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Abstract. This paper deals with a coupled system of Kirchhoff type equations in R3.
Under suitable assumptions on the potential functions V(x) and W(x), we obtain the
existence and multiplicity of nontrivial solutions when the parameter λ is sufficiently
large. The method combines the Nehari manifold and the mountain-pass theorem.
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1 Introduction

In this paper, we consider the coupled system of Kirchhoff type equations
−
(

a + b
∫

R3
|∇u|2 dx

)
∆u + λV(x)u =

2α

α + β
|u|α−2u|v|β in R3,

−
(

a + b
∫

R3
|∇v|2 dx

)
∆v + λW(x)v =

2β

α + β
|u|α|v|β−2v in R3,

u(x)→ 0, v(x)→ 0, as |x| → ∞,

(K)λ

where a > 0, b > 0 are constants, λ > 0 is a parameter, α > 2, β > 2 satisfy α + β < 2∗ = 6, and
V(x), W(x) are nonnegative continuous potential functions on R3.

In recent years, many papers have extensively considered the scalar Kirchhoff equation −
(

a + b
∫

Ω
|∇u|2dx

)
∆u = f (x, u) in Ω,

u = 0 on ∂Ω,
(1.1)

where Ω ⊂ R3 is a smooth bounded domain, one can see [1, 4, 6, 11, 12, 15] and the references
therein. Problem (1.1) is related to the stationary analogue of the equation

utt −
(

a + b
∫

Ω
|∇u|2dx

)
∆u = f (x, u), (1.2)
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which was proposed by Kirchhoff in [8] as an extension of the classical d’Alembert wave equa-
tion for free vibrations of elastic strings. Kirchhoff’s model considers the changes in length of
the string produced by transverse vibrations.

There are also many works on the existence and multiplicity results for the scalar case of
(K)1 

−
(

a + b
∫

R3
|∇u|2dx

)
∆u + V(x)u = f (u) in R3,

u ∈ H1(R3), u > 0 in R3,

(1.3)

where f is a subcritical function and satisfies certain conditions. We would mention the re-
cent paper [14], by applying symmetric mountain-pass theorem, the author obtained the ex-
istence results for nontrivial solutions and a sequence of high energy solutions for problem
(1.3). Subsequently, Liu and He [9] proved the existence of infinitely many high energy so-
lutions for (1.3) when f is a subcritical nonlinearity which does not need to satisfy the usual
Ambrosetti–Rabinowitz conditions. Further related results can be seen in [7, 10, 13] and the
references therein.

The purpose of this paper is to study the existence and multiplicity results for a coupled
system of Kirchhoff type equations in R3. To the best of our knowledge, problem (K)λ has not
been considered before, the main difficulties lie in the appearance of the non-local term and
the lack of compactness due to the unboundedness of the domain R3. Motivated by the work
mentioned above, we will get the existence and multiplicity results of nontrivial solutions for
λ large enough by exploiting the Nehari manifold method and the mountain-pass theorem.

Before stating our main results, we need to introduce some assumptions and notations:

(A1) V(x), W(x) ∈ C(R3, [0,+∞)) and Ω := int(V−1(0)) = int(W−1(0)) is nonempty with
smooth boundary and Ω = V−1(0) = W−1(0);

(A2) there exist M1, M2 > 0 such that

L({x ∈ R3 | V(x) ≤ M1}) < ∞, L({x ∈ R3 |W(x) ≤ M2}) < ∞,

where L denotes the Lebesgue measure in R3.

The hypothesis (A2) was first introduced by Bartsch and Wang [3] in the study of a non-
linear Schrödinger equation. Let EV = {u ∈ H1(R3) :

∫
R3 V(x)u2 dx < +∞} and EW =

{v ∈ H1(R3) :
∫

R3 W(x)v2 dx < +∞} with the norms ‖u‖2
λ,V =

∫
R3(a|∇u|2 + λV(x)u2)dx and

‖v‖2
λ,W =

∫
R3(a|∇v|2 + λW(x)v2)dx respectively. For any given λ > 0, we consider the Hilbert

space E := EV × EW endowed with the norm

‖(u, v)‖λ =
√
‖u‖2

λ,V + ‖v‖2
λ,W .

The energy functional associated with (K)λ is defined on E by

Iλ(u, v) =
1
2
‖(u, v)‖2

λ +
b
4
(
Υ2(u) + Υ2(v)

)
− 2

α + β

∫
R3
|u|α|v|β dx,

where Υ(w) =
∫

R3 |∇w|2 dx. In view of the assumptions (A1) and (A2), the energy functional
Iλ(u, v) is well defined and belongs to C1(E, R). It is well known that the weak solutions of
problem (K)λ are the critical points of the energy functional Iλ(u, v).

The main results we get are the following:
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Theorem 1.1. Suppose that (A1) and (A2) hold. Then there is λ∗ > 0 such that for all λ ≥ λ∗, the
system (K)λ has a ground state solution.

Theorem 1.2. Suppose that (A1) and (A2) hold. Then for any given k ∈ N, there exists Λk > 0 such
that for each λ ≥ Λk, the system (K)λ possesses at least k pairs of nontrivial solutions.

This paper is organized as follows. In Section 2, we will prove some important lemmas that
will be used for the proofs of the main results. Section 3 is devoted to the proofs of Theorems
1.1 and 1.2.

2 Some preliminary lemmas

In this paper, C, C1, C2, . . . denote positive (possibly different) constants. → (respectively ⇀)
denotes strong (respectively weak) convergence. on(1) denotes on(1)→ 0 as n→ ∞. Br denotes
a ball centered at the origin with radius r > 0. For a given set K ⊂ R3, we set Kc = R3\K. We
define the minimax cλ as

cλ = inf
(u,v)∈Nλ

Iλ(u, v), (2.1)

where Nλ denotes the Nehari manifold associated with Iλ given by

Nλ =
{
(u, v) ∈ E \ {(0, 0)} : 〈I ′λ(u, v), (u, v)〉 = 0

}
,

and 〈·, ·〉 is the duality product between E and its dual space E−1. A ground state solution of
(K)λ means a solution (u, v) of (K)λ with Iλ(u, v) = cλ. Note that Nλ contains every nonzero
solution of problem (K)λ. Hereafter, we suppose that (A1) and (A2) are satisfied.

Lemma 2.1. Let (u, v) ∈ Nλ, then there exists σ > 0 which is independent of λ such that ‖(u, v)‖λ ≥
σ.

Proof. First, by Young’s inequality, we get

|u|α|v|β ≤ α

α + β
|u|α+β +

β

α + β
|v|α+β,

then by the continuity of the Sobolev embedding EV ↪→Ls(R3) and EW ↪→Ls(R3) for 2 ≤ s ≤ 6,
we obtain ∫

R3
|u|α|v|β dx ≤ α

α + β

∫
R3
|u|α+β dx +

β

α + β

∫
R3
|v|α+β dx

≤ C1‖u‖
α+β
V + C2‖v‖α+β

W ≤ C‖(u, v)‖α+β
λ , (2.2)

where C > 0 is independent of λ. So, by (2.2), for any (u, v) ∈ Nλ we have

0 = 〈I ′λ(u, v), (u, v)〉 = ‖(u, v)‖2
λ + b(Υ2(u) + Υ2(v))− 2

∫
R3
|u|α|v|β dx

≥ ‖(u, v)‖2
λ − 2C‖(u, v)‖α+β

λ .

Note that α + β > 2, thus there exists σ > 0 such that ‖(u, v)‖λ ≥ σ.

Lemma 2.2. Suppose that {(un, vn)} is a (PS)c-sequence for Iλ(u, v). Then we have

(i) {(un, vn)} is bounded in E;
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(ii) if c 6= 0, then c ≥ c0, for some c0 > 0 is independent of λ.

Proof. Let {(un, vn)} be a (PS)c sequence for Iλ(u, v), that is, Iλ(un, vn) = c + on(1) and
I ′λ(un, vn) = on(1). Then we have that

c + on(1)−
1
4

on(‖(un, vn)‖λ) = Iλ(un, vn)−
1
4
〈I ′λ(un, vn), (un, vn)〉

=
1
2
‖(un, vn)‖2

λ +

(
1
2
− 2

α + β

) ∫
R3
|un|α|vn|β dx

≥ 1
2
‖(un, vn)‖2

λ, (2.3)

which implies that {(un, vn)} is bounded in E.
On the other hand, we have

on(‖(un, vn)‖λ) = 〈I ′λ(un, vn), (un, vn)〉

= ‖(un, vn)‖2
λ + b(Υ2(un) + Υ2(vn))− 2

∫
R3
|un|α|vn|β dx

≥ ‖(un, vn)‖2
λ − 2C‖(un, vn)‖α+β

λ (by (2.2)),

since α + β > 2, there exists 0 < σ1 < 1 such that

〈I ′λ(un, vn), (un, vn)〉 ≥
1
4
‖(un, vn)‖2

λ, for ‖(un, vn)‖λ < σ1. (2.4)

Now, if c < σ2
1
2 and {(un, vn)} is a (PS)c-sequence of Iλ, then by (2.3)

lim
n→∞
‖(un, vn)‖2

λ ≤ 2c < σ2
1 .

Hence, ‖(un, vn)‖λ < σ1 for n large, then by (2.4)

1
4
‖(un, vn)‖2

λ ≤ 〈I ′λ(un, vn), (un, vn)〉 = on(‖(un, vn)‖λ),

which implies ‖(un, vn)‖λ → 0 as n→ ∞ and c = 0, it follows that (ii) holds for c0 = σ2
1 /2.

Lemma 2.3. Suppose that (A1)–(A2) hold and let C∗ be fixed. Given ε > 0 there exist Λε =

Λ(ε, C∗) > 0 and ρε = ρ(ε, C∗) > 0 such that, if {(un, vn)} is a (PS)c-sequence of Iλ(u, v) with
c ≤ C∗, λ ≥ Λε, then

lim sup
n→∞

∫
Bc

ρε

|un|α|vn|β dx ≤ ε. (2.5)

Proof. For ρ > 0, we set

A(ρ) := {x ∈ R3 : |x| ≥ ρ, V(x) ≥ M1}, B(ρ) := {x ∈ R3 : |x| ≥ ρ, V(x) < M1},

then ∫
A(ρ)
|un|2dx ≤ 1

λM1

∫
R3

λV(x)u2
n dx

≤ 1
λM1

∫
R3

(
a|∇un|2 + λV(x)u2

n
)

dx

≤ 1
λM1

(
2c + on(‖(un, vn)‖λ)

)
≤ 1

λM1

(
2C∗ + on(‖(un, vn)‖λ)

)
→ 0 as λ→ ∞. (2.6)
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Using the Hölder inequality and (2.3), for 1 < q < 3 we obtain

∫
B(ρ)
|un|2 dx ≤

( ∫
R3
|un|2q dx

) 1
q · L(B(ρ))

q−1
q

≤ C4‖un‖2
H1(R3) · L(B(ρ))

q−1
q

≤ C4 · 2C∗ · L(B(ρ))
q−1

q → 0 as ρ→ ∞, (2.7)

where C4 = C4(q) is a positive constant. Setting θ = 3(α+β−2)
2(α+β)

and using the Gagliardo–
Nirenberg inequality, we obtain

∫
Bc

ρ

|un|α+β dx ≤ C
( ∫

Bc
ρ

|∇un|2 dx
) (α+β)θ

2 ·
( ∫

Bc
ρ

|un|2 dx
) (α+β)(1−θ)

2

≤ C5‖(un, vn)‖(α+β)θ
λ ·

( ∫
A(ρ)
|un|2 dx +

∫
B(ρ)
|un|2 dx

) (α+β)(1−θ)
2

≤ C6

( ∫
A(ρ)
|un|2 dx +

∫
B(ρ)
|un|2 dx

) (α+β)(1−θ)
2

→ 0 as λ, ρ→ ∞ (by (2.6) and (2.7)). (2.8)

Similarly, ∫
Bc

ρ

|vn|α+β dx ≤ ε for λ, ρ large. (2.9)

At last, using the Hölder inequality, (2.8) and (2.9) we have that

lim sup
n→∞

∫
Bc

ρε

|un|α|vn|β dx ≤ lim sup
n→∞

( ∫
Bc

ρε

|un|α+β dx
) α

α+β
( ∫

Bc
ρε

|vn|α+β dx
) β

α+β ≤ ε.

This concludes the proof of Lemma 2.3.

The following Brézis–Lieb type lemma is proved in [5, Lemma 4.2].

Lemma 2.4. Let {(un, vn)} ⊂ E be a sequence such that (un, vn) ⇀ (u, v) weakly in E. Then we have∫
R3
|un|α|vn|β dx−

∫
R3
|un − u|α|vn − v|β dx =

∫
R3
|u|α|v|β dx + on(1).

Lemma 2.5. Let λ > 0 be fixed and {(un, vn)} is a (PS)c-sequence of Iλ. Then

(i) up to a subsequence (un, vn) ⇀ (u, v) in E with (u, v) being a weak solution of (K)λ;

(ii) {(un − u, vn − v)} is a (PS)d-sequence for Iλ with d = c− Iλ(u, v).

Proof. (i) Since {(un, vn)} is bounded in E (see Lemma 2.2(i)), then there is a subsequence of
{(un, vn)} such that (un, vn) ⇀ (u, v) in E as n → ∞. In order to see that (u, v) is a critical
point of Iλ, we recall that (un, vn) ⇀ (u, v) in E, (un, vn) → (u, v) for almost every x ∈ R3,
(un, vn) → (u, v) in Ls1

loc(R
3)× Ls2

loc(R
3), 2 ≤ s1, s2 < 6. It is easy to see that for any (ϕ, ψ) ∈ E,

we have
〈I ′λ(u, v), (ϕ, ψ)〉 = lim

n→∞
〈I ′λ(un, vn), (ϕ, ψ)〉 = 0.

Therefore (u, v) is a critical point of Iλ.
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(ii) Let (ũn, ṽn) = (un − u, vn − v). Now we verify that

Iλ(ũn, ṽn) = c− Iλ(u, v) as n→ ∞ (2.10)

and
I ′λ(ũn, ṽn)→ 0 as n→ ∞. (2.11)

By the Brézis–Lieb lemma, we have that

‖(ũn, ṽn)‖2
λ = ‖(un, vn)‖2

λ − ‖(u, v)‖2
λ + on(1),( ∫

R3
|∇ũn|2 dx

)2
=
( ∫

R3
|∇un|2 dx

)2
−
( ∫

R3
|∇u|2 dx

)2
+ on(1),( ∫

R3
|∇ṽn|2 dx

)2
=
( ∫

R3
|∇vn|2 dx

)2
−
( ∫

R3
|∇v|2 dx

)2
+ on(1).

To show (2.10) we observe

Iλ(ũn, ṽn) =
1
2

∫
R3
(a|∇ũn|2 + λV(x)|ũn|2) dx +

1
2

∫
R3
(a|∇ṽn|2 + λW(x)|ṽn|2) dx

+
b
4

(( ∫
R3
|∇ũn|2 dx

)2
+
( ∫

R3
|∇ṽn|2 dx

)2
)
− 2

α + β

∫
R3
|ũn|α|ṽn|β dx

= Iλ(un, vn)− Iλ(u, v) + on(1)

+
2

α + β

( ∫
R3
|un|α|vn|β dx−

∫
R3
|u|α|v|β dx−

∫
R3
|ũn|αṽn|β dx

)
. (2.12)

From Lemma 2.4,
∫

R3 |un|α|vn|β dx −
∫

R3 |u|α|v|β dx −
∫

R3 |ũn|α|ṽn|β dx → 0 as n → ∞. Thus
from (2.12) we obtain (2.10).

In order to show (2.11), let (ϕ, ψ) ∈ E. We note that

〈I ′λ(ũn, ṽn), (ϕ, ψ)〉 = 〈I ′λ(un, vn), (ϕ, ψ)〉 − 〈I ′λ(u, v), (ϕ, ψ)〉 − 2α

α + β

∫
R3
|ũn|α−2|ṽn|βũn ϕ dx

− 2β

α + β

∫
R3
|ũn|α|ṽn|β−2ṽnψ dx +

2α

α + β

∫
R3
|un|α−2|vn|βun ϕ dx

+
2β

α + β

∫
R3
|un|α|vn|β−2vnψ dx− 2α

α + β

∫
R3
|u|α−2|v|βuϕ dx

− 2β

α + β

∫
R3
|u|α|v|β−2vψ dx. (2.13)

Since I ′λ(un, vn)→ 0 and un → u, vn → v in Ls(R3)(2 ≤ s < 6), we have

lim
n→∞

sup
‖ϕ‖λ,V≤1

∫
R3

(
|ũn|α−2|ṽn|βũn − |un|α−2|vn|βun + |u|α−2|v|βu

)
ϕ dx = 0, (2.14)

lim
n→∞

sup
‖ψ‖λ,W≤1

∫
R3

(
|ũn|α|ṽn|β−2ṽn − |un|α|vn|β−2vn + |u|α|v|β−2v

)
ψ dx = 0. (2.15)

Thus combining (2.13)–(2.15) we obtain that

lim
n→∞
〈I ′λ(ũn, ṽn), (ϕ, ψ)〉 = 0, ∀ (ϕ, ψ) ∈ E,

which implies (2.12) and this completes the proof of Lemma 2.5.
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3 Proof of the main results

We begin with the following lemma.

Lemma 3.1. Suppose that (A1) and (A2) hold. Then for any C0 > 0, there exists Λ0 > 0 such that Iλ

satisfies the (PS)c-condition for all c ≤ C0 and λ ≥ Λ0.

Proof. Let c0 > 0 be given by Lemma 2.2 (ii) and choose ε > 0 such that ε < c0(α+β)
α+β−2 . Then

for given C0 > 0, we choose Λε > 0 and ρε > 0 as in Lemma 2.3. We claim that Λ0 = Λε is
just required in Lemma 3.1. Let {(un, vn)} ⊂ E be a (PS)c-sequence of Iλ(u, v) with c ≤ C0

and λ ≥ Λ0. By Lemma 2.5, we may suppose that (un, vn) ⇀ (u, v) weakly in E and then
{(ũn, ṽn)} = {(un − u, vn − v)} is a (PS)d-sequence of Iλ with d = c− Iλ(u, v). We claim that
d = 0. Arguing by contradiction, assume that d 6= 0. Lemma 2.2 (ii) implies that d ≥ c0 > 0.
Since (ũn, ṽn) is a (PS)d-sequence of Iλ, we have

Iλ(ũn, ṽn) = d + on(1), I ′λ(ũn, ṽn) = on(1).

Then we get

d + on(1)−
1
2

on(‖(un, vn)‖λ) = Iλ(ũn, ṽn)−
1
2
〈I ′λ(ũn, ṽn), (ũn, ṽn)〉

= − b
4
(Υ2(ũn) + Υ2(ṽn)) +

(
1− 2

α + β

) ∫
R3
|ũn|α|ṽn|β dx

≤
(

1− 2
α + β

) ∫
R3
|ũn|α|ṽn|β dx, (3.1)

from which we deduce that

lim
n→∞

∫
R3
|ũn|α|ṽn|β dx ≥ d

(
1− 2

α + β

)−1

≥ α + β

α + β− 2
c0. (3.2)

On the other hand, Lemma 2.3 implies

lim sup
n→∞

∫
Bc

ρε

|ũn|α|ṽn|β dx ≤ ε <
c0(α + β)

α + β− 2
.

This implies (ũn, ṽn) ⇀ (u, v) in E with (u, v) 6= (0, 0), which is a contradiction. Therefore
d = 0 and it follows from (2.3) that

lim
n→∞
‖(ũn, ṽn)‖2

λ ≤ 2d = 0,

hence (ũn, ṽn) → (0, 0) in E, that is, (un, vn) → (u, v) in E. This completes the proof of Lemma
3.1.

The following lemma implies that Iλ possesses the mountain-pass geometry.

Lemma 3.2. The functional Iλ satisfies the following conditions.

(i) There exist ρ, η > 0 such that Iλ(u, v) ≥ η for all ‖(u, v)‖λ = ρ.

(ii) There exists (u0, v0) ∈ Bc
ρ(0) such that Iλ(u0, v0) < 0.
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Proof. (i) By (2.2) we have that

Iλ(u, v) =
1
2
‖(u, v)‖2

λ +
b
4
(
Υ2(u) + Υ2(v)

)
− 2

α + β

∫
R3
|u|α|v|β dx

≥ 1
2
‖(u, v)‖2

λ − C‖(u, v)‖α+β
λ , (3.3)

since α + β > 2, we can choose some η > 0, ρ > 0 such that Iλ(u, v) ≥ η for ‖(u, v)‖λ = ρ.
(ii) We note that for each λ > 0, Iλ(0, 0) = 0. Furthermore, for (u, v) ∈ E \ {0, 0}, since

α + β > 4, we get that

Iλ(t(u, v)) =
(

t2

2
‖(u, v)‖2

λ +
bt4

4
(Υ2(u) + Υ2(v))− 2tα+β

α + β

∫
R3
|u|α|v|β dx

)
→ −∞

as t → +∞. Hence, we can choose t0 > 0 large enough such that ‖t0(u, v)‖λ > ρ and
Iλ(t0(u, v)) < 0. Let (u0, v0) = t0(u, v), then (ii) holds.

Now we give the proof of Theorem 1.1.

Proof of Theorem 1.1. By Lemma 3.2, the functional Iλ satisfies the mountain-pass geometry,
then using a version of the mountain-pass theorem without (PS) condition, there exists a (PS)-
sequence {(un, vn)} ⊂ E satisfying

Iλ(un, vn)→ cλ and I ′λ(un, vn)→ 0.

Moreover, by Lemma 2.2 (i), {(un, vn)} is bounded in E. Then, up to a subsequence, (un, vn) ⇀

(u, v) weakly in E and (un, vn) → (u, v) for almost every x ∈ R3. By Lemma 3.1, there exists
λ∗ > 0, such that (un, vn) → (u, v) in E for λ ≥ λ∗. Furthermore, by Lemma 2.5 we have that
I ′λ(u, v) = 0. By Lemma 2.1, we know that (u, v) 6= (0, 0), then (u, v) ∈ Nλ, and using Fatou’s
lemma we get

Iλ(u, v) = Iλ(u, v)− 1
4
〈I ′λ(u, v), (u, v)〉

=
1
4
‖(u, v)‖2

λ +

(
1
2
− 2

α + β

) ∫
R3
|u|α|v|β dx

≤ lim inf
n→∞

(
1
4
‖(un, vn)‖2

λ +

(
1
2
− 2

α + β

) ∫
R3
|un|α|vn|β dx)

)
= lim inf

n→∞

(
Iλ(un, vn)−

1
4
〈I ′λ(un, vn), (un, vn)〉

)
= cλ.

Hence, Iλ(u, v) ≤ cλ. On the other hand, from the definition of cλ, we have cλ ≤ Iλ(u, v). So,
Iλ(u, v) = cλ, that is (u, v) is a ground state solution of problem (K)λ.

To prove Theorem 1.2 we need the following version of the symmetric mountain-pass the-
orem [2].

Theorem 3.3. Let X be a real Banach space and W ⊂ X a finite dimensional subspace. Suppose that
J ∈ C1(X, R) is an even functional satisfying J(0) = 0 and
(a) there exists a constant ρ > 0 such that J|∂Bρ(0) ≥ 0;
(b) there exists M0 > 0 such that supz∈W J(z) < M0.
If J satisfies (PS)c for any 0 < c < M0, then J possesses at least dim W pairs of nontrivial critical
points.
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Proof of Theorem 1.2. Obviously, Iλ(u, v) is an even functional. Given k ∈N, we set

W = span{(φ1, φ1), . . . , (φk, φk)},

where φi is the eigenfunction corresponding to the i-th eigenvalue of (−∆, H1
0(Ω)) and Ω is

defined in assumption (A1), then dim W = k. Since all norms in a finite dimensional space are
equivalent, for each i = 1, . . . , k, we have that

lim
t→+∞

Iλ(t(φi, φi)) = lim
t→+∞

(
at2
∫

Ω
|∇φi|2 dx +

bt4

2

(∫
Ω
|∇φi|2 dx

)2

− 2tα+β

α + β

∫
Ω
|φi|α+β dx

)
=−∞

uniformly in λ. Since W has finite dimension we obtain Mk > 0, independent of λ > 0, such
that

sup
(u,v)∈W

Iλ(u, v) < Mk.

Moreover, similar to the proof of Lemma 3.2 (i) we may obtain ρ > 0, independent of λ > 0,
such that

Iλ(u, v) ≥ 0 for ‖(u, v)‖λ = ρ.

In view of Lemma 3.1, there exists Λk > 0 such that Iλ satisfies (PS)c for any c ≤ Mk and
λ ≥ Λk. Thus, for any fixed λ ≥ Λk we may apply Theorem 3.3 to obtain k pairs of nontrivial
solutions. Theorem 1.2 is proved.
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