R(t)

∣

∣

∣

∣

∣

(17)

≤ δ|e(t)|a
1

p (t)
|y′(t)|p+1 + 1

R(t)

=
δ|e(t)||y[1](t)|δ

a(t)R(t)
+

δ|e(t)|
r(t)

≤ δ|e(t)|V (t)

a(t)
+

δ|e(t)|
r(t)

on I. Furthermore, in case (ii), we have

−δb(t)g(y′(t))y′(t)

r(t)
≤ v(t) +

δ|b(t)||y′(t)|p+1

r(t)

= v(t) +
δ|b(t)||y[1](t)|δ

a(t)R(t)
≤ v(t) +

δ|b(t)|V (t)

a(t)
(18)

with

v(t) =
δ|b(t)|
r(t)

max
|s|≤M

|sg(s)|.
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Due to the fact that b ≥ 0, inequality (18) holds in case (i) with
v(t) ≡ 0. From this and (15), (16) and (17), we obtain

V ′(t) ≤
[

R′
−(t)

R(t)
+

δ

a(t)
[|e(t)| + |b(t)|]

]

V (t) +
δ|e(t)|
r(t)

+ v(t). (19)

The integration of (19) on [0, t] ∈ I yields

V (t) − V (0) ≤
∫ t

0

[

R′
−(s)

R(s)
+

δ

a(s)
[|e(s)| + |b(s)|]

]

V (s) ds

+

∫ τ

0

[

δ|e(t)|
r(t)

+ v(t)

]

dt.

Hence, Gronwall’s inequality yields

0 ≤ V (t) ≤
[

V (0) +

∫ τ

0

[δ|e(t)|
r(t)

+ v(t)
]

dt

]

× exp

∫ τ

0

[

R′
−(t)

R(t)
+

δ

a(t)
[|e(t)| + |b(t)|]

]

dt. (20)

Now V (t) is bounded from above on I since I is a bounded interval,
so (7) yields that |y[1](t)|δ and |y′(t)| are bounded above on I. But
this inequality contradicts (8).

Remark 2. It is clear from the proof of Theorem 2 (ii) that if b ≡ 0,
then assumption (4) is not needed in case (ii).

Remark 3. Note that the condition |g(x)| ≤ |x|p in (i) can not be
improved upon even for Equation (2).

Example 1. Let ε ∈ (0, 1). Then the function y =
(

1
1−t

)
1−ε

ε is a
singular solution of the second kind of the equation

y′′ − |y′|εy′ + C|y|
1+ε

1−ε sgn y = 0

on [0, 1) with C =
(

1−ε
ε2

)ε+1 − 1−ε
ε2 .

Remark 4.

(i) The result of Theorem 2 is obtained in [2] in case b ≡ 0 using a
the similar method.

(ii) Note that Theorem 2 is not valid if R 6∈ C1(R+); see [1] or [4]
for the case g ≡ 0.

Remark 5. Theorem 2 is not valid if r < 0 on an interval of positive
measure, see e.g. Theorem 11.3 in [9] (for (6) and p = 1). The
existence of singular solutions of the second kind for (1) is an open
problem.
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3 Singular solutions of the first kind

In this section, the nonexistence of singular solutions of the first
kind mainly for (2) will be studied. The following lemma shows that
e(t) has to be trivial in a neighbourhood of ∞ if Equation (1) has a
singular solution of the first kind.

Lemma 1. Let y be a singular solution of the first kind of (1). Then
e(t) ≡ 0 in a neighbourhood ∞.

Proof. Let y be a singular solution of (1) and τ the number from its
domain of definition. Then y ≡ 0 on [τ,∞) and Equation (1) yields
e(t) ≡ 0 on [τ,∞).

In what follows, we will only consider Equation (2).

Theorem 3. Let M > 0 and

|g(x)| ≤ |x|p and |f(x)| ≤ |x|p for |x| ≤ M. (21)

Then there exist no singular solution of the first kind of Equation (2).

Proof. Assume that y is a singular solution of the first kind and τ is
the number from Definition 1. Using system (5), we have y1 ≡ y2 ≡ 0
on [τ,∞). Let 0 ≤ T < τ be such that

|y1(t)| ≤ M, |y2(t)| ≤ M on [T, τ ], (22)

and
∫ τ

T

a(s)|b(s)| ds +

(
∫ τ

T

a
− 1

p (s) ds

)p ∫ τ

T

|r(s)| ds ≤ 1

2
. (23)

Define I = [T, τ ] and

v1(t) = max
t≤s≤τ

|y1(s)|, t ∈ I, (24)

v2(t) = max
t≤s≤τ

|y2(s)|, t ∈ I. (25)

From the definition of τ , (22), (24) and (25), we have

0 < v1(t) ≤ M, 0 < v2(t) ≤ M on [T, τ). (26)

An integration of the first equality in (5) and (25) yield

|y1(t)| ≤
∫ τ

t

a
− 1

p (s)|y2(s)|
1

p ds ≤
∫ τ

t

a
− 1

p (s)|v2(s)|
1

p ds

≤ |v2(t)|
1

p

∫ τ

t

a
− 1

p (s) ds (27)
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on I. If M1 =
∫ τ

T
a
− 1

p (s) ds, then

|y1(t)| ≤ M1|v2(t)|
1

p (28)

and from (24) we obtain

v1(t) ≤ M1|v2(t)|
1

p , t ∈ I. (29)

Similarly, an integration of the second equality in (5) and (21) yield

|y2(t)| ≤
∫ τ

t

∣

∣

∣

∣

b(s)g
(

a
1

p (s)|y2(s)|
1

p sgn y2(s)
)

∣

∣

∣

∣

ds

+

∫ τ

t

|r(s)f(y1(s))| ds

≤
∫ τ

t

|b(s)|(a
1

p (s)|v2(s)|
1

p )p ds +

∫ τ

t

|r(s)|y1(s)|p ds. (30)

Hence, from this, (21), (23) and (28)

|y2(t)| ≤ v2(t)

[
∫ τ

T

a(s)|b(s)| ds + v
p
1(t)

∫ τ

T

|r(s)| ds

]

≤ v2(t)

[
∫ τ

T

a(s)|b(s)| ds + M
p
1

∫ τ

T

|r(s)| ds

]

≤ v2(t)

2
. (31)

Hence v2(t) ≤ v2(t)
2 and so v2(t) ≡ 0 on I. The contradiction with (26)

proves the conclusion.

Theorem 4. Consider (3), R ∈ C1(R+), r > 0 on R+ and let either

(i) M ∈ (0,∞) exist such that |g(x)| ≤ |x|p for |x| ≤ M

or

(ii) (4) and b(t) ≤ 0 on R+.

Then Equation (2) has no singular solution of the first kind.

Proof. Let y(t) be singular solution of the first kind of (2). Then there
exists τ ∈ (0,∞) such that y(t) ≡ 0 on [τ,∞) and supT≤s<τ |y(s)| > 0
for T ∈ [0, τ). Then, similar to the proof of Theorem 2, (15) and the
equality in (16) hold with e ≡ 0. From this we have

V ′(t) =

(

1

R(t)

)′

|y[1](t)|δ − δb(t)g(y′(t))y′(t)

r(t)

≥ −R′
+(t)

R2(t)
aδ(t)|y′(t)|p+1 − δa

1

p (t)b(t)g(y′(t))y′(t)

R(t)
. (32)
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Let (i) be valid. Let T ∈ [0, τ) be such that |y′(t)| ≤ M on [T, τ ], and
let ε > 0 be arbitrary. Then,

V ′(t)

V (t) + ε
≥ − |y′(t)|p+1

R(t)[V (t) + ε]

(

aδ(t)
R′

+(t)

R(t)
+ δa

1

p (t)|b(t)|
)

≥ − V (t)

V (t) + ε

(

aδ(t)
R′

+(t)

R(t)
+ δa

1

p (t)|b(t)|
)

≥ −
(

aδ(t)
R′

+(t)

R(t)
+ δa

1

p (t)|b(t)|
)

. (33)

An integration on the interval [t, τ ] ⊂ [T, τ ] yields

ε

V (t) + ε
=

V (τ) + ε

V (t) + ε
≥ exp

{

−
∫ τ

t

[

aδ(s)
R′

+(s)

R(s)
+ δa

1

p (s)|b(s)|
]

ds

}

.

As ε > 0 is arbitrary, we have

0 ≥ V (t) exp

{

−
∫ τ

t

[

aδ(s)
R′

+(s)

R(s)
+ δa

1

p (s)b(s)

]

ds

}

, t ∈ [T, τ ].

Hence, V (t) ≡ 0 on [T, τ ] and (7) yields y(t) = 0 on [T, τ ]. The
contradiction to supt∈[T,τ ] |y(t)| > 0 proves that the conclusion holds
in this case.
Let (ii) hold; then from (7) and (32) we have

V ′(t)

V (t) + ε
≥
{

− aδ(t)
R′

+(t)

R2(t)
|y′(t)|p+1 − δa

1

p (t)b(t)g(y′(t))y′(t)

R(t)

}

× (V (t) + ε)−1

≥ − V (t)

V (t) + ε
aδ(t)

R′
+(t)

R(t)
≥ −aδ(t)

R′
+(t)

R(t)
(34)

for t ∈ [0, τ ]. Hence, we have a similar situation to that in (33) and
the proof is similar to case (i).

Remark 6. Theorem 3 generalized results of Theorem 1.2 in [10], ob-
tained in case b ≡ 0. Results of Theorem 9.4 in [7] with (b ≡ 0, f(x) =
|x|p sgn x) and of Theorem 1 in [1] (b ≡ 0) are special cases of Theorem
1 here.

Remark 7. Theorem 4 is not valid if r < 0 on an interval of positive
measure; see e.g.Theorem 11.1 in [9] (for (6) and p = 1). The existence
of singular solutions of the first kind of (2) is an open problem.

Remark 8. If R 6∈ C1(R+), then the statement of Theorem 4 does not
hold (see [1] for g ≡ 0 or [5]).
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Note that condition (i) in Theorem 4 can not be improved.

Example 2. Let ε ∈ (0, 1). Then function y = (1 − t)(1+
1

ε
) for

t ∈ [0, 1] and y ≡ 0 on (1,∞) is a singular solution of the first kind of
the equation

y′′ +

(

1 +
1

ε
+

1

ε2

)(

1 +
1

ε

)ε−1

|y′|1−ε sgn y′ + |y|
1−ε

1+ε = 0.

Note that p = 1 in this case.

Theorems 1, 2, 3 and 4 gives us sufficient conditions for all non-
trivial solutions of (2) to be proper.

Corollary 1. Let |g(x)| ≤ |x|p and |f(x)| ≤ |x|p for x ∈ R. Then
every nontrivial solution y of (2) is proper.

Corollary 2. Let (3), R ∈ C1(R+), r > 0 on R+ and |g(x)| ≤ |x|p
on R hold. Then every nontrivial solution y of (2) is proper.

Remark 9. The results of Corollary 1 and Corollary 2 are obtained in
[1] for b ≡ 0.

Remark 10. Research of the first author is supported by Ministry of
Education of the Czech Republic under project MSM0021622409.

4 Further properties of solutions of (2)

In this section, simple asymptotic properties of solutions of (2) are
studied. Mainly, sufficient conditions are given under which zeros of a
nontrivial solutions are simple and zeros of a solution and its derivative
separate from each other.

Corollary 3. Let the assumptions either of Theorem 3 or of Theorem
4 hold. Then any nontrivial solution of (2) has no double zeros on
R+.

Proof. Let y be a nontrivial solution of (2) defined on R+ with a
double zero at τ ∈ R+, i.e., y(τ) = y′(τ) = 0. Then it is clear that
the function

ȳ(t) = y(t) on [0, τ ], ȳ(t) = 0 for t > τ

is also solution of (2). As ȳ is a singular solution of the first kind, we
obtain contradiction with either Theorem 3 or with Theorem 4.

Lemma 2. Let g(0) = 0, r 6= 0 on R+, and f(x)x > 0 for x 6= 0.
Let y be a nontrivial solution of (2) such that y′(t1) = y′(t2) = 0 with
0 ≤ t1 < t2 < ∞. Then there exists t3 ∈ [t1, t2] such that y(t3) = 0.
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Proof. We may suppose without loss of generality that t1 and t2 are
consecutive zeros of y′; if t1 or t2 is an accumulation point of zeros of
y′, the result holds. If we define z(t) = y[1](t), t ∈ R+, then

z(t1) = z(t2) = 0 and z(t) 6= 0 on (t1, t2). (35)

Suppose, contrarily, that y(t) 6= 0 on (t1, t2). Then either

y(t1)y(t2) > 0 on [t1, t2] (36)

or
y(t1)y(t2) = 0 (37)

holds. If (36) is valid, then (2) and the assumptions of the lemma
yields

sgn z′(t1) = sgn z′(t2) 6= 0

and the contradiction with (35) proves the statement in this case.
If (37) holds the conclusion is valid.

Corollary 4. Let f(x)x > 0 for x 6= 0 and one of the following
possibilities hold:

(i) r 6= 0 on R+ and

|g(x)| ≤ |x|p and |f(x)| ≤ |x|p for x ∈ R;

(ii) R ∈ C1(R+), r > 0 on R+ and

|g(x)| ≤ |x|p for |x| ∈ R;

(iii) R ∈ C1(R+), b ≤ 0 on R+, r > 0 on R+, g(x)x ≥ 0 on R+ and
M > 0 exists such that

|g(x)| ≥ |x|p for |x| ≥ M ;

(iv) R ∈ C1(R+), r > 0 on R+, b ≥ 0 on R+, g(x)x ≥ 0 on R and
M exists such that

|g(x)| ≤ |x|p for |x| ≤ M.

Then the zeros of y and y′ (if any) separate from each other, i.e.
between two consecutive zeros of y(y′) there is the only zero of y(y′).

Proof. Accounting to our assumptions, Corollary 3 holds and hence
all zeros of any nontrivial solution y of (2) are simple, there exists no
accumulation point of zeros of y on R+, and there exists no interval
[α, β] ∈ R+, α < β of zeros of y. Then, the statement follows from
Lemma 2 and Rolle’s Theorem.
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Theorem 5. Let g(0) = 0, r 6= 0 on R+ and f(x)x > 0 for x 6= 0.
Then (2) has no weakly oscillatory solution and every nonoscillatory
solution y of (2) has a limit as t → ∞.

Proof. Let y be a weakly oscillatory solution of (2). Then there exist
t0, t1 and t2 such that 0 ≤ t0 < t1 < t2, y(t) 6= 0 on [t0,∞) and
y′(t1) = y′(t2) = 0. But this fact contradicts Lemma 2.

The following examples show that some of the assumptions of The-
orem 5 cannot be omitted.

Example 3. The function y = 2+sin t, t ∈ R+ is a weakly oscillatory
solution of the equation

y′′ − y′ +
sin t + cos t

2 + sin t
y = 0.

In this case r 6= 0 is not valid.

Example 4. The function y = 2+sin t, t ∈ R+ is a weakly oscillatory
solution of the equation

y′′ − g(y′) + 2y = 0 with g(x) =

{

4 +
√

1 − x2 for |x| ≤ 1;

4 for |x| > 1.

In this case g(0) 6= 0.

Remark 11. If g ≡ 0, the result of Theorem 5 is known, see e.g. Lemma
5.1 in [10] or a direct application of (5).
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Department of Mathematics, Masaryk University,
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